A REMARK ON A TRIPLE POINTS IN THE BOUNDARY OF QUATERNIONIC HYPERBOLIC SPACE

Joonhyung Kim

Abstract

In this paper we consider a triple of distinct points in the boundary of quaternionic hyperbolic space and detect where these points are by using the quaternionic triple product.

1. Introduction

When a triple of distinct points are given on the boundary of quaternionic hyperbolic space, by using the Cartan angular invariant, one can determine whether these three points lie in a same \mathbb{R}-circle or in the boundary of \mathbb{H}-line.(See [1]) More precisely, B.Apanasov and I.Kim proved the following theorem.

Theorem 1.1. (Theorem 3.5 and 3.6 in [1]) A triple $x=\left(x_{1}, x_{2}, x_{3}\right) \in$ $\left(\partial \mathbf{H}_{\mathbb{H}}^{\mathbf{n}}\right)^{3}$ lies in the boundary of an \mathbb{H}-line if and only if $\mathbb{A}_{\mathbb{H}}(p)=\pi / 2$, and lies in the same \mathbb{R}-circle if and only if $\mathbb{A}_{\mathbb{H}}(p)=0$.

Here $\mathbb{A}_{\mathbb{H}}(p)=\pi / 2$ if and only if $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle$ is purely imaginary and $\mathbb{A}_{\mathbb{H}}(p)=0$ if and only if $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle \in \mathbb{R}$ respectively.(We will define the Cartan angular invariant $\mathbb{A}_{\mathbb{H}}(p)$ and the triple $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle$ in next chapter.)
In this article, we give answer to the question that where these three
Received April 11, 2017. Revised May 17, 2017. Accepted May 24, 2017.
2010 Mathematics Subject Classification: 20H10, 30F35, 30F40, 57S30.
Key words and phrases: Quaternionic hyperbolic space, Quaternionic Cartan angular invariant.

This work was supported by 2016 Hannam University Research Fund.
(c) The Kangwon-Kyungki Mathematical Society, 2017.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
points are when the triple $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle$ is other values such as a complex number or of the form $a+b j$ or $a+b k$ where $a, b \in \mathbb{R}$.

2. Quaternionic Cartan angular invariant

The projective model of the quaternionic hyperbolic space $H_{\mathbb{H}}^{n}$ is the set of negative lines in the Hermitian vector space $\mathbb{H}^{n, 1}$ with Hermitian structure defined by the indefinite ($n, 1$)-form

$$
\langle\langle z, w\rangle\rangle=z_{1} \overline{w_{1}}+\cdots+z_{n} \overline{w_{n}}-z_{n+1} \overline{w_{n+1}} .
$$

