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STUDY ON BCN AND BAN RULED SURFACES IN E3

Hamdy N. Abd-Ellah∗ and Abdelrahim Khalifa Omran

Abstract. As a continuation to the study in [8, 12, 15, 17], we
construct bi-conservative central normal (BCN) and bi-conservative
asymptomatic normal (BAN) ruled surfaces in Euclidean 3-space
E3. For such surfaces, local study is given and some examples are
constructed using computer aided geometric design (CAGD).

1. Introduction

The study of bi-conservative and bi-harmonic surfaces is nowa-
days a very active research subject. Many interesting results on these
types have been obtained in the last decade. In 1995 [16], THasanis
and T. Vlachos firstly classified bi-conservative hypersurfaces in Eu-
clidean 3-spaces and 4-spaces, where they called such hypersurfaces as
H-hypersurfaces. RCaddeo et al. in [7] classified bi-conservative surfaces
in the three-dimensional Riemannian space forms. The classification of
the results given in [7, 16] showed that bi-conservative hypersurfaces in
Riemmannian 3-space forms, and Euclidean 4-spaces must be rotational
surfaces (besides the constant mean curvature case). Recently, Chen
and Munteanu [8] proved that δ(2)-ideal bi-conservative hypersurfaces
in Euclidean space En (arbitrary dimension) is minimal or a spherical
hypercylinder.
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In the last few years, from the theory of bi-harmonic submanifolds,
arised the study of bi-conservative submanifolds that imposed itself as a
very promising and interesting research topic through papers like [12,17].
Closely related to the theory of bi-harmonic submanifolds, the study of
bi-conservative submanifolds is a very recent and interesting topic in the
field of differential geometry.

In the surfaces theory, it is well-known that a surface is said to be
“ruled” if it is generated by a continuously moving of a straight line in
the space. Ruled surfaces are one of the simplest objects in geometric
modeling. A practical application of ruled surfaces is that they are used
in civil engineering. Since building materials such as wood are straight,
they can be thought of as straight lines. The result is that if engineers
are planning to construct something with curvature, they can use a ruled
surface since all the lines are straight [1–5].

More recently, Hamdoon and Omran [15], studied ruled surface gen-
erated by the spherical indicatrix of such surface. In this paper, the ruled
surfaces generated by the central and the asymptomatic normal for which
the tangent of their base curves given as a linear combination of the ge-
odesic frenet trihedron are constructed and obtained. The necessary
and sufficient conditions for considered surfaces to be bi-conservative,
bi-harmonic, flat, II-flat, harmonic and II-harmonic are obtained using
the shape operator of these surfaces. An intrinsic characterization of
these bi-conservative surfaces is provided. Finally, some examples are
given and plotted using computer aided geometric design.

2. Geometric preliminaries

Let x : M → E3 be an isometric immersion of a surface M into
E3. Denote the Levi-Civita connections of M and E3 by ∇ and ∇̃,
respectively. Let X and Y denote vector fields tangent to M , and let ~N
be a normal vector field. The Gauss and Weingarten formulas are given,
respectively, by [9, 10]

(2.1) ∇̃XY = ∇XY + h(X, Y ),

(2.2) ∇̃X
~N = −A ~N X,

where h, A are the second fundamental form and the shape operator,
respectively. It is well known that the second fundamental form h and
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the shape operator A are related by

(2.3) 〈h(X, Y ), ~N〉 = 〈A ~N X, Y 〉.
The Gauss and Codazzi equations are given, respectively, by

(2.4) 〈R(X, Y )Z,W, ~N〉 = 〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉,

(2.5) (∇X A)Y = (∇Y A)X,

where

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[XY ],

is the curvature tensor of the Levi-Civita connection on M .

Now, let us recall the following important definitions:

Definition 2.1. [13, 14]. Let x ⊂ E3 be a regular surface, and let
~N be a surface normal vector field to x defined in a neighborhood of a
point p ∈ x. For each tangent vector ~v to x at p, if we put

(2.6) Ap(v) = −∇v
~N(p).

Then A is called the shape operator of x at p derived from ~N . That is,
the shape operator A is defined as the negative (directional) derivative

of the normal ~N (as a vector valued function on x ), see Figure (1).
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Figure 1. The shape operator of x

Using the coefficients of the first and the second fundamental forms
gij, hij, i, j = 1, 2, respectively, we can easily calculate the shape operator
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A of x in the form

(2.7) A = (aij) , i, j = 1, 2,

where

(2.8) (aij) = −1

g

(
h11g22 − h12g12 −h11g12 + h12g11
h12g22 − h22g12 −h12g12 + h22g11

)
.

Definition 2.2. [13, 20]. The Gaussian curvature K of x ⊂ E3 is
the real-valued function K: x −→ R3, defined by

(2.9) K = det(A).

Explicitly, for each point p of x, the Gaussian curvature K(p) of x at p
is the determinant of the shape operator A of x at p.

