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LIFTS OF THE TERNARY QUADRATIC RESIDUE

CODE OF LENGTH 24 AND THEIR WEIGHT

ENUMERATORS

Young Ho Park

Abstract. We study the extended quadratic residue code of length
24 over Z3 and its lifts to rings Z3e for all e including 3-adic integers
ring. We completely determine the weight enumerators of all these
lifts.

1. Introduction

Let R be a ring. A linear code of length n over R is a R-submodule
of Rn. We define an inner product on Rn by (x, y) =

∑n
i=1 xiyi where

x = (x1, · · · , xn) and y = (y1, · · · , yn). The dual code C⊥ of a code C of
length n is defined to be C⊥ = {y ∈ Rn | (y, x) = 0 for all x ∈ C}. C is
self-dual if C = C⊥.

For v ∈ Rn, the weight wt(v) of v is defined to be the number of
nonzero components of v. The minimum distance of a code C is the
minimum of wt(v) for nonzero v ∈ C. For generality on codes over
fields, we refer [5] and [8]. For codes over Zm, see [12], and for self dual
codes, see [11].

Now we define the quadratic residue codes over Z3 [8]. Let

Q = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
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be the set of nonzero quadratic residues modulo 23, N the set of qua-
dratic nonresidues modulo 23. Note that 3 is a quadratic residue modulo
23. Since 3 - 23, there exists a 23rd primitive root ζ of 1 over Z3. Let

Q(x) =
∏
i∈Q

(x− ζ i), N(x) =
∏
i∈N

(x− ζ i).

The order of 3 modulo 23 is 11. Hence the cyclotomic cosets modulo
23 over Z3 are given by {0}, Q,N . Therefore, Q(x) and N(x) are poly-
nomials in Z3[x]. See [7] for detail. Indeed, we can choose an ζ such
that

Q(x) = x11 − x8 − x6 + x4 + x3 − x2 − x− 1,

N(x) = x11 − 2x10 − 2x9 − x8 − x7 + x5 + x3 − 1.

We have that

x23 − 1 = (x− 1)Q(x)N(x).

Notice that the choice of Q(x) and N(x) depends on the choice of the
primitive root ζ. In fact, the replacement of ζ by ζ i with i ∈ N inter-
changes Q(x) and N(x).

Definition 1.1. Cyclic codes Q,Q1,N ,N1 of length 23 with gener-
ator polynomials

Q(x), (x− 1)Q(x), N(x), (x− 1)N(x),

respectively, are called quadratic residue codes defined over Z3.

We extend Q and N by adding the overall parity check 1. The re-
sulting extended codes will be denoted by Q̂ and N̂ .

We have the following well-known results on quadratic residue codes
defined over the field Z3.

1. dimQ = dimN = 12, dimQ1 = dimN1 = 11.
2. Q⊥ = Q1, N⊥ = N1.
3. Extended codes Q̂, N̂ are self-dual.
4. AutQ̂ contains PSL2(24).

Denote by Z3e the ring of integers modulo 3e, and Z3∞ the ring of 3-
adic integers. In next section we are going to lift these quadratic residue
codes over Z3e and to the 3-adic integers Z3∞ .
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2. Quadratic residue codes over Z3e

Quadratic residue codes over Z3e are usually defined by giving their
idempotent generators. See [10] for quadratic residue codes over Z16 and
[15] for codes over Z9 for example. However it is generally difficult to give
general formulas for such generators. We will define quadratic residue
codes over Z3e in a similar way as in the field case. The 3-adic case
(e =∞) is also included here. The idempotent generators for quadratic
residue codes over Z3e can be obtained from idempotent generators of
quadratic residue codes over Z3∞ . For codes over p-adic integers, we
refer [3].

Let Q3 denote the field of 3-adic numbers. Let K be the splitting field
of x23− 1 over Q3. Since the roots of x23− 1 in K form a multiplicative
group of order 23, it is clear that there exists an element ζ such that
K = Q3[ζ]. By considering the map

Ψe : Z3∞ → Z3e , Ψe(a) = a (mod 3e)

and extending it to Z3∞ [ζ], we can easily see that

Z3e [ζ] ' Z3∞ [ζ]/(3e).

