
Korean J. Math. 25 (2017), No. 2, pp. 229–246
https://doi.org/10.11568/kjm.2017.25.2.229

ANALYTIC SOLUTIONS FOR AMERICAN PARTIAL

BARRIER OPTIONS BY EXPONENTIAL BARRIERS

Chulhan Bae and Doobae Jun∗†

Abstract. This paper concerns barrier option of American type
where the underlying price is monitored during only part of the op-
tion’s life. Analytic valuation formulas of the American partial bar-
rier options are obtained by approximation method. This approxi-
mation method is based on barrier options along with exponential
early exercise policies. This result is an extension of Jun and Ku [10]
where the exercise policies are constant.

1. Introduction

American options are widely traded in the over counter market be-
cause American type options give their holders an additional privilege of
early exercise. For these reasons, the valuation of the American option
price has been very important issue in financial economics.

Brennan and Schwartz [2] and Parkinson [15] have proposed a nu-
merical approach to value American options. They have approached to
a solution of the Black-Scholes partial differential equation using finite
differences. Cox et al. [4] used the binomial model to reduce the size of
errors. Liang et al. [13] found convergence rate of the binomial model.
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They have modeled an American put option as a variational inequality.
These numerical methods are very flexible and easy to implement. How-
ever, even after employing control variate or convergence extrapolation,
they require a very long time.

Many people have tried to reduce the time consuming task. Sul-
livan [16] approximated the option value function through Chebyshev
polynomials and applied a Gaussian quadrature integration scheme at
each discrete exercise date. In order to find the value of American put
option, Longstaff and Schwartz [14] used the Monte Carlo simulation
method. In the Monte Carlo simulation method, optimal stopping is
significant problem. They resolved the problem by comparing the condi-
tional expected value of continuing with the value of immediate exercise
if the option is currently in the money. Kim et al. [12] introduced a
simple iterative method to determine the optimal exercise boundary for
American option. They allowed us to compute the values of American
options and their Greeks quickly and accurately.

Another flow of the American option pricing is to determine lower
and upper bounds for American option value. Kim [11], Jacka [8], and
Carr et al. [3] obtained an analytic integral-form solution of American
options where the formulas represent the early premium of American
option as integral. Broadie and Detemple [1] provided an upper bound
on the value of American options using a lower bound for the early
exercise boundary. Ju [9] approximated American option price using
early exercise boundary as a multi-piece exponential function.

Approximation method of American options is proposed by Inger-
soll [7]. He approximated exercise policy employing a simple class of
function, and chose a finest policy in that class adopting standard opti-
mization technique. This method is simple and speedy. Concretely, he
discussed American put using two types approximate, constant barrier
and exponential barrier.

Barrier options have been extensively traded over the counter mar-
ket since 1967. These options are activated or expired when the price
of the underlying asset crosses a barrier level during the option’s life.
Heynen and Kat [6] studied partial barrier options where the underlying
price is monitored during only part of the option’s lifetime. If barrier
is observed from a fixed date after initial starting date until expiration,
it is called forward starting barrier option. If barrier is disappeared at
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a designated date before the expiry date, it is named early ending bar-
rier option. Heynen and Kat [6] determined pricing formulas for partial
barrier options in terms of bivariate normal distribution functions.

For branch of the American barrier option problem, Gao et al. [5]
altered standard American option to an American barrier option em-
ploying approximation technique. Ingersoll [7] presented American up
and in put price by an approximation method based on barrier options
using constant and exponential exercise policies. Jun and Ku [10] ap-
proximated analytic valuation formulas of the American partial barrier
option based on barrier options along with constant early exercise.

This paper concern valuing the American partial barrier option where
barrier is observed just from fixed date to expiry date. This paper extend
approximation method, derived by Jun and Ku [10], to American partial
barrier option as exponential exercise policy. This method includes the
case of constant early exercise policy.

Section 2 proposes the approximation of American barrier option
based on exponential exercise policies. Section 3 provides the valuation
of American partial barrier option using exponential exercise policies.

2. Approximation of American barrier option using expo-
nential barriers

Let r be the risk-free interest rate, q be a dividend rate, and σ > 0
be a constant. We assume the price of the underlying asset S follows a
geometric Brownian motion

St = S0 exp(µt+ σWt)

where µ = r − q − σ2

2
and Wt is a standard Brownian motion under the

risk-neutral probability P .
In this section, we consider the partial barrier option of American

type as exponential early exercise policies. American option holders
gain more benefit than European option on early exercise. An American
up-and-in put option can be exercised before the expiration time when
it is in the money, but only after the stock price rises above the knock-in
barrier. We deal with the up-and-in put where the barrier appear at a
specified time T1 strictly after the option’s initiation. If the underlying
asset price never hits the up-barrier over the time period between T1
and expiration T , payment of option is zero. Otherwise, if the asset
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price reaches the up-barrier between T1 and expiration T , this option
can early exercise.