Definition 2.3. [13, 20]. The mean curvature H of x ⊂ E3 is the
function H: x −→ R3, defined by

(2.10) H =
1

2
tr(A).

Explicitly, for each point p of x, the mean curvature H(p) of x at p is
the trace of the shape operator A of x at p.

Definition 2.4. [22].
(1): A regular surface for which the mean curvature vanishes identi-

cally is called a minimal (harmonic) surface.
(2): A surface is called II-flat if the second Gaussian curvature van-

ishes identically.
(3): A surface is called II-minimal if the second mean curvature van-

ishes identically.

Definition 2.5. [11]. A surface x in Euclidean 3-space E3 is bi-
conservative if the mean curvature function H satisfies

(2.11) A(grad H) = −Hgrad H.

Definition 2.6. [11]. A surface x in Euclidean 3-space E3 is said
to be bi-harmonic if it satisfies the equation ∆2x = 0. According to the
well-known Betrami’s formula ∆x = −2 ~H, the bi-harmonic condition in
E3 is also known as the equation

(2.12) ∆ ~H = 0,
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where ∆ is the Laplacian with respect to the first fundamental form of
x and is given by

(2.13) ∆ = − 1√
|g|

∑
i,j

∂

∂ui

[√
|g| gij ∂

∂uj

]
,

where, (gij) denotes the associated matrix with the inverse of (gij).

Using classical notation, we define the second Gaussian curvature KII

by [6]
(2.14)

KII =
1

h2

∣∣∣∣∣∣
−h11,22

2
+ h12,12 − h22,11

2

h11,1
2

h12.1 − h11,2
2

h12,2 − h22,1
2

h11 h12
h22,2
2

h12 h22

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 h11,2
2

h22,1
2

h11,2
2

h11 h12
h22,1
2

h12 h22

∣∣∣∣∣∣
 ,

where, hij,l = ∂hij
∂sl

, and hij,lm = ∂2hij
∂ul∂um

, the indices i, j belong to {1, 2}
and the parameters u1, u2 are s, v, respectively.

Since Brioschis formulas in Euclidean 3-space E3, we are able to define
the second mean curvature HII of x by replacing the components of the
first fundamental form gij by the components of the second fundamental
form hij, respectively, in Brioschis formula. Consequently, the second
mean curvature HII is given by [6]

(2.15) HII = H − 1

2
∆
(

ln
√
|K|

)
,

where, ∆ is the Laplacian with respect to the second fundamental form
of x expressed as

(2.16) ∆ = − 1√
|h|

∑
i,j

∂

∂ui

[√
|h| hij ∂

∂uj

]
,

where, hij denotes the associated matrix with the inverse of hij.

3. Geodesic Frenet trihedron of the ruled surface

A ruled surface is generated by a one-parameter family of straight
lines and it possesses a parametric representation,

(3.1) x : ψ(s, v) = ~α(s) + v~e(s),

where ~α(s) represents a space curve which is called the base curve and
~e(s) is a unit vector representing the direction of a straight line and s is
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the arc-length along the base curve ~α(s).

The vector ~e(s) traces a general space curve (as s varies) on the surface
of unit sphere s2 which it called spherical indicatrix of the ruled surface.
If we denote the arc-length of ~e(s) as s∗, then

(3.2) s∗ =

∫ b

a

∣∣∣d~e(s)
ds

∣∣∣ds.
The unit normal vector field ~n to the ruled surface (3.1) is

(3.3) ~n(s, v) =
(d~α
ds

+ v d~e
ds

) ∧ ~e
[(d~α
ds

+ v d~e
ds

)2 − 〈d~α
ds
, ~e〉2] 12

,

The unit normal along a general generator ~l = ~ψ(s0, v) of the ruled
surface approaches a limiting direction as v infinitely decreases. This
direction is called the asymptotic normal direction and defined as

(3.4) ~g(s)
∣∣∣
s=s0

= ~n(s, v)
∣∣∣ s=s0
v→−∞

=
−d~e
ds
∧ ~e

| d~e
ds
|

∣∣∣
s=s0

.

At v increases to +∞, the unit normal rotates through 180◦ about ~l
and ultimately takes the direction −~g. The point at which ~n has rotated
only 90◦ and is perpendicular to ~g is called the striction point (or central

point) on ~l. The direction of ~n at this point is denoted by ~t and called
the central normal of the ruled surface and is given by

(3.5) ~t(s) =
d~e/ds

|d~e/ds|
.

The Frenet trihedron on a ruled surface can then be defined by the
dexterous triplet of vectors {~e, ~t, ~g}, where

~e =spherical indicatrix,

~t =central normal = ~e′ =
d~e

ds∗
=

~es
|~es|

,

~g =asymptotic normal = ~e ∧ ~e′ =
~e ∧ ~es
|~es|

,


(3.6)

where ~es = d~e
ds

and ′ ≡ d
ds∗

.
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Differentiating (3.6) with respect to s∗, we have a set of differential
equations similar to the Frenet formula of a space curve, namely

(3.7)

 ~e′

~t′

~g′

 =

 0 1 0
−1 0 µ
0 µ 0

 ~e
~t
~g


where µ = 〈~e,~es∧~ess〉

|~es|3 is the geodesic curvature of spherical indicatrix ~e.

