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CONTINUED FRACTIONS AND THE DENSITY OF

GRAPHS OF SOME FUNCTIONS

Hi-joon Chae†, Byungheup Jun‡, and Jungyun Lee⊥

Abstract. We consider some simple periodic functions on the field
of rational numbers with values in Q/Z which are defined in terms
of lowest-term-expression of rational numbers. We prove the density
of graphs of these functions by constructing explicitly points on the
graphs close to a given point using continued fractions.

1. Introduction

Consider the following functions ψe for e ∈ Z of period 1 defined on
Q with values in Q/Z: for relatively prime positive integers p, q,

(1) ψe :
p

q
7→ pe

q
mod Z ,

where p−1 denotes an inverse of p modulo q when e < 0. We will often
identify R/Z with [0, 1), a set of representatives. And we have ψe(p/q) =
〈pe/q〉 where 〈x〉 = x − [x] denotes the fractional part of x. The goal
of this paper is to show that the graphs of these functions for e =
3, 2,−1,−2 are dense in [0, 1)2 by constructing explicitly points on the
graph arbitrarily close to a given point.
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The motivation for us to consider such problems comes from our study
of Dedekind sums. The properties of the classical Dedekind sums

s(p, q) =

q∑
k=1

((
k

q

))((
pk

q

))
are well-documented in [5]. Here ((x)) = 〈x〉 − 1/2 if x is not an integer
and ((x)) = 0 if x is an integer. Using the reciprocity theorem for these
sums

s(p, q) + s(q, p) = −1

4
+

1

12

(
p

q
+

1

pq
+
q

p

)
,

Hickerson obtained an explicit formula for s(p, q) in terms of continued
fraction expansion of p/q and proved the density1 in R2 of the graph of
p/q 7→ s(p, q) in [4].

In [1] (and references therein), it is defined and proved some properties
of generalized Dedekind sums of higher dimension. In particular, it is
proved that these sums are equidistributed in R/Z. The equidistribution
of sequences in R/Z (or in higher dimensional tori) is a basic ingredi-
ent in the recent development of additive number theory in conjugation
with ergodic theory and combinatorics [6]. The graph of Dedekind sums
would be an interesting sequence in a torus. The equidistribution of the
graph is certainly stronger than the equidistribution of Dedekind sums.

The equidistribution result of [1], proved by estimating exponential
sums, is quite general and can be applied to prove the equidistribution,
hence the density of the graph of these sums in a suitable product of
R/Z.

In [2], an explicit formula for 2-dimensional Dedekind sums of higher
degree is obtained. This may be seen as a generalization of the above
mentioned formula in [4]. But it seems to be difficult to prove the density
of the graph in R2.

This paper is our first attempt to extend the constructive proof in [4]
of the density in R2 of the graph of the classical Dedekind sums to 2-
dimensional Dedekind sums of higher degree, whose fractional parts are
linear combinations of the above functions ψe for e ∈ Z with explicitly
calculated coefficients [1].

1In this paper, we have used the term density for denseness, i.e. something being
dense. We apologize for any confusion caused by this choice of words.
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2. Continued fractions

We review quickly continued fractions. All the proofs and details can
be found in any standard text on number theory. The (possibly infinite)
continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
will be denoted by 〈a0; a1, a2, a3, · · ·〉. Unless otherwise stated, a0, a1, a2, · · ·
are integers with a1, a2, · · · positive. The k-th convergent Ck = pk/qk :=
〈a0; a1, · · · , ak〉 of the above continued fraction is given by sequences
{pk} and {qk} given recursively: p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1
and

pk = akpk−1 + pk−2 , qk = akqk−1 + qk−2 .

The sequence of convergents {Ck} converges, whose limit will be repre-
sented by the continued fraction. Conversely, any real number can be
expanded as a continued fraction. With the above notations, we have
the following.

Proposition 2.1. (i) For each positive integer k, pk and qk are rela-
tively prime. More precisely, we have: pkqk−1 − pk−1qk = (−1)k−1 .
(ii) We have qk ≥ fk where {fk} is the Fibonacci sequence.
(iii) We have qk−1/qk = 〈0; ak, ak−1, · · · , a2, a1〉.
(iv) Let α > 0 and let p = αpk + pk−1 , q = αqk + qk−1 (for a fixed k).
Then

p

q
= 〈a0; a1, · · · , ak, α〉 and

p

q
− pk
qk

=
(−1)k

(αqk + qk−1)qk
.

3. Density of graphs

In this section we prove our main result: the graph of ψe is dense
in [0, 1)2 for e = 3, 2,−1,−2. To prove the case of e = 3, we need the
following result on the distribution of quadratic (non) residues modulo
a large prime in [3].
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Proposition 3.1. Let H+ and H− be the maximum numbers of
consecutive quadratic residues and non-residues modulo a prime p, re-
spectively. Then we have

H+ = O(
√
p) , H− = O(

√
p) .

More precisely, it follows from a formula on character sums [3, Lemma
1] that h3 ≤ ph− h2 where h = [H±/2]. Hence the implied constants in
the above proposition can be any number greater than 2. We also need
the following simple lemma.