One can obtain the ball model $B_{\mathbb{H}}^{n}(0,1) \subset \mathbb{H}^{n}$ by taking inhomogeneous coordinates. Here, throughout this article, we use the left vector space $\mathbb{H}^{n, 1}$, in which multiplication by quaternion numbers is on the left. For more details on quaternionic hyperbolic geometry, we refer [1], [3] or [4]. The Cartan angular invariant is well-known invariant in complex hyperbolic geometry, but in quaternionic hyperbolic geometry, B.N.Apanasov and I.Kim first defined it in [1]. Here we give the definition and some properties.
Let $x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(H_{\mathbb{H}}^{n} \cup \partial H_{\mathbb{H}}^{n}\right)^{3}$ be a triple of distinct points with lifts $\tilde{x}_{i} \in H_{\mathbb{H}}^{n, 1}$ for $i=1,2,3$. Then the quaternionic Cartan angular invariant $\mathbb{A}_{\mathbb{H}}(x)$ of a triple $x=\left(x_{1}, x_{2}, x_{3}\right)$ is the angle between the first coordinate line $\mathbb{R} e_{0}=(\mathbb{R}, 0,0,0) \subset \mathbb{R}^{4} \cong \mathbb{H}$ and the radius vector of the quaternion equal to the Hermitian triple product $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle=\left\langle\tilde{x}_{1}, \tilde{x}_{2}\right\rangle\left\langle\tilde{x}_{2}, \tilde{x}_{3}\right\rangle\left\langle\tilde{x}_{3}, \tilde{x}_{1}\right\rangle \in \mathbb{H}$. We list some properties of this invariant. One can check them easily or find the proofs in [1].
(1) $\mathbb{A}_{\mathbb{H}}(x)$ is independent of the choice of the lifts \tilde{x}_{i} of the x_{i}.
(2) $\mathbb{A}_{\mathbb{H}}(x)$ is invariant under permutations of the points x_{i}.
(3) For $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right), \mathbb{A}_{\mathbb{H}}(x)=\mathbb{A}_{\mathbb{H}}(y)$ if and only if there exists an isometry $f \in \mathbf{P S p}(n, 1)$ of $H_{\mathbb{H}}^{n}$ such that $f\left(x_{i}\right)=y_{i}$ for $i=1,2,3$.
In addition, B.Apanasov and I.Kim showed the following theorems.
Theorem 2.1. (Theorem 3.5 in [1]) A triple $x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(\partial H_{\mathbb{H}}^{n}\right)^{3}$ lies in the same \mathbb{R}-circle if and only if $\mathbb{A}_{\mathbb{H}}(x)=0$.

Theorem 2.2. (Theorem 3.6 in [1]) A triple $x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(\partial H_{\mathbb{H}}^{n}\right)^{3}$ lies in the boundary of an \mathbb{H}-line if and only if $\mathbb{A}_{\mathbb{H}}(x)=\pi / 2$.

A remark on a triple points in the boundary of quaternionic hyperbolic space213
Remark 2.3. In the above theorems, $\mathbb{A}_{\mathbb{H}}(x)=0$ means that $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle \in$ \mathbb{R} and $\mathbb{A}_{\mathbb{H}}(x)=\pi / 2$ means that $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle$ is purely imaginary.

3. Main theorem

From now on, we will focus on the triple product $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle$ instead of $\mathbb{A}_{\text {Hit }}$.

Theorem 3.1. Let $K=\left\{\left(q_{1}, q_{2}\right) \in H_{\mathbb{H}}^{2} \mid q_{1} \in \mathbb{H}, q_{2} \in \mathbb{C}\right\}$. Then a triple points $x_{1}, x_{2}, x_{3} \in \partial H_{\mathbb{H}}^{2}$ lies in a copy of K if and only if the triple product $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle \in \mathbb{C}$.

Proof. First, assume that $x_{1}, x_{2}, x_{3} \in \partial H_{\mathbb{H}}^{2}$ lies in a copy of K. Without loss of generality, we may assume that $x_{1}=(0,-1), x_{2}=(0,1), x_{3}=$ $\left(q_{1}, q_{2}\right)$, where $q_{1} \in \mathbb{H}, q_{2} \in \mathbb{C}$ and $\left|q_{1}\right|^{2}+\left|q_{2}\right|^{2}=1$. Then $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle=$ $-2\left(\bar{q}_{2}-1\right)\left(-q_{2}-1\right)=-2\left\{\left|q_{1}\right|^{2}+\left(q_{2}-\bar{q}_{2}\right)\right\} \in \mathbb{C}$.
Conversely, up to isometry, we can assume that $x_{1}=(0,-1), x_{2}=$ $(0,1), x_{3}=\left(q_{1}, q_{2}\right)$ for q_{1}, q_{2} are quaternions, $\left|q_{1}\right|^{2}+\left|q_{2}\right|^{2}=1$ and $\tilde{x}_{1}=$ $(0,-1,1), \tilde{x}_{2}=(0,1,1), \tilde{x}_{3}=\left(q_{1}, q_{2}, 1\right)$. Then $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle=-2\left(\left|q_{1}\right|^{2}+\right.$ $\left.2 \operatorname{Im}\left(q_{2}\right)\right) \in \mathbb{C}$, so $q_{2} \in \mathbb{C}$.