These last equations are called the geodesic Frenet trihedron of the in-
dicatrix ~e for a ruled surface [18,19,21].

The striction point on a ruled surface x is the foot of the common
normal between two consecutive generators. The set of striction points
define the striction curve and is given by

(3.8) ~c(s) = ~α(s)− 〈~αs, ~es〉
‖~es‖2

~e(s)

The parameter of distribution Pe of the ruled surface (3.1) is defined
as the limit of the ratio of the shortest distance between the two rulings
and their angluded angle which is given by

(3.9) Pe =
det(~α′ , ~e, ~e′)

〈~e′ , ~e′〉
.

If the consecutive generators of a ruled surface intersect, then the surface
is said to be developable (Pe = 0), otherwise the surface is said to be
skew.

Remark 3.1. In this paper, the striction curve of the ruled surface
x will be taken as the base curve.

4. BCN ruled surface M

In this section, the ruled surface M which generated by the central
normal ~t during the base curve ~c is studied. The necessary and sufficient
conditions for M to BCN, harmonic, II-harmonic, II-flat, bi-harmonic
and II-bi-harmonic surfaces are constructed and obtained. In this case,
for the parametric equation of the surface (3.1), we can define the ruled
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surface that produced by the central normal ~t during the base curve ~c
as follows

(4.1) M : φ(s, v) = ~c(s) + v~t(s),

where the tangent of the base curve of M is given by

(4.2) ~c′ = λ1~e+ λ2~t+ λ3~g ∈ span{~e,~t, ~g},

with 〈~c′ , ~c′〉=1, implies that λ21+λ22+λ23 = 1; where λi, i=1,2,3 are scalar
functions.

Since the base curve of M is a striction curve, then we can write

(4.3) 〈~c′ , ~t′〉 = 〈λ1~e+ λ2~t+ λ3~g, µ~g − ~e 〉 = 0.

Hence, Eq.(4.2) becomes

(4.4) ~c′ = µλ3~e+ λ2~t+ λ3~g,

That means, the condition for the base curve ~c to be a stiction curve is
λ1 = µλ3, implies that µ = const., λ3 6= 0.

By calculating the distribution parameter Pt of the ruled surface M ,
one can get the ruled surface M is developable if and only if λ3=0; but
this is a contradiction, hence the ruled M can not be developable.
Using Eqs. (3.7 ), (4.1 ) and (4.4), one can obtain the first fundamental
quantities of M as follows
(4.5)
g11 = ξ1(λ

2
3+v

2)+λ22, g12 = λ2, g22 = 1, g = Det (gij) = ξ1(λ
2
3+v

2).

where ξ1 = 1 + µ2.

Remark 4.1. The only singular point on the ruled surface M is on
striction curve (v =0), for which Pt=0.

The unit normal vector field ~n of M is given by

(4.6) ~n(s, v) =
~N

‖ ~N‖
=

1
√
g

(
− (λ3 + vµ)~e+ (λ3µ− v)~g

)
.

Moreover, the principal normal vector ~e2 of M at the base curve (v=0)
is

(4.7) ~e2 = ~n(s, 0) =
1√
ξ1

(
− ~e+ µ~g

)
, ξ1 6= 0.
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From Eqs. (4.4) and (4.7), the binormal vector ~e3 of the curve ~c can be
obtained as

(4.8) ~e3 =
1√
ξ1

(
λ2µ~e− λ3ξ1~t+ λ2~g

)
, ξ1 6= 0.

From above, we can get the equations that describe the relation between
Frenet-Frame {~e1, ~e2, ~e3} of the base curve ~c and the geodesic Frenet
trihedron {~e,~t, ~g} of the indicatrix ~e of M in the form

(4.9)

 ~e1
~e2
~e3

 =
1√
ξ1

 λ3µ λ2 λ3
−1 0 µ
λ2µ −λ3ξ1 λ2

 ~e
~t
~g

 .

In addition, we can write the second fundamental quantities of M as
follows

(4.10) h11 =
λ2λ3ξ1√

g
, h12 =

λ3ξ1√
g
, h22 = 0, h = Det (hij) =

−λ23ξ1
ξ2

,

where ξ2 = λ23 + v2.

Based on the above results and using Eqs. (2.8), (2.9) and (2.10), one
can get the Gaussian K and the mean H curvatures of M as follows

(4.11) K = det(A) =
−λ23
ξ22

.

Corollary 4.1. The Gaussian curvature K of the ruled surface M
is non positive and K can not be equal to zero along the ruling ~t.

(4.12) H =
1

2
tr(A) =

−λ2λ3ξ1
2 g3/2

.

Hence, we get
(4.13)

(Hs, Hv) =

(
0,

3λ2λ3v

2
√
ξ1 ξ

5/2
2

)
, Hui =

∂H

∂ui
, {ui} = {s, v}, i = 1, 2.