In order to obtain the approximation to value American partial barrier
option using barrier derivatives under exercise policies, Ingergsoll [7] used
following digitals: let D(S, t;A) be the value at time t of receiving one
dollar at time T if and only in the event A occurs, and DS(S, t;A) be
the value at time t of receiving one share of stock at time T if and only
if the event A occurs. The D is said to be a digital or binary option and
the DS is said to be a digital share. The quantity E(S, t,Kτ ;A) denotes
the value at time t of payment X −Kτ at the first time τ that the stock
price S hits the barrier Kτ provided the event A occurs before time T ,
where X is a strike price. The E is said to be a first-touch digital.

We consider the class of exercise policies, Ke, is a set of exponential
functions whose elements are in the form of Kt = K0e

δt with constant K0

and δ ≥ 0. Since options with exponential barrier have analytical solu-
tions under Black-Scholes conditions, an exponential barrier is a natural
choice.

Consider an American up-and-in put expiring T with strike price X.
Let us denote by B up barrier and by K∗t the optimal exercise policy.
Let τY1 denote the first time the stock price is equal to Y1 and τY1Y2
denote the first time after τY 1 that the stock price is equal to Y2.

Let E1 = {t < τB < T, τBK∗
t
> T, ST < X} be the event of exercise

at maturity under the optimal policy, and E2 = {t < τB, τBK∗
t
< T} be

the event of early exercise under the optimal policy. Then the value of
the up-and-in put can be written as

UIP = X · D(S, t;E1)−DS(S, t;E1) + E(S, t,K∗t ;E2)

The barrier approximation for this put takes the maximum value within a
class of restricted policies. For example, for exponential exercise policies
Kt,

UIP ≥ UIPexp = max
kt∈Ke

[X · D(S, t;E3)−DS(S, t;E3) + E(S, t,K∗t ;E4)]

where E3 = {t < τB < T, τBKt > T, ST < X}, E4 = {t < τB, τBKt < T},
and τBKt is the first time the stock price hits the exponential policy
barrier Kt after hitting the barrier B. The values for these digitals are
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given by

D(S, t;E3) =e−r(T−t)
[(

B

St

) 2µ

σ2
{
N

(
h2

(
B2

StKt

))
−N

(
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))}
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,

DS(S, t;E3) =Ste
−q(T−t)
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E(S, t,Kt;E4) =X
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where N is the standard normal distribution function,

h1(z) =
ln z + µ(T − t)

σ
√
T − t

, h2(z) =
ln z + (µ− δ)(T − t)

σ
√
T − t

,

g1(z) =
ln z + (qσ2 − δ

q−p)(T − t)
σ
√
T − t

,

µ = r − q − 1

2
σ2, µ = r − q +

1

2
σ2, p =

µ− δ
σ2

, q =

√
p2 +

2(r − δ)
σ2

.

hi and g1 are the same as hi, g1 except µ = r − q + σ2

2
and p1, q1 in

replacement of µ, p, q for i = 1, 2, separately.
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3. Valuation of American partial barrier option using expo-
nential exercise policies

Now, we present the valuation of American partial barrier option

using exponential exercise polices. Let Xt = 1
σ

ln
(
St
S0

)
and Em be the

expectation operator under m-measure. Then Xt is a Brownian motion
with drift µ

σ
. Let kt = k0 + δ

σ
t for k0, δ(≥ 0) are constant. Define

τb(T1) and τbkt(T1) by stopping times for this process defined as the first
time that Xt = b > X0 after time T1 and the first time after τb(T1) that
Xt = kt < b, respectively.