Lemma 3.2. Let a, b, c, d ∈ Z be with ad − bc = ±1 and let m,n be
relatively prime integers. Then m′, n′ given below are relatively prime.(

m′

n′

)
=

(
a b
c d

)(
m
n

)
.

Proof. Suppose not. Modulo the greatest common divisor of m′ and
n′, the matrix in the right side is invertible.

Theorem 3.3. Let e = 3, 2,−1 or −2. The part of the graph of ψe is
dense in [0, 1)2. More precisely, for any (x, y) ∈ [0, 1)2 and ε > 0, there
exists a rational number p/q such that || (p/q, ψe(p/q))− (x, y) || < ε.

Proof. We may assume both x and y are irrational. Let 〈0; a1, a2, · · ·〉
and 〈0; b1, b2, · · ·〉 be the expansions of x and y as infinite continued
fractions, respectively. Their convergents will be denoted by Cj = pj/qj
and C ′j = p′j/q

′
j (j = 0, 1, · · · ), respectively.

Given 0 < ε < 1, choose k ∈ Z large enough so that |Ck − x| < ε
and qk > 1/ε. (Of course, the second condition implies |Ck − x| < ε2

by the well-known property of continued fractions.) We may suppose
k is sufficiently large that the similar conditions are also satisfied for
convergents of the continued fraction of y.
(e = 2) Let α > 0, which we will take as a variable, and let p = αpk +
pk−1 , q = αqk + qk−1 so that p/q = 〈0; a1, a2, · · · , ak, α〉. Then we have
by Proposition 2.1 (iv) as α→∞

(2)
p2

q
≈ p2k

qk
α +

pkpk−1
qk

+ (−1)k
pk
q2k
,

which means that the difference of both sides tends to zero as α tends to
the infinity. As a function of α ∈ Z (actually a function of α ∈ Z/qkZ)
with values in R/Z, the right side of (2) takes qk distinct values since pk
is relatively prime to qk. Since these values (in R/Z) are evenly spaced,
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one of these values corresponding to, say, α0 is within the distance of
1/qk from y. Choose α ∈ Z with α ≡ α0 mod qk which is sufficiently
large that the difference of two sides of (2) is less than ε. Then we have

|| (p
q
, ψ2(

p

q
))−(x, y) || ≤ |p

q
− pk
qk
|+ |pk

qk
−x|+ |((p

2

q
))−R|+ |R−y| ≤ 4ε ,

where R denote the right side of (2) modulo Z. This completes the proof
for e = 2.

(e = 3) By Dirichlet’s theorem on primes in an arithmetic progression,
there exists a (sufficiently large) positive integer a such that the denom-
inator s = aqk + qk−1 of r/s = 〈0; a1, · · · , ak, a〉 is a prime. We may
suppose that s > 1/ε2 and the maximum number of consecutive qua-
dratic residues (and non-residues, respectively) modulo s is less than
3
√
s by Proposition 3.1. Let r′/s′ = pk/qk = 〈0; a1, · · · , ak〉 and let

p = αr + r′, q = αs + s′ so that p/q = 〈0; a1, · · · , ak, a, α〉 where α is a
positive integer which we will take as a variable as in the last paragraph.
Then we have as α→∞ with other choices fixed

(3)
p3

q
≈ r3

s
α2 +

2r2r′

s
α +D + (−1)k+1 r

2

s2
α ,

where D is a rational number independent of α.

As in the proof for e = 2, consider the right side of (3) modulo Z as
a function of α ∈ Z/s2Z. We claim that there exists α1 ∈ Z/s2Z such
that the value at α1 is within the distance of 4ε from y in R/Z (or in
[0, 1), to be more precise). Once this is proven, we can see as in the
proof for e = 2 that for sufficiently large α ∈ Z with α ≡ α1 mod s2,
|| (p/q, ψ3(p/q))− (x, y) || < 7ε.

It remains to prove the claim. First, consider the first three terms of
the right side of (3) modulo Z as a function of α ∈ Z/sZ. In this case,
the set of values of this function is not evenly spaced by 1/s in R/Z.
But by completing the square in r3α2 + 2r2r′α modulo s and applying
Proposition 3.1 (recall our choice of s above), we can see that there
exists α0 such that the value at α0 is within the distance of 3/

√
s from

y in R/Z. Fix α0 and let α = α0 + sα′ in (3). By varying α′ ∈ Z/sZ,
the last term of (3) can be made smaller than 1/s in R/Z (in [0, 1),
to be more precise). Suppose the minimum of the value is obtained at
α′ = α′0. Then we can take α1 = α0 + sα′0. This completes the proof of
the theorem for e = 3.
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(e = −1) Let β be a positive integer and let ri/si (i = 1, · · · , 2k+ 1) be
the convergents of the finite continued fraction

p

q
= 〈0; a1, a2, · · · , ak, β, bk, bk−1, · · · , b1〉 .