Z3e [ζ] is a Galois ring defined over Z3e . Elements in Z3e [ζ] can be written
uniquely in a ζ-adic expansion u =

∑22
i=0 viζ

i, vi ∈ Z3e or in a 3-adic
expansion

u = u0 + 3u1 + 32u2 + · · ·+ 3e−1ue−1

where ui ∈ {0, 1, ζ, · · · , ζ22} ' Z23, the finite field of 23 elements. In 3-
adic integer case, this sum is infinite. The automorphism group of Z3e [ζ]
over Z3e is the cyclic group generated by the Frobenius automorphism

F(
e−1∑
i=0

3iui) =
e−1∑
i=0

3iu3i .

We refer [1] or [9] for details. As in the field case, we let

Qe(x) =
∏
i∈Q

(x− ζ i), Ne(x) =
∏
i∈N

(x− ζ i).

Since 3 ∈ Q we have

F(Qe(x)) =
∏
i∈Q

(x− ζ3i) =
∏
i∈Q

(x− ζ i) = Qe(x)
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and similarly F(Ne(x)) = Ne(x). Thus Q(x) and N(x) are polynomials
in Z3e [x]. We certainly have that

x23 − 1 = (x− 1)Qe(x)Ne(x)

and for all e′ ≥ e,

Qe′(x) ≡ Qe(x) (mod 3e), Ne′(x) ≡ Ne(x) (mod 3e).

Definition 2.1. Cyclic codes Qe,Qe
1,N e,N e

1 of length 23 with gen-
erator polynomials

Qe(x), (x− 1)Qe(x), Ne(x), (x− 1)Ne(x),

respectively, are called quadratic residue codes over Z3e .

It can be shown that the polynomial x23 − 1 factors over Z3∞ [x] as
follows:

x23 − 1 = (x− 1)Q∞(x)N∞(x)

where

Q∞(x) = x11 − λx10 + (−λ− 3)x9 − 4x8 + (λ− 3)x7 + (2λ− 1)x6

+ (2λ+ 3)x5 + (λ+ 4)x4 + 4x3 − (λ− 2)x2 − (λ+ 1)x− 1,

and λ is a root of x2 + x+ 6 = 0 in Z3∞ such that λ ≡ 0 (mod 3). The
polynomial N∞(x) is obtained from Q∞(x) by replacing λ by another
root µ of x2 + x + 6 = 0. Note that µ = −λ − 1. For details, we refer
[6], [13] and [14].

Then the generator polynomials over Z3e can be obtained by applying
the projection Ψe:

Qe(x) = Ψe(Q∞(x)), Ne(x) = Ψe(N∞(x)).

3. Weight enumerators

Let p be a prime. Let C be a p-adic [n, k] code, Ce = Ψe(C) be the
projection of C over Zpe and Ae

i be the number of codewords of weight i
in Ce. Then

WCe(x, y) =
n∑

i=0

Ae
ix

n−iyi

is called the weight enumerator of Ce.
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Theorem 3.1 (MacWilliams Identity). Let q = pe and C = Ce. Then

WC⊥(x, y) =
1

|C|
WC(x+ (q − 1)y, x− y).

The following theorem is essentially proved in [8] and [11].

Theorem 3.2 (Gleason’s type theorem). Suppose C is a self-dual
code over Zpe of even length. Then WC(x, y) is a polynomial in x2 +
(pe − 1)y2 and xy − y2.

We know that the minimum distance of Ce is equal to the minimum
distance of C1 for all e (see [2]). The following theorem is also proved in
[2].

Theorem 3.3. There is an integer N such that for every d ≤ j < d∞,

Ae
j = AN

j

for all e ≥ N .

Moreover, the following theorem shows that we can stop the compu-
tation of Ai’s at the appropriate stage without knowing the bound N
given in the previous theorem..

Theorem 3.4. [14] Suppose that f ≥ 2 and Af
i = Af−1

i for all i ≤ j.

Then Ae
j = Af

j for all e ≥ f .

Let G1 be the generator matrix for Q∞1 .. Then the generator matrix

of the extended quadratic residue code Q̂∞ is given by(
G1 0
1 γn

)
where 1 = (1, 1, · · · , 1) of length 23 and 1 + 23γ2 = 0 in Z3∞ . As before,

Q̂e denotes Ψe(Q̂∞). Theorem 3.2 gives the following:

Theorem 3.5. Then the weight enumerator W e(x, y) of Q̂e is com-
pletely determined by Ae

0, · · · , Ae
12 as follows:

W e(x, y) =
12∑
j=0

ci
(
x2 + (q − 1)y2

)j
(xy − y2)4−j.