Thus, one can see that the condition (2.11) can be split into two differ-
ential equations as follows

(4.14) a11Hs + a12Hv +HHs = 0,

(4.15) a21Hs + a22Hv +HHv = 0.
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Using (2.8), one can calculate aij in the following form

(4.16)

(
a11 a12
a21 a22

)
= g−3/2 λ3ξ1

(
0 g
1 −λ2

)
.

Solving the Eqs. (4.14) and (4.15), we get the only solution is λ2 = 0

and λ3 6= 0, implies that ~c′ ∈ span{~e,~g}. Thus, we can formulate the
following theorem

Theorem 4.1. The central normal ruled surface M is BCN ruled
surface if and only if the tangent of the base curve ~c′ ∈ span{~e,~g}.

4.1. Harmonic and bi-harmonic properties of BCN ruled sur-
face M. Here, inspired by the concepts the harmonic (H = 0) and

bi-harmonic (∆ ~H = 0), we can obtain the II-harmonic (HII = 0) and
II-bi-harmonic (∆HII = 0) of M .
Using Eqs.(2.14), (4.11) and (4.12), it is easy to calculate the second
Gaussian KII and the second mean HII curvatures of M , respectively,
as follows

(4.17) KII =
λ2

2g3/2

(
ξ1(v − λ3)(λ3 + v)

)
,

(4.18) HII =
−λ2
2g3/2

(
− 2λ23v

2ξ3 + λ43(µ
2 + ξ3 + 1)− 3v4ξ3

)
,

where ξ3 = λ2λ3√
ξ1ξ32

.

Using Eqs. (4.6) and (4.12), we can get the mean curvature vector field
~H in the form

(4.19) ~H = H ~n(s, v) =
1

2 ξ1ξ22

{
λ2λ3 (λ3 + µv) , 0, −λ2λ3 (λ3µ− v)

}
.

Using Eqs. (2.13) and (2.16), one can get
(4.20)

∆ ~H =
{
ξ4
(
−4λ33+15µv3+24λ3v

2−13λ23µv
)
, 0 , ξ4

(
4λ33µ+15v3−24λ3µv

2−13λ23v
)}
,

and
(4.21)

∆HII = ξ5

(
λ63(3µ

2+10ξ6+3)+24ξ6v
6−54λ23ξ6v

4−λ43v2(15µ2+68ξ6+15)
)
,

where ξ4 =
λ22λ3
2ξ1ξ42

, ξ5 =
λ22

2λ33ξ
3/2
1 ξ

7/2
2

and ξ6 = λ2λ3

ξ
1/2
1 ξ

3/2
2

.
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From Eqs. (4.12), (4.17), (4.20) and (4.21), one can conclude the
following corollary

Corollary 4.2. The central normal ruled surface M is harmonic,
bi-harmonic, II-bi-harmonic and II-flat if and only if the surface M is
BCN ruled surface.

Also, Eq. (4.18) give the following corollary

Corollary 4.3. The central normal ruled surface M is II-harmonic
if and only if one of the following is satisfied

(i): The surface M is BCN ruled surface.

(ii): λ2 = ±λ33 ξ
3/2
1 ξ

1/2
1

λ23−3v2
, λ23 6= 3v2.

4.2. Example. Now, we give an example to illustrate our previous
investigation in this section.

Example 4.2.1. The elliptic hyperboloid of one sheet is a non-developable
BCN ruled surface parameterized by

(4.22) φ(s, v) =
1√
5

(
sin(s)− v cos(s), 1 + 2v,− cos(s)− v sin(s)

)
,

with λ2=0 and λ3 6= 0. Short calculations give us the following:

~e = 1
2

(
− sin(s), 2s, cos(s)

)
, ~t =

√
5
5

(
− cos(s), 2,− sin(s)

)
, ~g =

√
5
5

(
−

s sin(s)− cos(s),−1
2
, s cos(s)− sin(s)

)
, Pt = −2

3
and µ = 2

5
√
5
, as plotted

in Figure (2).

5. BAN ruled surface M∗

In this section, the ruled surface M∗ which is generated by the
asymptotic normal ~g during the base curve ~c is investigated. The neces-
sary and sufficient conditions for M∗ to be BAN, flat, II-flat, harmonic,
II-harmonic, bi-harmonic and II-bi-harmonic surfaces are given.
In this case, for the parametric equation of the surface (3.1), we can de-
fine the ruled surface that produced by the asymptotic normal ~g during
the base curve ~c as follows

(5.1) M∗ : φ∗(s, v) = ~c∗(s) + v~g(s),

where the tangent of the base curve of M∗ is given by

(5.2) ~c∗
′
= λ1~e+ λ2~t+ λ3~g ∈ span{~e,~t, ~g},
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e

g

t
×

striction curve c

Figure 2. Non-developable BCN ruled surface M .

with 〈 ~c∗′ , ~c∗′〉=1, implies that λ21 + λ22 + λ23 = 1; where λi, i=1,2,3 are
scalar functions.
Since the base curve of M∗ is a striction curve, then we can write

(5.3) 〈 ~c∗′ , ~g′〉 = 〈λ1~e+ λ2~t+ λ3~g, µ~t 〉 = 0.