Remark 3.2. In the above theorem, when we replace the condition $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle \in \mathbb{C}$ with $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle$ is of the form $a+b j$ or $a+b k$ for $a, b \in \mathbb{R}$, one can easily checked that K is replaced with $K^{\prime}=\left\{\left(q_{1}, q_{2}\right) \in H_{\mathbb{H}}^{2} \mid q_{1} \in\right.$ \mathbb{H}, q_{2} is of the form $\left.a+b j\right\}$ or $K^{\prime \prime}=\left\{\left(q_{1}, q_{2}\right) \in H_{\mathbb{H}}^{2} \mid q_{1} \in \mathbb{H}, q_{2}\right.$ is of the form $a+b k\}$

Remark 3.3. In the theorem, the set K is similar to the bisector in the complex hyperbolic space.(See [2])

The following theorem is a special case of Theorem 2.2 and also a special case of the above theorem. By the way, it is also analogous of the result in complex hyperbolic Cartan angular invariant.

Theorem 3.4. A triple $x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(\partial H_{\mathbb{H}}^{2}\right)^{3}$ lies in a copy of $H_{\mathbb{C}}^{1}$ if and only if the triple product $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle \in \mathbb{R} i$.

Proof. First, assume that a triple $x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(\partial H_{\mathbb{Z}}^{2}\right)^{3}$ lies in a copy of $H_{\mathbb{C}}^{1}$. Without loss of generality, we may assume that $x_{1}, x_{2}, x_{3} \in \partial H_{\mathbb{C}}^{1}$ and $x_{1}=(0,-1), x_{2}=(0,1), x_{3}=(0, z)$, where $|z|=1$, $z \in \mathbb{C}$. Then $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle=-2(z-\bar{z}) \in \mathbb{R} i$.

Conversely, up to isometry, we can assume that $x_{1}=(0,-1), x_{2}=$ $(0,1), x_{3}=\left(q_{1}, q_{2}\right)$ for q_{1}, q_{2} are quaternions, $\left|q_{1}\right|^{2}+\left|q_{2}\right|^{2}=1$ and $\tilde{x}_{1}=$ $(0,-1,1), \tilde{x}_{2}=(0,1,1), \tilde{x}_{3}=\left(q_{1}, q_{2}, 1\right)$. Then $\left\langle\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\rangle=-2\left(\left|q_{1}\right|^{2}+\right.$ $\left.2 \operatorname{Im}\left(q_{2}\right)\right)$, so $q_{2} \in \mathbb{C}$ since $\left|q_{1}\right|^{2}+2 \operatorname{Im}\left(q_{2}\right) \in \mathbb{R} i$. Hence $q_{1}=0$ and $q_{2} \in \mathbb{C}$, so x_{3} is also in $H_{\mathbb{C}}^{1}$.

Acknowledgement. The author thanks to Inkang Kim and Sungwoon Kim for encouragements and useful discussions.

References

[1] B. N. Apanasov and I. Kim, Cartan angular invariant and deformations of rank 1 symmetric spaces, Sbornik: Mathematics 198:2 (2007), 147-169.
[2] W. M. Goldman, Complex hyperbolic Geometry, Oxford Univ. Press, (1999).
[3] I. Kim and J. R. Parker, Geometry of quaternionic hyperbolic manifolds, Math. Proc. Camb. Phil. Soc. 135 (2003), 291-320.
[4] J. Kim, Quaternionic hyperbolic Fuchsian groups, Linear algebra and its applications 438 (2013), 3610-3617.

Joonhyung Kim

Department of Mathematics Education
Hannam University
Daejeon 306-791, Republic of Korea
E-mail: calvary@snu.ac.kr

