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APPLICATIONS OF TOPOLOLOGICAL METHODS TO

THE SEMILINEAR BIHARMONIC PROBLEM WITH

DIFFERENT POWERS

Tacksun Jung† and Q-Heung Choi∗

Abstract. We prove the existence of multiple solutions for the
fourth order nonlinear elliptic problem with fully nonlinear term.
Our method is based on the critical point theory; the variation of
linking method and category theory.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
b ∈ R be a constant. Let λk(k = 1, 2, · · · ) denote the eigenvalues and
φk(k = 1, 2, · · · ) the corresponding eigenfunctions, suitably normalized
with respect to L2(Ω) inner product, of the eigenvalue problem ∆u +
λu = 0 in Ω with u = 0 on ∂Ω,where each eigenvalue λk is repeated as
often as its multiplicity. We recall that λ1 < λ2 ≤ λ3 . . . → +∞, and
that φ1(x) > 0 for x ∈ Ω.

We investigate the existence of the nontrivial solutions for the follow-
ing fourth order semilinear elliptic equation with fully nonlinear term

∆2u+ c∆u+ bu+ = (u+)p−1 − (u−)q−1 in Ω, (1.1)
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u = 0, ∆u = 0 on ∂Ω,

where c ∈ R, u+ = max{u, 0} and p, q > 2(p 6= q).
Jung and Choi [4] investigated, by a linking argument, the existence

and the multiplicity of the solutions for the following fourth order semi-
linear elliptic equation with Dirichlet boundary condition

∆2u+ c∆u = b((u+ 1)+ − 1) in Ω, (1.2)

u = 0, ∆u = 0 on ∂Ω,

where c ∈ R and u+ = max{u, 0}.
Tarantello [8] studied problem (1.2) when c < λ1 and b ≥ λ1(λ1 − c).

She showed that (1.2) has at least two solutions, one of which is a nega-
tive solution. She obtained this result by the degree theory. Micheletti
and Pistoia [6] also proved that if c < λ1 and b ≥ λ2(λ2 − c), then (1.2)
has at least three solutions by the Leray-Schauder degree theory. Choi
and Jung [2] showed that the problem

∆2u+ c∆u = bu+ + s in Ω, (1.3)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when c < λ1, λ1(λ1 − c) < b <
λ2(λ2−c) and, s < 0 or when λ1 < c < λ2, b < λ1(λ1−c) and s > 0. The
authors obtained these results by using the variational reduction method.
The authors [5] also proved that when c < λ1, λ1(λ1−c) < b < λ2(λ2−c)
and s < 0, (1.2) has at least three nontrivial solutions by using degree
theory.

The eigenvalue problem ∆2u+c∆u = µu in Ω with u = 0, ∆u = 0
on ∂Ω has also infinitely many eigenvalues µk = λk(λk − c), k ≥ 1 and
corresponding eigenfunctions φk, k ≥ 1. We note that λ1(λ1 − c) <
λ2(λ2 − c) ≤ λ3(λ3 − c) < · · · .

We suppose that λ1 < λ2 < λ3 . . . → +∞, and that λ2 < c < λ3.
Then

λ1(λ1 − c) < λ2(λ2 − c) < 0 < λ3(λ3 − c) < · · · .
Jung and Choi [4] showed that: (i) Let λk < c < λk+1 and λk(λk−c) <

0, b < λk+1(λk+1 − c). Then (1.2) has a unique solution.
(ii) Let λk < c < λk+1 and λk(λk − c) < 0 < λk+1(λk+1 − c) < · · · <
λk+n(λk+n − c) < b < λk+n+1(λk+n+1 − c), k ≥ 1, n ≥ 1. Then (1.2) has
at least two nontrivial solutions.

In section 2, we introduce the Hilbert space and prove (P.S.)∗γ- con-
dition for the energy functional. In section 3, we state the existence
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result for two solutions and prove it by using the critical point theory
and variation of linking method. In section 4, we state the existence
result for three solutions and prove it by using the category theory.

2. Preliminaries

We assume that λk < c < λk+1. Let H be a subspace of L2(Ω) defined
by

Hc(Ω) = {u ∈ L2(Ω)|
∑
|λk(λk − c)|h2

k <∞},

where u =
∑
hkφk ∈ L2(Ω) with

∑
h2
k < ∞. Then this is a complete

normed space with a norm

‖u‖ = [
∑
|λk(λk − c)|h2

k]
1
2 .

Here after we set Hc(Ω) = H. Since λk(λk − c) → +∞ and c is fixed,
we have
(i) ∆2u+ c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0.
For the proof of the above results we refer [1].