Hence, Eq.(5.2) becomes

(5.4) ~c∗
′
= λ1~e+ λ3~g,

In view of the distribution parameter Pg of the ruled surface M∗, one
can see the ruled surface M∗ is developable if and only if µλ1 =0. Hence,
we have the following corollary.

Corollary 5.1. The ruled surface M∗ which generated by the as-
ymptotic normal ~g is developable (Pg = 0) if and only if one of the
following is satisfied

(i): The asymptotic normal ~g is tangent of its striction curve ~c, i.e,

the tangent of the base curve ~c∗
′

and the generator ~g are parallel.
(ii): The spherical indicatrix ~e of M∗ is a geodesic(µ = 0).
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Using Eqs. (3.7 ) and (5.4), one can obtain the first fundamental
quantities of M∗ as follows
(5.5)
g∗11 = 1+v2µ2, g∗12 = λ3, g∗22 = 1, g∗ = Det

(
g∗ij
)

= λ21+v
2µ2, λ21 = 1−λ23.

The discriminant g∗ vanishes only if λ1 = 0 and the geodesic curvature
µ of the spherical indicatrix ~e is equal zero at the same time. As an
immediate result we have the following corollary.

Corollary 5.2. The ruled surface M∗ has a singular point if the
spherical indicatrix ~e is a geodesic and the base curve is parallel to
asymptotic normal ~g.

The the unit normal vector field ~n∗ of M∗ is given by

(5.6) ~n∗(s, v) =
~N∗

‖ ~N∗‖
=

1√
g∗

(
vµ ~e− λ1~t

)
.

Moreover, the principal normal vector ~e∗2 of M∗ at the base curve (v=0)
is

(5.7) ~e∗2 = ~n∗(s, 0) = −~t.

From Eqs. (5.4) and (5.7), the binormal vector ~e∗3 of the curve ~c∗ can be
given as

(5.8) ~e∗3 = ~e∗1 ∧ ~e∗2 = λ1~g − λ3~e.

From above, we can get the equations that describe the relation between
Frenet-frame {~e∗1, ~e∗2, ~e∗3} of the base curve ~c∗ and the geodesic Frenet
trihedron {~e,~t, ~g} of the indicatrix ~e of M∗ as in the form

(5.9)

 ~e∗1
~e∗2
~e∗3

 =

 λ1 0 λ3
0 −1 0
λ3 0 −λ1

 ~e
~t
~g

 .

Remark 5.1. For a developable ruled surface M∗ with λ1=0, the
relation between Frenet-frame of the base curve ~c∗ and the geodesic
Frenet trihedron of the indicatrix ~e of M∗ is given by

(5.10)

 ~e∗1
~e∗2
~e∗3

 =

 0 0 1
0 −1 0
1 0 0

 ~e
~t
~g

 .
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In addition, we can get the second fundamental quantities of M∗ as
follows

(5.11)

h∗11 = − 1√
g∗

(
λ1λ3µ+ v2µ2 + λ1(λ1 + vµ

′
)
)
, h∗12 = − λ1µ√

g∗
,

h∗22 = 0, h∗ = Det
(
h∗ij
)

=
−λ21µ2

g∗
.

Using (2.8) and the same technique as in section 4, one can get the
Gaussian curvature K∗ of M∗ as follows

(5.12) K∗ = det(A∗) =
−λ21µ2

(λ21 + v2µ2)2
.

Thus, we have the following theorem

Theorem 5.1. The Gaussian curvature K∗ of the ruled surface M∗

is non positive and K∗ equal to zero only along the ruling which meet
the striction curve at a sigular point (Pg = 0, v 6= 0).

Also we can get the mean curvature function H∗ of the ruled surface
M∗ in the form

(5.13) H∗ =
1

2
tr(A∗) =

λ1λ3µ− v2µ2 − λ1(λ1 + vµ
′
)

2(λ21 + v2µ2)3/2
.

Thus, one can obtain the following
(5.14)

H∗s =
1

2(g∗)5/2

(
µ′
(
λ31λ3 + v2µ

(
− 2λ1λ3µ+ v2µ2 + λ1

(
λ1 + 3vµ′

) ))
− λ1vµ′′ g∗

)
,

H∗v =
1

2(g∗)5/2

(
− λ31µ′ + v3µ4 − 3λ1λ3vµ

3 + λ1vµ
2
(
λ1 + 2vµ′

) )
.