Lemma 3.1. For x ≥ kT , the probability that the process Xt reaches
b after time T1, and then hits kt before expiration T , and XT is greater
than x is

P
(
τbkt(T1) ≤ T,XT > x|X0 = 0
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Proof. If b > kt, then
{
XT1 ≥ b, τbkt(T1) ≤ T

}
=
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}
.
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First, we calculate P
(
τbkt(T1) ≤ T,XT > x|XT1 = x1

)
. In order to re-

flect a path at τb(T1), we define X̃t =

{
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Lemma 3.2. The probability that the process Xt reaches b after time
T1, and then falls below kt before time T is
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where
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Lemma 3.3. For kT ≤ x ≤ b, the probability that the process Xt

reaches b after time T1, and then does not fall below kt before expiration
T , and its value at time T is less than x is
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P (τb(T1) < T, τbkt(T1) > T,XT ≤ x|X0 = 0)

= exp

(
2µ

σ
(−b+ k0)

)
exp

(
−2δ

σ
(k0 − 2u)

)
[G1(x)−G1(kT )]

+ exp

(
2(µ− δ)

σ
k0

)
[G2(x)−G2(lT )]

+ exp

(
2bµ

σ

)
[G3(x)−G3(kT )] +G4(x)−G4(kT )

Proof.
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The second and third probabilities are calculated by Lemma 3.2 and
Lemma 3.1.

Theorem 3.4. The value of a digital option and a digital share at
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Thus, the value of digital option at time t

D(S, t;E8) = e−r(T−t)P (τBKt(T1) ≤ T |St)

is obtained.

Lemma 3.5. If the stock does not pay dividends, the value of a first
touch digital for the event E8 = {τBKt(T1) < T} is
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where h̃i is the same as hi except µ̃ = r + 1

2
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i = 2, 3, 4.

Proof. The first-touch digital pays X − Kτ at time τBKτ (T1). This

money can be used to purchase X−Kτ
Kτ

shares of the stock at time. Since

the shares do not pay dividends, it is worth X−KT
KT

ST at maturity, i.e.,

E(S, t,Kt;E8) =
X −Kτ

Kτ

DS(S, t,Kt;E8)

where DS(S, t,Kt;E8) is the value when q = 0 in Theorem 3.4.

Let K∗ denote the optimal exercise policy. We denote the E5 =
{τB(T1) < T, τBK∗

t (T1)
> T, ST < X} be the event of exercise at maturity

under the optimal policy, and E6 = {τBK∗
t (T1)

< T} be the event of
early exercise under the optimal policy. Then the value of this partial
up-and-in put is written as

PUIP = X · D(S, t;E5)−DS(S, t;E5) + E(S, t,K∗t ;E6)

For the barrier approximation of this option, we consider a class of all
exponential exercise policies. Let E7 = {τB(T1) < T, τBKt(T1) > T, ST <
X} be the event of exercise at maturity under an exponential policy Kt,
and E8 = {τBKt(T1) < T} be the event of early exercise under policy Kt.
Then we can approximate the option price as

PUIP ≥ PUIPexp

= max
kt∈Ke

[X · D(S, t;E7)−DS(S, t;E7) + E(S, t,Kt;E8)].
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If the set of policies considered contains all continuous functions, then
the resulting put value will be exact. Since the set Ke is the set of all
exponential functions, then the resulting value will be an approximation
providing a lower bound to the put price.

We first present the digital options in case of barrier greater than
strike price for an American partial barrier option.

Theorem 3.6. For X ≤ B, the values of a digital option and a digital
share at time t < T1 for the event E7 = {τB(T1) < T, τBKt(T1) > T, ST ≤
X} are

D(S, t;E7)

= e−r(T−t)
[(

Kt

B

) 2µ

σ2
(
B2

KtSt

) 2δ
σ2
(
F1

(
B

St
,
K2
t St

B2X

)
−F2

(
B

St
,
KtSt
B2

))
+

(
Kt

St

) 2(µ−δ)
σ2
(
F1

(
St
B
,
K2
t

StX

)
−F2

(
St
B
,
Kt

St

))
+

(
B

St

) 2µ

σ2
(
F3

(
B

St
,
B2

StX

)
−F4

(
B

St
,
B2

StKt

))
+

(
F3

(
St
B
,
St
X

)
−F4

(
St
B
,
St
Kt

))]
,

DS(S, t;E7)

= Ste
−q(T−t)