Lemma 2.1. Assume that c is not an eigenvalue of −∆, b 6= λk(λk−
c). If u ∈ L2(Ω) and (u+)p−1 − (u−)q−1 ∈ L2(Ω), then all solutions of

∆2u+ c∆u+ bu+ = (u+)p−1 − (u−)q−1 in L2(Ω)

belong to H, where p, q > 2 and p 6= q.

Proof. Let u ∈ L2(Ω) and (u+)p−1 − (u−)q−1 ∈ L2(Ω). Then bu+ ∈
L2(Ω) and we put −bu+ + (u+)p−1 − (u−)q−1 =

∑
hkφk ∈ L2(Ω).

u = (∆2+c∆)−1(−bu++(u+)p−1−(u−)q−1) =
∑ 1

λk(λk − c)
hkφk ∈ L2(Ω).

‖u‖ =
∑
|λk(λk − c)|

1

(λk(λk − c))2
h2
k ≤ C

∑
h2
k = C‖u‖2

L2(ω) <∞

for some C > 0. Thus u ∈ H.

With the aid of Lemma 2.1 it is enough that we investigate the exis-
tence of the solutions of (1.1) in the subspace H of L2(Ω).
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Assume that k ≥ 1 and λk < c < λk+1. We denote by (Λ−i )i≥1 the
sequence of the negative eigenvalues of ∆2 +c∆, by (Λ+

i )i≥1 the sequence
of the positive ones, so that

Λ−k = λ1(λ1 − c) < · · · < Λ−1 = λk(λk − c) < 0

< Λ+
1 = λk+1(λk+1 − c) < Λ+

2 = λk+1(λk+1 − c) < · · · .
We consider an orthonormal system of eigenfunctions {e−i , e+

i , i ≥ 1}
associated with the eigenvalues {Λ−i ,Λ+

i , i ≥ 1}. We set

H+ = closure of span{eigenfunctions with eigenvalue ≥ 0},

H− = closure of span{eigenfunctions with eigenvalue ≤ 0}.
We define the linear projections P− : H → H−, P+ : H → H+.

We also introduce two linear operators R : H → H+, S : H → H− by

S(u) =
∞∑
i=1

a−i e
−
i√

−Λ−i
, R(u) =

∞∑
i=1

a+
i e

+
i√

Λ+
i

if

u =
∞∑
i=1

a−i e
−
i +

∞∑
i=1

a+
i e

+
i .

It is clear that S and R are compact and self adjoint on H.

Definition 2.1. Let Ib : H → R be defined by

Ib(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 +

b

2
‖[Au]+‖2 −

∫
Ω

F (Au)dx

where A = R + S and F (s) =
∫ s

0
f(x, τ)dτ , f(x, τ) = (τ+)2 − (τ−)3.

It is straightforward that

∇Ib(u) = P+u− P−u+ bA(Au)+ − Af(Au).

Following the idea of Hofer [3] one can show that

Proposition 2.2. Ib ∈ C1,1(H,R). Moreover ∇Ib(u) = 0 if and
only if w = (R + S)(u) is a weak solution of (1.1), that is,∫

Ω

(w(vtt + vxxxx) + b[w]+v)dxdt =

∫
Ω

f(w)vdxdt for all smooth v ∈ H.

In this section, we suppose b > 0. Under this assumption, we have a
concern with multiplicity of solutions of equation (1.1). Here we suppose
that f is defined by equation f(x, τ) = (τ+)p−1 − (τ−)q−1.
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In the following, we consider the following sequence of subspaces of
L2(RN) :

Hn = (⊕ni=1HΛ−
i

)⊕ (⊕ni=1HΛ+
i

)

where HΛ is the eigenspace associated to Λ and HΛ−
i

= φ if i > k.

Lemma 2.5. The functional Ib satisfies (P.S.)∗γ condition, with
respect to (Hn), for all γ.

Proof. Let (kn) be any sequence in N with kn → ∞. And let (un)
be any sequence in H such that un ∈ Hn for all n, Ib(un) → γ and
∇(Ib) |Hkn

(un)→ 0.
First, we prove that (un) is bounded. By contradiction let tn =

‖un‖ → ∞ and set ûn = un/tn. Up to a subsequence ûn ⇀ û in H
for some û in H. Moreover

0 ← < ∇(Ib)Hkn
(un), ûn > −

2

tn
Ib(un)

=
2

tn

∫
Ω

F (Aun)dx− 1

tn

∫
Ω

f(Aun)Aundx

=

∫
Ω

−p− 2

p
(tn)p−1[(Aûn)+]p +

q + 2

q
(tn)q−1[(Aûn)−]qdx.