As an analogously, from Eqs. (4.14) and (4.15), the condition (2.11)
can be split into two differential equations as in the form

(5.15) a∗11H
∗
s + a∗12H

∗
v +H∗H∗s = 0

(5.16) a∗21H
∗
s + a∗22H

∗
v +H∗H∗v = 0

Using (2.8), one can get aij as in the following form

(5.17)

(
a∗11 a∗12
a∗21 a∗22

)
= (g∗)−3/2

(
ξ7 ξ8
λ1µ λ1λ3µ

)
,

where, ξ7 = −v2µ2−λ1(λ1+vµ′) and ξ8 = (λ3−λ1µ)(λ21+v
2µ2)+vλ1λ3µ

′.
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Hence, Eqs. (5.15) and (5.16) can be expressed, respectively, as in
the following form

(5.18)
1

4(g∗)4

6∑
i=0

λi1 Fi = 0,

(5.19)
1

4(g∗)4

5∑
j=0

λj1 Gj = 0.

That means, the above equations have been rewritten as a linear combi-
nation of λi1 which coefficients Fi and Gj are function of the s-variable.
In this case, by using mathematica programming, we noticed that the
expression is stopped at F6 and G5. Therefore, they must be vanished
in some s-interval. So, Fi can be given as

F6 = 2µµ′, F5 = −5µ′λ3 + 3vµ′′ − 2vµ3,

F4 = µµ′λ23 − 2v2µ3µ′ − 3v2µµ′ − vµµ′′λ3 + vµ′(3vµ′′ − 5µ′λ3)

+6vµ4λ3 + 2vµ2λ3,

F3 = 6v3µ2µ′′ − 12v3µµ′2 − 4v3µ5 + 8v2µ2µ′λ3 − 6vµ3λ23,

F2 = −4v4µ5µ′ − 6v4µ3µ′ − 9v4µµ′3 + 3v4µ2µ′µ′′ − λ3v3µ3µ′′

+13λ3v
3µ2µ′2 + 6λ3v

3µ6 + 4λ3v
3µ4 − 8λ23v

2µ3µ′,

F1 = 3v5µ4µ′′ − 12v5µ3µ′2 − 2v5µ7 + 13λ3v
4µ4µ′ − 6λ23v

3µ5,

F0 = −3v6µ5µ′ + 2v5µ6λ3,

(5.20)

and Gi can be given as

G5 = µ′,

G4 = µ(2vµ′′ − 5λ3µ
′) + vµ′2 − vµ2,

G3 = 6vµ3λ3 − 4v2µ2µ′,

G2 = 2v3µ3µ′′ − 8v3µ2µ′2 − 2v3µ4 + 13λ3v
2µ3µ′ − 9λ23vµ

4,

G1 = 6v3µ5λ3 − 5v4µ4µ′,

G0 = v5µ6.

(5.21)

From F6, it is worth noting that the only two possibilities for vanishing
all the coefficients are:
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Case (i): µ = 0, in this case, all the coefficients are vanished identi-
cally.

Case (ii): µ′ = 0, that is µ=constant 6= 0, then we have

F5 = −2vµ3,

which equals zero if µ = 0, but this is a contradiction. This leads to
Gj = 0 in (5.19). Thus, we have the proof of the following theorem

Theorem 5.2. The asymptotic normal ruled surface M∗ is BAN
ruled surface if and only if the spherical indicatrix ~e of M∗ is geodesic
(µ = 0).

5.1. Harmonic and bi-harmonic properties of BAN ruled sur-
face M∗. Back to Eq. (5.13), we note that the mean curvature of
a BAN ruled surface H∗ equal zero if the amount in the numerator of
Eq. (5.13) vanishes. So that by solving the differential equation in the
numerator of Eq. (5.13), we have
(5.22)

µ =
λ1
2v2

(√
λ23 − 4v2 tanh

(√
λ23 − 4v2 (s− c1λ1v)

2v

)
+ λ3

)
, v 6= 0,

where c1 is an arbitrary constant. Then, we have the following corollary

Corollary 5.3. The ruled surface M∗ is harmonic if the geodesic
curvature of the spherical indicatrix ~e is related by Eq. (5.22).

Using Eq.(2.14), it is easy to calculate the second Gaussian curvature
K∗II of M∗ in the form

(5.23) K∗II =
λ31λ3µ− v4µ4 − λ1λ3v2µ3 − 2λ21v

2µ2 − λ31 (λ1 + 2vµ′)

2λ21 (λ21 + v2µ2)
3/2

Remark 5.2. The asymptotic normal ruled surface M∗ can not be
II-flat any way.
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Using Eqs.(2.15) and (2.16), one can obtain the second mean curva-
ture H∗II of M∗ in the form
(5.24)

H∗II =
ξ9

4λ41µ
4ξ10(g∗)7/2

(
2λ41λ

2
3µ

4 − 2λ61µ
2 − 2v6µ8 − 6λ21v

4µ6 − 6λ21λ
2
3v

2µ6

− 6λ41v
2µ4 + 2λ51vµ

2µ′λ61µ
′2 − 2λ1v

5µ6µ′ − 4λ31v
3µ4µ′ + 6λ3λ

2
1v

3µ5µ′

+ 2λ41v
2µ2µ′2 − 10λ3λ

4
1vµ

3µ′ + 2λ81µ
4ξ10 − 5λ21v

4µ4µ′2 + 4λ61v
2µ6ξ10

+ 2λ21v
4µ5µ′′ + 2λ41v

4µ8ξ10 + 2λ41v
2µ3µ′′

)
,

where ξ9 = λ1λ3µ− v2µ2−λ1(λ1 + vµ
′
), ξ10 = ξ9√

(g∗)3
, λ1 6= 0 and µ 6= 0.