[(
Kt

B

) 2µ

σ2
(
B2

KtSt

) 2δ
σ2
(
F 1

(
B

St
,
K2
t St

B2X

)
−F 2

(
B

St
,
KtSt
B2

))
+

(
Kt

St

) 2(µ−δ)
σ2
(
F 1

(
St
B
,
K2
t

StX

)
−F 2

(
St
B
,
Kt

St

))
+

(
B

St

) 2µ

σ2
(
F 3

(
B

St
,
B2

StX

)
−F 4

(
B

St
,
B2

StKt

))
+

(
F 3

(
St
B
,
St
X

)
−F 4

(
St
B
,
St
Kt

))]
,

where

F1(x, y) = N2

(
h4(x), h1(y);−

√
T1 − t
T − t

)
,
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F2(x, y) = N2

(
h4(x), h2(y);−

√
T1 − t
T − t

)
,

F3(x, y) = N2

(
h3(x),−h1(y);−

√
T1 − t
T − t

)
,

F4(x, y) = N2

(
h4(x),−h2(y);−

√
T1 − t
T − t

)
,

and

h3(z) =
ln z + µ(T1 − t)

σ
√
T1 − t

, h4(z) =
ln z − (µ− 2δ)(T1 − t)

σ
√
T1 − t

.

F i(x, y) and hj(z) are the same as Fi(x, y), hj(z) except µ = r − q + σ2

2
in replacement of µ for i = 1, 2, 3, 4, j = 3, 4 separately.

Proof. Apply Lemma 3.3 with letting b = 1
σ

ln B
St
, kt = 1

σ
ln Kt

St
(=

1
σ

ln K0eδt

St
) and x = 1

σ
ln X

St
to derive the risk-neutral probability of exer-

cise at maturity.
Then

P (τB(T1) < T, τBKt(T1) > T, ST ≤ X|St)

=

(
Kt

B

) 2µ

σ2
(
B2

KtSt

) 2δ
σ2
(
N2

(
h4

(
B

St

)
, h1

(
K2
t St

B2X

)
;−
√
T1 − t
T − t

)
−N2

(
h4

(
B

St

)
, h2

(
KtSt
B2

)
;−
√
T1 − t
T − t

))

+

(
Kt

St

) 2(µ−δ)
σ2

(
N2

(
h4

(
St
B

)
, h1

(
K2
t

StX

)
;−
√
T1 − t
T − t

)
−N2

(
h4

(
St
B

)
, h2

(
Kt

X

)
;−
√
T1 − t
T − t

))
+

(
B

St

) 2µ

σ2
(
N2

(
h3

(
B

St

)
,−h1

(
B2

StX

)
;−
√
T1 − t
T − t

)
−N2

(
h3

(
B

St

)
,−h2

(
B2

StKt

)
;−
√
T1 − t
T − t

))
+N2

(
h3

(
St
B

)
,−h1

(
St
X

)
;−
√
T1 − t
T − t

)
−N2

(
h3

(
St
B

)
,−h2

(
St
Kt

)
;−
√
T1 − t
T − t

)
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Thus

D(S, t;E7) = e−r(T−t)P (τB(T1) < T, τBKt(T1) > T, ST ≤ X|St)

is obtained as desired. The digital share DS(S, t;E7) can be valued by

changing µ to µ = r − q + σ2

2
and replacing the discount factor e−r(T−t)

to Ste
−q(T−t).

Theorem 3.7. The value of the first-touch digital for the event E8 =
{τBKt(T1) < T} is

E(S, t,Kt;E8)

=X

[(
StKt

BKτ

)q−p(
Kt

B

)q+p(
B2

KtSt

) 2δ
(q−p)σ2

H1

(
B

St
,
StKt

B2

)
+

(
Kt

Kτ

)q−p(
Kt

St

)q+p(
Kt

St

) −2δ

(q−p)σ2

H1

(
St
B
,
Kt

St

)
+

(
B

Kτ

)q−p(
B

St

)q+p
H2

(
B

St
,
B2

KtSt

)
+

(
St
Kτ

)q−p
H2

(
St
B
,
St
Kt

)]
−Kt

[(
StKt

BKτ

)q1−p1(Kt

B

)q1+p1( B2

KtSt

) 2δ
(q1−p1)σ2

H1

(
B

St
,
StKt

B2

)
+

(
Kt

Kτ

)q1−p1(Kt

St

)q1+p1(Kt

St

) −2δ

(q1−p1)σ2

H1

(
St
B
,
Kt

St

)
+

(
B

Kτ

)q1−p1(B
St

)q1+p1
H2

(
B

St
,
B2

KtSt

)
+

(
St
Kτ

)q1−p1
H2

(
St
B
,
St
Kt

)]
,

where

H1(x, y) = N2

(
g2(x), g1(y);−

√
T1 − t
T − t

)
,

H2(x, y) = N2

(
g3(x),−g1(y);−

√
T1 − t
T − t

)
,

and
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g2(z) =
ln z −

(
qσ2 − 2δ

q−p

)
(T1 − t)

σ
√
T1 − t

, g2(z) =
ln z −

(
q1σ

2 − 2δ
q1−p1

)
(T1 − t)

σ
√
T1 − t

,

g3(z) =
ln z + qσ2(T1 − t)

σ
√
T1 − t

, g3(z) =
ln z + q1σ

2(T1 − t)
σ
√
T1 − t

.