Since tn →∞, (Aûn)+ → 0 and (Aûn)− → 0. This implies Aû = 0 and
û = 0, a contradiction.

So (un) is bounded and we can suppose un ⇀ u for some u ∈ H. We
know that

∇(Ib)Hkn
(un) = P+un − P−un + bA(Aun)+ − Af(Aun).

Since A is the compact operator, P+un−P−un converges strongly, hence
un → u strongly and ∇Ib(u) = 0.

3. An Application of Linking Theory

Fixed Λ−i and Λ−i < −b < Λ−i−1. We prove the Theorem via a linking
argument.

First of all, we introduce a suitable splitting of the space H. Let

Z1 = ⊕∞j=i+1HΛ−
j
, Z2 = HΛ−

i
, Z3 = ⊕i−1

j=1HΛ−
j
⊕H+,

where HΛ−
j

= φ if j > k.

Lemma 3.1. There exists R such that supv∈Z1⊕Z2,‖v‖=R Ib(v) ≤ 0.
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Proof. If v ∈ Z1 ⊕ Z2 then

Ib(v) = −1

2
‖v‖2 +

b

2
‖[Sv]+‖2 −

∫
Ω

F (Sv)dx.

Since

b

2
‖[Sv]+‖2 −

∫
Ω

F (Sv)dx =

∫
Ω

b

2
([Sv]+)2 − 1

p
([Sv]+)p − 1

q
([Sv]−)qdx,

there exists R such that b
2
‖[Sv]+‖2 −

∫
Ω
F (Sv)dx ≤ 0 for all ‖v‖ = R.

Hence

Ib(v) ≤ −1

2
‖v‖2 ≤ 0

Lemma 3.2. There exists ρ such that infu∈Z2⊕Z3,‖u‖=ρ Ib(u) > 0.

Proof. Let σ ∈ [0, 1]. We consider the functional Ib,σ : Z2 ⊕ Z3 → R
defined by

Ib,σ(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 +

b

2
‖[Au]+‖2 − σ

∫
Ω

F (Au)dx.

We claim that there exists a ball Bρ = {u ∈ Z2⊕Z3|‖u‖ < ρ} such that

1. Ib,σ are continuous with respect to σ,
2. Ib,σ satisfies (P.S) condition,
3. 0 is a minimum for Ib,0 in Bρ,
4. 0 is the unique critical point of Ib,σ in Bρ.

Then by a continuation argument of Li-Szulkin’s [5], it can be shown
that 0 is a local minimum for Ib|Z2⊕Z3

= Ib,1 and Lemma is proved.
The continuity in σ and the fact that 0 is a local minimum for Ib,0

are straightforward. To prove (P.S.) condition one can argue as in the
previous Lemma, when dealing with Ib.

To prove that 0 is isolated we argue by contradiction and suppose
that there exists a sequence (σn) in [0, 1] and sequence (un) in Z2 ⊕ Z3

such that ∇Ib,σn(un) = 0 for all n, un 6= 0, andun → 0. Set tn = ‖un‖
and ûn = un/tn then tn → 0. Let v̂n = P−ûn and ŵn = P+ûn. Since
v̂n varies in a finite dimensional space, we can suppose that v̂n → v̂ for
some v̂. We get

(1)
1

tn
∇Ib,σ(un) = ŵn − v̂n +

b

tn
A(Aun)+ − σn

tn
Af(Aun) = 0.
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Multiplying by ŵn yields

‖ŵn‖2 =
σn
tn

∫
Ω

f(Aun)Aŵndx−
b

tn

∫
Ω

(Aun)+Aŵndx.

We know that∫
Ω

(Aun)+Aŵndx =

∫
Ω

P+(Aun)+Aûndx

=

∫
Ω

P+(Aun)+(Aûn)+dx.

Since b > 0, there exists a sequence (εn) such that εn → 0 and 0 < εn < b
for all n. That is

b

tn

∫
Ω

(Aun)+Aŵndx ≥
εn
tn

∫
Ω

P+(Aun)+(Aûn)+dx.

Then

‖ŵn‖2 ≤ 1

tn

∫
Ω

f(Aun)Aŵndx−
εn
tn

∫
Ω

P+(Aun)+(Aûn)+dx

≤
∫

Ω

|f(Aun)|
tn

|Aŵn|dx+ εn

∫
Ω

|P+(Aûn)+||(Aûn)+|dx.