Consequently, we can get the relation between the mean H∗ and the
second mean H∗II curvatures of M∗ as follows
(5.25)

H∗II =
H∗

4λ41µ
4ξ10(g∗)2

(
2λ41λ

2
3µ

4 − 2λ61µ
2 − 2v6µ8 − 6λ21v

4µ6 − 6λ21λ
2
3v

2µ6

− 6λ41v
2µ4 + 2λ51vµ

2µ′λ61µ
′2 − 2λ1v

5µ6µ′ − 4λ31v
3µ4µ′ + 6λ3λ

2
1v

3µ5µ′

+ 2λ41v
2µ2µ′2 − 10λ3λ

4
1vµ

3µ′ + 2λ81µ
4ξ10 − 5λ21v

4µ4µ′2 + 4λ61v
2µ6ξ10

+ 2λ21v
4µ5µ′′ + 2λ41v

4µ8ξ10 + 2λ41v
2µ3µ′′

)
.

Looking at the previous equation, we have only one case for the vanishing
of H∗II . The amount between brackets can not be vanished because λ1
and µ can not be equal zero at the same time. Hence, the only possibility
is H∗ = 0, that is M∗ is minimal. Thus, we have the following corollary

Corollary 5.4. The asymptotic normal ruled surface M∗ is II-
harmonic if it is harmonic.

Using Eqs. (5.6) and (5.13), we can get the mean curvature vector

field ~H∗ of M∗ in the form

(5.26) ~H∗ =
1

2(g∗)2

{
− vµξ9, λ1ξ9, 0

}
.
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Then, by direct computations, one can find the Laplacian operator ∆
for ~H∗ in the following form

(5.27) ∆ ~H∗ =
1

2λ1(g∗)4

{
6∑
i=0

λi1Fi ,
7∑
j=0

λj1Gj , 0

}
,

where Fi are given by

F6 = 2µ (2vµ′′ − 3λ3µ
′) + 2vµ′2 + 5vµ2,

F5 = 7v2µ2µ′ − 4λ3vµ
3,

F4 = −v3µ3µ′′ − 17v3µ2µ′2 + 40λ3v
2µ3µ′ + vµ4(9v2 − 13λ23),

F3 = 4v4µ4µ′ + 2λ3v
3µ5,

F2 = 9v5µ4µ′2 − 5v4µ5(2λ3µ
′ + vµ′′) + 3v3µ6(5λ23 + v2),

F1 = 6λ3v
5µ7 − 3v6µ6µ′,

F0 = −v7µ8,

(5.28)

and Gi are given by

G7 = −2(µ′′ + µ),

G6 = 2λ3µ
2 − 5vµµ′

G5 = 4λ23µ
3 + 5v2µ2µ′′ + 12v2µµ′2 − 34λ3vµ

2µ′,

G4 = −6λ3v
2µ4,

G3 = 7v4µ4µ′′ − 16v4µ3µ′2 + 22λ3v
3µ4µ′ + 6v2µ5(v2 − 4λ23),

G2 = 5v5µ5µ′ − 8λ3v
4µ6,

G1 = 4v6µ7,

G0 = 0.

(5.29)

From the above two Eqs. (5.28) and (5.29), for the two functions F0 and
G1, one can see that all the components in (5.27) vanish if µ equal zero.
Thus we have the following corollary:

Corollary 5.5. The asymptotic normal ruled surface M∗ is bi-
harmonic if the surface M∗ is BAN surface.
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Also, by calculating the Laplacian operator ∆ for the second mean
curvature H∗II function, one can obtain the following form

(5.30) ∆H∗II =
1

−2λ51µ
3(g∗)4

(
10∑
i=0

λi1Fi

)
.

After some computations and using the same technique in (5.28), one
can get
(5.31)
F10 =− 4µµ′′ + 2µ2 + 2µ3µ′′