H i(x, y) is the same as Hi(x, y) except r − δ in replacement of r for
i = 1, 2.

Proof. By Lemma 3.5, we note that E(S, t,Kt;E8) = X−Kτ
Kτ
DS(S, t;E8)

for 0 < t < T1 and T1 < τ < T . i.e.

E(S, t,Kt;E8)

= X
St
Kτ

[(
Kt

B

) 2r
σ2

+1(
B2

KtSt

) 2δ
σ2

N2

(
h̃4

(
B

St

)
, h̃2

(
StKt

B2

)
;−
√
T1 − t
T − t

)
+

(
Kt

St

) 2(r−δ)
σ2

+1

N2

(
h̃4

(
St
B

)
, h̃2

(
Kt

St

)
;−
√
T1 − t
T − t

)
+

(
B

St

) 2r
σ2

+1

N2

(
h̃3

(
B

St

)
,−h̃2

(
B2

StKt

)
;−
√
T1 − t
T − t

)
+N2

(
h̃3

(
St
B

)
,−h̃2

(
St
Kt

)
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T1 − t
T − t
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−Kτ

St
Kτ
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+1(
B2

KtSt

) 2δ
σ2
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(
h̃4

(
B

St

)
, h̃2

(
StKt

B2

)
;−
√
T1 − t
T − t

)
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(
Kt

St

) 2(r−δ)
σ2

+1

N2

(
h̃4

(
St
B

)
, h̃2

(
Kt

St

)
;−
√
T1 − t
T − t

)
+

(
B

St

) 2r
σ2

+1

N2

(
h̃3

(
B

St

)
,−h̃2

(
B2

StKt

)
;−
√
T1 − t
T − t

)
+N2

(
h̃3

(
St
B

)
,−h̃2

(
St
Kt

)
;−
√
T1 − t
T − t

)]
.

When the stock price pays dividends, the asset price follow the contin-
uous diffusion process dSt = (r− q)Stdt+ σStdW . In order to calculate
the first term with constant payment X, we set

Vt = Sq−pt
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where

p = µ
σ2 and q =

√
p2 + 2r

σ2 .

Then, by Ito’s lemma,

(1) dVt = rVtdt+ (q − p)σVtdWt

We may apply Lemma 3.5 to the process Vt since (1) does not contain
the dividend term. The barriers for Vt corresponding to B and Kt are
Bq−p and Kq−p

t . Furthermore, the volatility σ is replaced by (q − p)σ.
Then X

Kτ
DS(S, t,Kt;A8) is

X
Vt

Kp−q
τ

[(
K

(q−p)
t

B(q−p)

) 2r
(q−p)2σ2

+1(
B2(q−p)

K
(q−p)
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) 2δ
(q−p)2σ2

×N2

(
h̃4

(
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)
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)
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)
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(
K
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) 2(r−δ)
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+1

N2
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)
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(
K
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)
;−
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)
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(
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(q−p)2σ2

+1
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(
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(
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)
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(
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VtK
(q−p)
t

)
;−
√
T1 − t
T − t

)
+N2

(
h̃3

(
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B(q−p)

)
,−h̃2

(
Vt

K
(q−p)
t

)
;−
√
T1 − t
T − t

)]

= X

[(
StKt

BKτ

)(q−p)(
Kt

B

)q+p(
B2

KtSt

) 2δ
(q−p)σ2

H1

(
B

St
,
StKt

B2

)
+

(
Kt

Kτ

)q−p(
Kt

St

)q+p(
Kt
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) −2δ
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+
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H2

(
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B
,
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.

For the second term with exponential payment Kτ , we note when a
payment grows exponentially at rate δ, discounting the payment at the
interest rate r is equivalent to discounting a constant payment at the
rate r − δ, therefore, set

Vt = Sq1−p1t

where
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p1 = µ−δ
σ2 and q1 =

√
p21 + 2(r−δ)

σ2 .

Then, by Ito’s lemma,

dVt = (r − δ)Vtdt+ (q1 − p1)σVtdWt.
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