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DYNAMICAL BIFURCATION OF THE
BURGERS-FISHER EQUATION

YUNCHERL CHOI

ABSTRACT. In this paper, we study dynamical Bifurcation of the
Burgers-Fisher equation. We show that the equation bifurcates an
invariant set A,,(3) as the control parameter 3 crosses over n? with
n € N. Tt turns out that A, (S) is homeomorphic to S', the unit
circle.

1. Introduction

The Burgers equation
Ut = Ugy + QUU,

is known as an important nonlinear diffusion equation describing the far
field of wave propagation in the corresponding dissipative systems such
as shallow water waves and gas dynamics [1,4]. Here, u : Rx[0,00) — R
and o € R. On the other hand, the Fisher equation

Up = Uge + Pu(l — u)

is known to have close connection with biophysics such as diffusive pop-
ulation dynamics and nerve signal propagation [7]. Here, § € RT. If
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we consider the nonlinear effect in both the Burgers equation and the
Fisher equation, we are led to the Bugers-Fisher equation(BFE):

(1.1) Up = Uz + UL, + fu(l — u).

The Bugers-Fisher equation is regarded as a prototypical model for de-
scribing the interaction between the reaction mechanism, convection ef-
fect, and diffusion transport [7].

In this paper, we are interested in the dynamical bifurcation of the
BFE as the control parameter § moves. It is not difficult to see by the
linear stability analysis that the trivial solution u = 0 is unstable. We
will prove that the BFE bifurcates from the trivial solution to an invari-
ant sets as 3 passes over a sequence of nodal point n?, n = 1,2,---. Such
a bifurcation problem is quite interesting since it provides us long time
dynamics of solutions near the trivial solution. For instance, consider
the generalized Burgers equation

(1.2) Uy = Ugy + AU+ OU, + QUU,.

In [3], the dynamical bifurcation problem of (1.2) was studied for the case
0 = 0. Recently, this result was extended to the case 6 # 0 in [5]. In these
results, the trivial solution bifurcates to an attractor which determines
the final patterns of solutions. The main difference between [3] and [5]
lies in the invariance of odd functions. Indeed, if the initial condition is
an odd function, then the solution of (1.2) is also odd if 6 = 0. However,
such an invariance is no longer true for the case § # 0. This means that
the dimension of the center manifold the trivial solution may be doubled
if § # 0. Consequently, the analysis is more complicated. See also [2]
for the dynamical bifurcation of a fourth order differential equation in a
similar spirit.

To set up our problem, we consider the BFE (1.1) under the periodic
boundary condition on = [—m,7|. For the functional setting of the
periodic BFE, let

H={ue L*(4R): u(—7r) = u(ﬂ)},
H2 (O R) = {u e HY(Q:R) : %(-ﬂ - %(w) for j = 0, 1},

H, = H?

per

(G R)NH.
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Then, we can rewrite (1.1) into an abstract equation

du
u(0) = uo,

where )

0
Lau = <@ + ﬁ)u, G(u,a, B) = auu, — Bu.

It is easy to see that Lz, G(-,a, ) : Hi — H are well-defined.
To find the eigenvalues of L3, given u € H we set

u(z) = ag + Z (an cosnz + b, sin nx)

n=1

If A is an eigenvalue of L3, then

Lsu = Bay + Z (an(ﬁ —n?) cosnx + b, (B — n?) sin n:v)

n=1
= Aag + A i (an cos nx + b, sin nx) = \u.
n=1
Thus the eigenvalues of Lg are
M(B)=8-n* n=012,---

with the corresponding eigenvectors ¢y = 1,

¢On(x) = cosnx, Y,(r)=sinnz, n=123,---.
We note that

Igoll = V2, lgall = llvnl = v, n=1,23,---.

Now we are ready to state the main result of this paper as follows.

THEOREM 1.1. As 8 passes through n?® forn = 1,2,---, BFE (1.1)
defined in H bifurcates to an invariant set A, (/) which is homeomorphic
to S*.