Since A is a compact operator

|f(Aun)| = |{([tnAûn]+)p−1 − ([tnAûn]−)q−1}|
≤ tn

p−1|[Aûn]+|p−1 + tn
q−1|[Aûn]−|q−1

≤ tn
m(M1 + tn

M−mM2)

for some M1 and M2 where m = min{p − 1, q − 1} and M = max{p −
1, q − 1}. We get that∫

Ω

|f(Aun)|
tn

|Aŵn|dx ≤ tn
m(M1 + tn

M−mM2)

∫
Ω

|Aŵn|dx ≤ o(1).

Hence

(2) ‖ŵn‖2 ≤ o(1) + εn

∫
Ω

|P+(Aûn)+||(Aûn)+|dx.

Since
∫

Ω
|P+(Aûn)+||(Aûn)+|dx is bounded and equation (7) holds for

every εn, ŵn → 0 and so (ûn) converges. Since |f(Aun)| ≤ tn
m(M1 +

tn
M−mM2), we get

σn
tn
|f(Aun)| ≤ 1

tn
|f(Aun)| ≤ tn

m−1(|M1 + tn
M−mM2) ≤ o(1).



462 Tacksun Jung and Q-Heung Choi

Then σn
tn
Af(Aun) → 0. From equation (6), (v̂n) converges to zero, but

this is impossible if ‖(̂un)‖ = 1.

We give the definitions for the next step:

Definition 3.3. Let H be an Hilbert space, Y ⊂ H, ρ > 0 and
e ∈ H \ Y , e 6= 0. Set:

Bρ(Y ) = {x ∈ Y | ‖x‖ ≤ ρ},
Sρ(Y ) = {x ∈ Y | ‖x‖ = ρ},

4ρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ‖σe+ v‖ ≤ ρ},
Σρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ‖σe+ v‖ = ρ} ∪ {v | v ∈ Y, ‖v‖ ≤ ρ}.

Theorem 3.4. If Λ−i ≤ −b(i = 1, 2, · · · , k), then problem (1.1) has
at least one nontrivial solution.

Proof. Let e ∈ Z2. By Lemma 3.1 and Lemma 3.2, for a suitable large
R and a suitable small ρ, we have the linking inequality

sup Ib(ΣR(e, Z1)) < inf Ib(Sρ(Z2 ⊕ Z3)).(3)

Moreover (P.S.)∗γ holds. By standard linking arguments, it follows that
there exists a critical point u for Ib with α ≤ Ib(u) ≤ β, where α =
inf Ib(Sρ(Z2 ⊕ Z3)) and β = sup Ib(∆R(e, Z1)). Since α > 0, then u 6=
0.

We assume in this section that i ≥ 2 and we set

W1 = ⊕∞j=iHΛ−
j
,W2 = ⊕i−1

j=1HΛ−
j
,W3 = H+.

Notice that W1 = Z1 ⊕ Z2 and W2 ⊕W3 = Z3.

Lemma 3.5. lim inf‖u‖→+∞,u∈W1⊕W2 Ib(u) ≤ 0.

Proof. Let (un)n be a sequence in W1⊕W2 such that ‖un‖ → ∞. We
set tn = ‖un‖ and ûn = un/tn. Since S is a compact operator,

b

2

‖[Sun]+‖2

t2n
−

∫
Ω

F (Sun)

t2n
dx

=

∫
Ω

b

2
([Sûn]+)2 − tn

p−2

p
([Sûn]+)p − tn

q−2

q
([Sûn]−)qdx

→ −∞.
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Then

Ib(un)

‖un‖2
= −1

2
+
b

2

‖[Sun]+‖2

t2n
−
∫

Ω

F (Sun)

t2n
dx→ −∞.

Hence

lim inf
‖u‖→+∞,u∈W1⊕W2

Ib(u) ≤ 0.

Lemma 3.6. There exists ρ̂ such that inf Ib(Sρ̂(W2 ⊕W3)) > 0.

Proof. Repeating the same arguments used in Lemma 3.2, we get the
conclusion.

Theorem 3.7. Assume that λk < c < λk+1. Let k ≥ i ≥ 2. If
Λ−i ≤ −b, then problem (1.1) has at least two nontrivial solution.

Proof. Using the conclusion of Theorem 3.4, we have that there exist
a nontrivial critical point u with

Ib(u) ≤ sup Ib(∆R(e, Z1))

where e, R were given in Lemma 3.1 and 3.2. We can choose that R̂ ≥ R.
Take any ê in W2, then we have a second linking inequality,

sup Ib(ΣR̂(ê,W1)) ≤ inf Ib(Sρ̂(W2 ⊕W3)).

