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QUADRATIC RESIDUE CODES OVER GALOIS RINGS

YouNG Ho PARK

ABSTRACT. Quadratic residue codes are cyclic codes of prime length
n defined over a finite field IF,e, where p© is a quadratic residue mod
n. They comprise a very important family of codes. In this article
we introduce the generalization of quadratic residue codes defined
over Galois rings using the Galois theory.

1. Introduction

Let R be a ring and n a positive integer. A (linear) code over R of
length n is an R-submodule of R™. A code C'is cyclic if apay - - - a, 1 € C
implies a,,_1aq---a,—o € C. A cyclic code is isomorphic to an ideal of
R[z]/(z™ — 1) via agay - - Gp_1 +> ag + a1 + -+ + a2 "

Quadratic residue codes have been defined over finite fields. See [4]
for generality of codes and quadratic residue codes over fields. Being
cyclic codes, quadratic residue codes over the prime finite field I, = Z,
can be lifted to codes over Z,. and to the ring O, of p-adic integers using
the Hensel lifting [1,3,8]. Quadratic residue codes can be also defined
as duadic codes with idempotent generators and lifted to Z,e [2,5,9-11].
However, we have found a better way of constructing quadratic residue
codes for Galois rings.
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2. Galois Rings

Zye is a local ring with maximal ideal pZ,. and residue field Z,. Let
r be a positive integer and let

GR(p", 1) = Zpe[X]/((X)) > Zype (],
where h(X) is a monic basic irreducible polynomial in Z,e[X| of degree
r that divides X?'~! — 1. The polynomial h(X) is chosen so that ¢ =
X+ (h(X)) is a primitive (p” — 1)st root of unity. GR(p,r) is the Galois
extension of degree r over Z,, called a Galois ring. We refer [1,7] for
details. Galois extensions are unique up to isomorphism. GR(p®,r) is

a finite chain rings with ideals of the form (p') for 0 < i < e — 1, and
residue field [F.

The set T, = {0,1,(,...,¢? 72} is a complete set, known as Te-
ichmiiller set, of coset representatives of GR(p®,r) modulo (p). Any
element of GR(p®,r) can be uniquely written as a p-adic sum ¢ + ¢1p +
cop? + -+ 4 ce_1p®! with ¢; € T,.. It can also be written in the (-adic
expansion by + b1¢ + -+ + b,—1(" " with b; € Zye.

The Galois group of isomorphisms of GR(p®,r) over Z,. is a cyclic
group of order r generated by the Frobenius automorphism Fr given

by Fr (Z:;& biCi> = S0 biC" (b € Zye) in (-adic expansion and
Fr (Zf;ol cz-p") =S &, (¢ € Ty) in p-adic expansion. We recall

that GR(p®, 1) € GR(p®,m) if and only if [ | m. Moreover, the Galois
group of GR(p®,rs) over GR(p®,r) is generated by Fr" and hence

(1) GR(p®,r) ={a € GR(p® rs) | Fr"(a) = a}.
Here the map Fr' is explicitly given as
Frr(a0+a1p+...+atpt+...> :agr+a11)rp+...+afrpt+...

where a; € T,. In particular, if o is any nth of unity in the extension
GR(p®,rs), where n | p™* — 1, then

(2) Fr'(a) = o
3. Quadratic residue codes for Galois rings

Now we are going to define quadratic residue codes over the Galois
ring GR(p®,r). We fix an odd prime (length) n, and another prime
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power p” which is a quadratic residue modulo n. Let a be a primitive
nth root of unity in an extension GR(p®¢,rs) of GR(p®,r). Let @ be
quadratic residues mod n, N quadratic nonresidues mod n. Define

(3) Qe(X) = H(X - O*/i)y ne(X) = H(X - aj)
1€Q JEN
THEOREM 3.1. We have the factorization in GR(p", e)[X]:
X" = 1= (X = 1ge(X)n(X)
Proof. Fr'(qe(X)) = [Tico(X —a®") = [[;¢o(X — ) by (2) and the
fact that p"@Q = Q. Hence ¢.(X) € GR(p", e) by (1). O
DEFINITION 3.2. The quadratic residue codes Q., Q.1, N, N1 (re-

spectively) over the Galois ring GR(p®,r) are cyclic codes of length n
with generator polynomials (respectively)

Qe(X>> (X - 1)Qe(X)’ ne(X)> (X - 1)”6(X)'

We now explain how to get the polynomials in the definition. First

we define
A= Zai, = Zozj.
1€Q JEN
Since A and p are invariant under the Frobenius map, they lie in the ring
GR(p®,r). Notice that a different choice (for example o’ for j € N) of
the root a may interchange A and . We have the following theorem [6,8].

THEOREM 3.3. If n = 4k & 1 then )\ and pu are roots of 2% + x = +k
in the ring GR(p®,r).