We prove Theorem 1.1 in subsequent section. We follow the method
in [2] where the center manifold reduction was made by using of Theorem
3.8 in [6]. As in the equation (1.2) with 0 # 0, the equation (1.1) is not
invariant under odd or even function spaces. As a consequence, the
center manifolds is not represented as a single variable.
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2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Let n € N be fixed and assume
that 3 is slightly bigger than n?. We note that

<0 for B <n?
M(B) =B-n2 =0 for B=n?
>0 for (>n’

Hence, by Theorem 5.2 of [6], the BFE bifurcates to an attractor A, (3).
In the following, we study the structure of A, (/3) by the center manifold
analysis. The main issue is to find the reduced equation of (1.1) on
the center manifold. To find a form of the center manifold function,
let By = span{¢,, ¥, } and Fy = Fi- in H. Let P; : H — E; be the
canonical projection and £; = Lg|g;, for j = 1,2. For u € H, we expand
it into
u=yodo + > _ (kb + 2xtr).
k=1

If & : £y — FEj5 is a center manifold function and v = Piu = y,¢n + 2,00,
then the reduced equation of (1.3) on the center manifold is

dv

(2.1) E - Eﬂ) + PIG(yngbn + ann + q)(yn¢n + Znﬂ)n))

Here, we used the notation G(u) = G(u, «, B) for simplicity. By taking
the inner product of (2.1) with ¢,, and 1, we are led to

dyn
i = /\nyn + Fl(yna Zn)a
(2.2) dt
dzy,
E — /\nZn + F2<yn7 Zn)u
where
1
Fl (ym Zn) = % <G(yn¢n + Zn¢n + (I)(yngbn + ann))a ¢n> )
1
Fy(yn, 2n) = — {G(ynfn + 20¥n + P(Yndn + 20tn)), ¥n) -

Since 3 is slightly bigger than n?, we have the following
(2.3) M(B) =B —n* =o(1)
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as 8 — n?. By means of Theorem 3.8 in [6], the center manifold function
® can be expressed as

(I)<yn¢n + ann) = (_£2)71P2G<yn¢n + ann)
+O([Aal - 7y + 22)) + o(m(yy + 27))
= (—L2) ' PaG(Yndn + 2atn) + o(yh + 22)

where the last equality comes from (2.3). By direct computation, we
have

G(yn¢n + Zn¢n)
= O‘(yn(bn + Zn%)(—ynl/fn + Zn¢n) - 6(%219252 + 2ynzn¢nwn + 21212/]721)
= - O‘(yi - 2121>¢nwn + aynzn(gbi - 1/)7%) - ﬁ(ﬁyiﬁbi + 2Yn2n@nPn + ZZ¢72L)

- 6 2 2 ﬁ yn 2
- §(yn + Zn)¢0 + QYnZp — 5( -z ) ¢2n 9 + Bynzn ¢2n7
where we used the trigonometric identities:
1 Po + Pon o — Pon
(24) ¢nwn = §¢2na ¢i = %a ¢3L L 9 2

Let
@ (Yn@n + 2ptn) = agpo + Z (aror + brtbr).

k#n,k>1
From the relation

we derive that

— AoGpPo — Z Ne(ardr + bptby)

kn,k>1
2 _ 2
+o(y? + 22).
Hence, we obtain
n + Z /8 (ZS n
(I)(ynan + Zn¢n) - y ¢ - (aynzn - _(yi )) =
2 >\2n
(2.5) ) )

+ (ay"—" + 5ynzn) Uon 4 ofy? + 22).
2 Ao
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Then, by tedious computation, we get
(2.6)
G(yn¢n + 2pn + ®(yn¢n + an/}n))

= (aynzn - g(y?@ + ZTZL))d)O

+ [ (57 2008 + (a8 + Nanluen — (5 + 2anflynzd + (a8 + Dana) ] 22
+ [ (@B + A2n@)yy — (B* 4+ 2X20B)Yp 20 — (af + A2n@)yn2p — (8% + 2)\2nﬁ)zn} ;ﬁ’;
- g(yg — 20)b2n — (o + 2Bynzn — )w;"

¢3
2)\2n

+ | — 2083 +3(a? = B)y2z, + 60yl — (o = 57) 2 ]w?’ (v + 20)-

(0% = %)y + 6aBy2zn — 3(a? — B2)yaz2 — 20821

We postpone the derivation of (2.6) in the Appendix. As a consequence,
we are led to

1
ju (Go(Yn®n + 20Vn + P(Yn@n + 20Pn)), Pn)

— (B2 + 22208)y2 + (af + Aon@)y2 2 — (B2 + 2X0,8)yn22 + (8 + Agpar) 23
2/\2n

+olyal® + |2al),

_(046 + /\Zna)yz - (52 + 2>\2nﬁ)ygzn - (Oéﬁ + AQnQ)ynZEL - (/62 + 2)\2n6)z731
29

+olyal® + |2al).