By Proposition 2.1 (i) and (iii), s2k is an inverse of p = r2k+1 modulo
q = s2k+1 and p−1/q = s2k/q = 〈0; b1, b2, · · · , bk, β, ak, ak−1, · · · , a1〉.
By the choice of k and Proposition 2.1 (iv) with 〈β; bk, · · · , b1〉 and
〈β; ak, · · · , a1〉 in place of α, respectively, we have (for any positive in-
teger β) both |p/q − x| and |p−1/q − y| are less than 2ε. This complete
the proof for e = −1.
(e = −2) By Dirichlet’s theorem on primes in an arithmetic progression,
there exists a positive integer a such that the denominator aqk + qk−1 of
〈0; a1, · · · , ak, a〉 is a prime. There also exits a positive integer b such that
the denominator of 〈0; b1, · · · , bk, b〉 is a prime distinct from aqk + qk−1.

Let β a positive integer and let

p

q
= 〈0; a1, a2, · · · , ak, a, β, b, bk, bk−1, · · · , b1〉 .

Then as in the proof for e = −1, we have

p−1

q
= 〈0; b1, · · · , bk, b, β, a, ak, · · · , a1〉 .

We will vary β with other components fixed. Letm/n = 〈0; a, ak, · · · , a1〉.
By Proposition 2.1 (iii) we have n = aqk + qk−1, which is a prime
by the choice of a. Let r/s = 〈0; b1, · · · , bk, b〉 and r′/s′ = p′k/q

′
k =

〈0; b1, · · · , bk〉. Recall b was chosen so that s is a prime distinct from n.
We have

p−1

q
= 〈0; b1, · · · , bk, b, β +

m

n
〉 =

(nβ +m)r + nr′

(nβ +m)s+ ns′
.

The numerator and the denominator of the last quotient are relatively
prime by Lemma 3.2. Hence,

p−2

q
=

((nβ +m)r + nr′)2

(nβ +m)s+ ns′
.

As functions of β ∈ Z with values in R, we have as β →∞

(4)
p−2

q
≈ nr2

s
β +

r(mr + nr′)

s
+ (−1)k+1nr

s2
.
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Since nr2 and s are relatively prime, we can argue as in the proof for
e = 2. There exists β0 such that the right side of (4) with β = β0 is
within the distance of 1/s from y modulo Z. Choose β ∈ Z with β ≡ β0
mod s which is sufficiently large that the difference of the two sides of
(4) is less than ε. Then we have ||(p/q, ((p−2/q))) − (x, y)|| < 4ε as
before. This completes the proof for e = −2.

4. Remarks and examples

We hope to extend the constructive proof of this paper to other values
of e. For e ≥ 4, it may be proved by similar arguments as for e = 3
together with more precise estimate on the distribution of higher residues
modulo a large prime.

In the following we give a simple example, in which we construct
points on the graph of ψ2 approximating arbitrary points (x, y) on the
line x = (

√
5− 1)/2 with 0 ≤ y < 1. Recall that the Fibonacci sequence

{fn}n=0,1,2,··· is given by f0 = 0, f1 = 1, fk = fk−1 + fk−2.

Example 4.1. The k-th convergent of 〈0; 1, 1, 1, · · ·〉 = (
√

5− 1)/2 is
fk/fk+1. The sequence ψ2(fk/fk+1) = f 2

k/fk+1 mod Z of values of ψ2

converges to 0.

The first assertion is clear. The second one follows from the formula
f 2
k − fk−1fk+1 = (−1)k−1, which is a special case of Proposition 2.1 (i).

Example 4.2. For each positive integer n, let {x(n)k }k=1,2,··· be the

sequence of rational numbers given by x
(n)
k = 〈0; 1, · · · , 1, nfk〉 where

the number of 1’s is k. Then we have

lim
k→∞

x
(n)
k =

√
5− 1

2
, lim

k→∞
ψ2(x

(n)
2k ) = n

1−
√

5

2
, lim

k→∞
ψ2(x

(n)
2k+1) = n

√
5− 1

2

where the values of last two equations are taken in R/Z as usual. Re-
call that if γ is an irrational number, then the sequence {nγ}n=1,2,··· is
equidistributed in R/Z. Hence we can choose n so that the limit of the

sequence {ψ2(x
(n)
2k )} is arbitrarily close to any given number in R/Z.



144 H. Chae, B. Jun, and J. Lee

The first equation is clear from Proposition 2.1 (iv). As for the others,
we have

ψ2(x
(n)
k ) =

(nf 2
k + fk−1)

2

nfkfk+1 + fk
=

(fk−1(nfk+1 + 1) + (−1)k−1n)2

fk(nfk+1 + 1)

= n
f 2
k−1fk+1

fk
+
f 2
k−1

fk
+ (−1)k−12n

fk−1
fk

+
n2

fk(nfk+1 + 1)

= nfk−1fk + (−1)kn
fk−1
fk

+
f 2
k−1

fk
+ (−1)k−12n

fk−1
fk

+
n2

fk(nfk+1 + 1)

where we have used the identity f 2
k − fk−1fk+1 = (−1)k−1 twice. Taking

the limit (in R/Z), we obtain the desired result.
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