The elementary symmetric polynomials sy, s1, o, -+ , 8¢ in the poly-
nomial ring S[X7, X, -+, X;] over a ring S are given by
Si(Xl,XQ,"' 7Xt): Z XZ'1X7§2"'X1'U fori:1,2,~- ,t.
11 <t <---<1it

We define so(Xy, Xo, -+, X;) = 1. For all i > 1, the i-power symmetric
polynomials are defined by

pi( X1, Xo, o X)) =X+ X5+ 4+ X
THEOREM 3.4 (Newton’s identities). For each 1 <1i <t
(4) Pi = Pic181 — PimaS2 + -+ + (= 1) prsiy + (1) sy,
where s; = s;(X1, Xo, -+, X;) and p; = p;( X1, Xo, -+, Xy).
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Let Q@ ={q1,9, @}, N ={ni,nse, - ,ny}. The followings hold:

A .
(1) pi(aql7aq27"'7aqt):{ ’ Z.EQ,
p, 1€ N.

. po i€ Q,
n 7 anla a”Z’ e 7ant = .
(i) 1 ) {A’ e

We use these identities together with Newton’s identity to get the
formula for ¢.(X) and n.(X) [6,8].

THEOREM 3.5. Lett = (n —1)/2 and
(X)) = ap X"+ a; X" 4 - fay
Then

1. apg = 1, ay = -\

2. a; can be determined inductively by the formula

_ _ DiGo +pi—1a1 + Pi—202 + - - + P1ai
1

a; )

where pi = pi(a/qlaana T 7aqt)'

Analogous statements hold for n(X) with a; = —p.

Finally we use this theorem to give some examples. We take the
Galois ring GR(3?,2) with p = 3,r = 2. Since 3% is a quadratic residue
for every n, there are quadratic residue codes of any length n # 2, 3. Now
GR(9,2) ~ Zy|[¢] where ( is the p” — 1 = 8th root of unity satisfying
(? = (+ 1. We note that Fg ~ Z3[(] also. There exists an integer
s <n—1such that n | 9° — 1 by Fermat’s little theorem. Then the nth
root a of unity exists in GR(9, 2s).

Let n = 4k + 1. According to Theorem 3.3 we first need to solve
2? + 1 = +k in GR(9,2) = {a+ b | a,b € Zg}. In fact, we obtain
x = 1(—1=++/%n) for A and p. Thus we need to solve (a + b()? = +n,
equivalently, a® + b* = +n and b(2a + b) = 0. Solving these for small
values of n < 40, we obtain the following table.

nl 5] 7 |11]13] 17 10 [23] 20 3137
N[ 8C|5+7C| 6|5 [6+5C|6+5C| 5 |5+7C 8|0

We can compute the ¢.(X) and n.(X) by Theorem 3.5 for each n as
follows. Replace r with A and p = —1 — X to get ¢.(X) and n.(X) in
the given polynomial in the Table 1.
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ge(X) or n.(X)

11
13
17
19
23
29

31

37

1—rX + X2

1+ (-1-7r)X-rX?+X3

1+ (-1-7r)X+X2-X3—rX*4+ X5

1—rX +2X24+ (-1 —7r)X3+2X* —rX®4 X6
1—rX+2-7X2+@B-7r)X3+(1-2rX*+ (3 —r)X°+

(2-7)X6 —rX7 4 X8

14+ (-1 -7r)X+2X2+ (-14+7)X3+ (=3 -7r)X*+ (2—1r)X°+
(247) X6 —2X7T —rXx8® 4+ X?

1+ (-1 =-")X+2-7r)X2+4X3+ (4 +7r)X*+ (3+2r) X+
(—1+2r) XS + (=3 +7r) X" —4X8 + (-3 —r)X? —rXx10 4 X!

1—rX +4X2+ (2-r) X3+ (1 4+ X =X+ (1-n")X*+ (4 —r) X"+
1-7)X8 = X4+ (147X 4 (=2 —r) XN 4+4X12 X134 X1
14+ (-1-r)X+@B-r)X?+(6+r)X3+2rX* —4X°+ (1 —r)X+
B4+rXT+ (=2+7) X8+ (=2 —7r)X? +4X10 4+ 2(1 + )X+

(=5 +7) X2+ (=4 —7) X1 —px1 4 X5

1—rX +5X24+ (=3 —-2rX3+ (8+r)X*+(—4—-3r)X°+ (9+7r) X+
(=5 —=2r) X"+ (6 +7r) X8+ (=3 —2r) X%+ (6 +7) X0+ (=5 — 2r) X1+

9+ 7 X124+ (—4—3r)XB + 8+ 7) X" 4 (=3 — 2r) X5 4 5X16 — pX17 4 X8

1]
2]
3]
[4]
[5]
(6]

7]
8]

[9]
[10]

[11]

TABLE 1. Generator polynomials of ¢.(X) and n.(X)
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