In the sequel, (2.2) becomes

d
(2.7) = = hy —F(y) +ollyP).
where y = (yn, 2,) and
1
F(y) N ((ﬁz +220008) Yy + Ynzp) — (@B + A0n@) (Y 2n + 2),

(0B + Aan) (U3 + yn22) + (B2 + 22a0B) (320 + 23) ).
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We notice that
B2 + 20,0 B2 + 20,0
(F(y),y) = 2t (2 + 22)2 = —— 2y |
2>‘2n 2)‘277,

If 0 < B < —2\g,, or equivalently if 0 < 8 < 8n?/3, then d = (3* +
2X2,8)/(2X2,) > 0. Thus we obtain

dly|* < (F(y),y) < 2dly|".

This implies by Theorem 5.10 of [6] that (2.7) bifurcates from the trivial
solution to an invariant set A,(\,a) as 8 passes through n? which is
homeomorphic to S'. This finishes the proof. n

3. Appendix

In this appendix section, we verify the identity (2.6). By definition,
we have

G(yn¢n + Zn¢n + (I)(yngbn + an/)n))

Then, by (2.5),

G (Yn®n + 20n + P(Yndn + 20n))

_ a[ynd)n_l_%wn Z/n+ 2¢ — <aynzn - g(yﬁ —ZZ))f_z:
+B nzn) ¢2n}

(o5 Ao
X [ — Ynn + ZnPn + (Ozynzn — é(yi n)) Yan

2 Aoy,
2
y2 — 22 ) cbzn]
+ (a 5 + BYnzn N

2

—h [yn¢n + Zpn + yn + : "¢ — (aynzn - g(yz n)> fz:
NETERIES

+ o(yi + zfl)



644 Yuncherl Choi

Expanding these terms, we get

_ 2By +ynz) — aypze + Zf;)¢ a(yp + Yn2n) + 28(ynzn + 2 )¢
2 " 2 "
(aYnzn — Bya) b — (ayi + 2BYnzn — 022)bptbn + (aYnzn — Bza)1n
- 2 2
a9y 3 Taf , - 3&_ 2 2 _Oé_ﬁ 3] Pnon
(G =)+ 2 =5 non = (5 =)Wz — 5 Zn} A2
ﬁ 2 5 ﬂ 2 ¢n¢2n
_F —9 o+ _
+ 2 "+(2 B )omn + =5~ Ynn 2"] Ao
[ ﬁ 2 70‘B 2 o? 52).3 Y Pon
+ [ = G+ (O = Fen + gt - (5 - )] B
- 2
a” g 50‘ﬁ 2, 3 2 B 1/1n¢2n
- —2
+o(y? + 23).
Then, we obtain by (2.4) that
G(Yn®n + 20n + P(Yntn + 2nt0n))
_ Wt yem) — ol ta) o ol + ) 2600+ ),
2 " 2 "
_|_ n n
+ (ayn2zy — Byi)% — (ayz + 2Bynzn — 0423)1%2
- 2 2
a” oy g TaB o, 30 2 B 3100+ 3
+ | 5 0 )yn+ 2 ——vazn — ( 5~ B VYnze 5 zn} T
[ ﬂ 2 %el ﬂ 2 o? 3 2/}71 + ¢3
_F _9 =F _
[ ﬁ 2 70‘B 2 o? A2).3 — P + Y3
|5 ( B )onn + =5 (2 5)2”} Mo
- 2
a” s 5aﬂ 2 3a? 2 30‘B 3 ¢n — @3
- —2
T gty et (287w 22"] Mo
+o(y, + z)
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p

= (aynzn — 5(%% +23)) do
[ = (82 + 220088 + (08 + Aan0)y2zn — (B2 + 200 By
)] _On
+ (af + )\QnCK)Zn:| Dy
+ |: - (O[ﬂ + )\2na)y§1 - (B2 + 2)\2715):%27,2:71 - (O{ﬁ + /\2na)ynz72;
A
(32 3
(8 + 200,820 55
D02~ 2200 — (a2 + 20y — 0z 2
+[(07 - 82)47 + 60By2z — 3(0” - 82)3,22 — 2085]] 2
2n
+ [ = 20842 + 30 = B)u, + 6 — (a® - 92):2] 22
2/\2n

+ o(yf’Z + zi)

This gives (2.6). References
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