√
g∗ + µ4

√
g∗,

F9 =− 12λ3µ
2µ′′ + 6λ3µµ

′2 + 2λ3µ
3 + 5vµ4µ′

√
g∗ − 2λ3µ

5
√
g∗

+ 4vµ(3)µ2 + vµ2µ′ − 22vµ′3 + 11vµµ′µ′′,

F8 =10λ23µ
4 − 3v2µ5µ′′

√
g∗ + 26λ3vµ

5µ′
√
g∗ − 9v2µ4µ′2

√
g∗ + v2µ6

√
g∗

− 3λ23µ
6
√
g∗ − 7v2µ3µ′′ + 62v2µ2µ′2 + 12v2µ4 − 74λ3vµ

3µ′,

F7 =10λ33µ
5 + 7v3µ(3)µ4 + 6v3µ4µ′ − 10v3µ2µ′3 − 52v3µ3µ′µ′′ + 49λ3v

2µ4µ′′

+ 95λ3v
2µ3µ′2 + 4λ3v

2µ7
√
g∗ + 6λ3v

2µ5 + 2v3µ6µ′
√
g∗ − 113λ23vµ

4µ′,

F6 =− 3v4µ5µ′′ + 46v4µ4µ′2 + 28v4µ6 + 8λ3v
3µ5µ′ + 15λ23v

2µ8
√
g∗

− 48λ23v
2µ6 − 5v4µ7µ′′

√
g∗ + 9v4µ6µ′2

√
g∗ − v4µ8

√
g∗

− 10λ3v
3µ7µ′

√
g∗,

F5 =2v5µ(3)µ6 + 12v5µ6µ′ + 114v5µ4µ′3 − 55v5µ5µ′µ′′ + 52λ3v
4µ6µ′′

− 226λ3v
4µ5µ′2 + 6λ3v

4µ7 + 202λ23v
3µ6µ′ − 78λ33v

2µ7 − 3v5µ8µ′
√
g∗

+ 6λ3v
4µ9
√
g∗,

F4 =− v6µ7µ′′ − 14v6µ6µ′2 + 32v6µ8 + 78λ3v
5µ7µ′ − 46λ23v

4µ8 − v6µ10
√
g∗,

F3 =− v7µ(3)µ8 + 10v7µ8µ′ − 10v7µ6µ′3 + 8v7µ7µ′µ′′ − 9λ3v
6µ8µ′′

+ 21λ3v
6µ7µ′2 + 2λ3v

6µ9 − 21λ23v
5µ8µ′ + 24λ33v

4µ9,

F2 =− v8µ9µ′′ + 2v8µ8µ′2 + 18v8µ10 − 4λ3v
7µ9µ′ + 12λ23v

6µ10,

F1 =3v9µ10µ′, F0 = 4v10µ12.

From Eq. (5.30), one can see that the amount ∆H∗II becomes undefined
at µ = 0.
Then, one can deduce the following remark:

Remark 5.3. From Eqs. (5.31), it is worth noting that the asymp-
totic normal ruled surface M∗ can not be II-bi-harmonic.
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5.2. Examples. Now, we give the following examples to illustrate
our previous investigation in this section.

Example 5.2.1. The surface

(5.32) φ∗1(s, v) =
1√
2

(
− cos(s) + v sin(s), sin(s)− v cos(s), s+ v

)
,

is a developable BAN ruled surface with λ1 = λ2=0 and λ3 = 1. Short
calculations give us the following

~e =
√
2
2

(
− sin(s), cos(s), 1

)
, ~t =

(
− cos(s), − sin(s), 0

)
, ~g =

√
2
2

(
sin(s), − cos(s), 1

)
,

Pφ∗1 = 0 and µ = 1, as plotted in Figure (3).

Example 5.2.2. The surface

(5.33) φ∗2(s, v) =
1√
2

(
− cos(s) + v sin(s), 1 + v, sin(s) + v cos(s)

)
,

is a non-developable BAN ruled surface with λ2 =0, λ2 6= 0 and λ3 6= 0
. Short calculations give us the following

~e =
√
2
2

(
− sin(s), 1,− cos(s)

)
, ~t =

(
− cos(s), 0, sin(s)

)
and ~g =

√
2
2

(
sin(s), 1, cos(s)

)
,

Pφ∗2 = −1
2

and µ = 1, as plotted in Figure (4).

striction curve c

e

g

t
×

Figure 3. Developable BAN ruled surface M∗
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striction curve c

e

t
×g

Figure 4. Non-developable BAN ruled surface M∗

6. Conclusion

It would be an interesting problem to investigate the classification
problems of BCN and BAN ruled surfaces in E3 using the shape oper-
ator of the surfaces M and M∗.

For M , we found that the central normal ruled surface M is BCN

ruled surface if and only if the tangent of the base curve ~c′ ∈ span{~e,~g}.
We also proved that the surfaceM is harmonic, II-harmonic, bi-harmonic,
II-bi-harmonic and II-flat if and only if the surface M is BCN ruled sur-
face.

In addition, for M∗ we proved that the asymptotic normal ruled
surface M∗ is BAN ruled surface if and only if the spherical indica-
trix ~e of M∗ is geodesic (µ = 0). Moreover, we demonstrated that the
asymptotic normal ruled surface M∗ is bi-harmonic surface if the sur-
face M∗ is BAN surface. Furthermore, we showed that the asymptotic
normal ruled surface M∗ is II-harmonic if it is harmonic. Besides that,
the relation between the Frenet-frame and the geodesic frame in each
case is obtained. Finally, our investigation has been illustrated through
examples using computer-aided geometric design.
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