530 Young Ho Park

weight 0 9 10 11 12

e = 1 1 4048 0 0 61824
e = 2 1 4048 0 72864 717600
e = 3 72864 658352
e = 4 1956288
e = 5 2721360
e = 6 2721360

Table 1. Weights of Q̂e

A computer calculation based on [4] gives us the Table 1 of weights

of Q̂e for e = 1, · · · , 6.

This table shows that Q̂e are [24, 12, 9]-code. The blank spaces in the
table and weights 0 − 12 for e ≥ 7 can be filled by Theorem 3.4. Then
Theorem 3.5 gives the weight enumerators as follows:

W 1(x, y) = x24 + 4048x15y9 + 61824x12y12 + 242880x9y15+

198352x6y18 + 24288x3y21 + 48y24,

W 2(x, y) = x24 + 4048x15y9 + 72864x13y11 + 717600x12y12+

4630176x11y13 + 30530016x10y14 + 164624064x9y15+

730206576x8y16 + 2757647376x7y17 + 8593159168x6y18+

21684544992x5y19 + 43367486976x4y20 + 66114704832x3y21+

72095794848x2y22 + 50165446464xy23 + 16719966480y24,

W 3(x, y) = x24 + 4048x15y9 + 72864x13y11 + 658352x12y12 + 59234016x11y13+

744038592x10y14 + 14898518272x9 y15 + 213070985424x8y16+

2615794866432x7y17 + 26432852979280x6y18 + 217053362753568x5y19+

1410815464735248x4y20 + 6986921266743616x3y21 + 24771798631643712x2y22+

56005809423748608xy23 + 60672959726017088y24,
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and

W 4(x, y) = x24 + 4048x15y9 + 72864x13y11 + 1956288x12y12+

205337376x11y13 + 10843401888x10y14 + 576780883008x9y15+

25945664318640x8y16 + 977089931615952x7y17 + 30396954242486656x6y18+

767926111835206368x5y19 + 15358518289524481632x4y20+

234034567589881962816x3y21 + 2553104372130271697760x2y22+

17760726067437170405568xy23 + 59202420224736156032496y24.

From Table 1, we have that Ae
i = A5

i for all i = 0, · · · , 12 and for
all e ≥ 5. Theorem 3.5 then gives the following values of Ae

i for i =
13, · · · , 24 with q = 3e:

1. Ae
13 = 6624(−6999 + 452q)

2. Ae
14 = 18216(16217− 1808q + 111q2)

3. Ae
15 = 12144(−88651 + 13560q − 1665q2 + 108q3)

4. Ae
16 = 2277(1132101− 216960q + 39960q2 − 5184q3 + 323q4)

5. Ae
17 = 18216(−237270 + 54240q − 13320q2 + 2592q3 − 323q4 + 19q5

6. Ae
18 = 1012(5170156− 1366848q+419580q2 − 108864q3 +20349q4 − 2394q5 +133q6)

7. Ae
19 = 6072(−761184+227808q−83916q2+27216q3−6783q4+1197q5−133q6+7q7)

8. Ae
20 = 1518(1951476−650880q+279720q2−108864q3+33915q4−7980q5+1330q6−

140q7 + 7q8)
9. Ae

21 = 2024(−664584+244080q− 119880q2 +54432q3 − 20349q4 +5985q5 − 1330q6 +
210q7 − 21q8 + q9)

10. Ae
22 = 276(1489410−596640q+329670q2−171072q3+74613q4−26334q5+7315q6−

1540q7 + 231q8 − 22q9 + q10)
11. Ae

23 = 24(−3165054 + 1372272q − 842490q2 + 491832q3 − 245157q4 + 100947q5 −
33649q6 + 8855q7 − 1771q8 + 253q9 − 23q10 + q11)

12. Ae
24 = 6421278−2994048q+2021976q2−1311552q3+735471q4−346104q5+134596q6−

42504q7 + 10626q8 − 2024q9 + 276q10 − 24q11 + q12

Therefore we have completely determined all weight enumerators of
the extended quadratic residue codes of length 24 over Z3e .
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