Since (P.S.)∗γ holds, there exists a critical point û such that

inf Ib(Sρ̂(W2 ⊕W3)) ≤ Ib(û) ≤ sup Ib(∆R̂(ê,W1)).

Since R̂ ≥ R and Z1 ⊕ Z2 = W1,

∆R(e, Z1) ⊂ BR̂(W1) ⊂ ΣR̂(ê,W1).

Then

Ib(u) ≤ sup Ib(∆R(e, Z1))

≤ sup Ib(ΣR̂(ê,W1)) < inf Ib(Sρ̂(W2 ⊕W3)) ≤ Ib(û).

Hence u 6= û.
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4. An Application of Category Theory

We define the map Ψ : H\(Z1 ⊕ Z3)→ H by

Ψ(u) = u− PZ2u

‖PZ2u‖
= PZ1⊕Z3u+ (1− 1

‖Pz2u‖
)Pz2u.

We have

Ψ′(u)(v) = v − PZ2v

‖PZ2u‖
+ <

PZ2u

‖PZ2u‖
, PZ2v >

PZ2u

‖PZ2u‖
1

‖PZ2u‖

= v − 1

‖Pz2u‖
(Pz2v− <

PZ2u

‖PZ2u‖
, PZ2v >

PZ2u

‖PZ2u‖
).

Moreover, we introduce the smooth manifold with boundary

C = {u ∈ H|‖PZ2u‖ ≥ 1}
and the constrained functional Ĩb : C → R defined by Ĩb = Ib ◦Ψ which
is of class C1,1

loc .

In particular the lower gradient of Ĩb at a point ũ is
(4)

gradC̄ Ĩb(ũ) =

{
PZ1⊕Z3(∇Ib)(u) + (1− 1

‖PZ2
ũ‖)PZ2(∇Ib)(u) if ũ ∈ int(C)

PZ1⊕Z3(∇Ib)(u)− [< ∇Ib(u), PZ2ũ >]+PZ2ũ if ũ ∈ ∂C,
where u = Ψ(ũ).

We can prove the following result.

Lemma 4.1. We set Cn = C ∩Hn for all n. Then the functional Ĩb
satisfies (P.S.)∗γ condition, with respect to (Cn), for all γ.

Proof. Let (kn)n and (un)n and γ be such that kn → ∞, ũn ∈ Ckn
for all n, Ĩb(ũn)→ γ and grad ¯Ckn

Ĩbũn → 0. Apply the Definition of the

lower gradient of Ĩb,

grad ¯Ckn
Ĩbũn = PHkn

gradC̄ Ĩbũn → 0.(5)

We set un = Ψ(ũn) and un,1 = PZ1un, un,2 = PZ2un, un,3 = PZ3un.
Case 1. inf ‖PZ2ũn‖ > 1.
In this case, PHkn

∇Ib(un)→ 0, so by the (P.S.)∗γ condition for Ib, (un)
has converging subsequence (unj

) which converges to a point u which is
a critical point for Ib and u /∈ Z1 ⊕ Z3. Since Ψ is a diffeomorphism in
a neighborhood of u, (ũnj

) converges to ũ = Ψ−1(u) and ũ is critical for

Ĩb.
Case 2. inf ‖PZ2ũn‖ = 1.
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We can suppose that PZ2un → 0. We claim that (un) is bounded. If
not we can suppose tn = ‖un‖ → ∞. We take ûn = un/‖un‖, ˆun,i =
un,1/‖un‖ for i = 1, 2, 3.

Applying PZ1⊕Z3 to equation (10) and using equation (9), we get

P+ ˆun,3 − ˆun,1 − P− ˆun,3 + PHkn
PZ1⊕Z3

bA(Aun)+ − Af(Aun)

tn
→ 0.

Multiplying by ˆun,3 and integrating over Ω yields

‖P+ ˆun,3‖2 − ‖P− ˆun,3‖2

+ PHkn
[
b

tn

∫
Ω

(Aun)+A ˆun,3dx−
1

tn

∫
Ω

f(Aun)A ˆun,3dx]→ 0.

We know that there exists a sequence (εn) such that εn → 0 and 0 <
εn < b for all n, that is,

− b

tn

∫
Ω

(Aun)+A ˆun,3dx ≤ −εn
tn

∫
Ω

PZ3(Aun)+(Aûn)+dx

≤ εn

∫
Ω

|PZ3(Aun)+||(Aûn)+|dx.

And we know that

1

tn

∫
Ω

f(Aun)A ˆun,3dx ≤
∫

Ω

|f(Aun)|
tn

|A ˆun,3|dx

≤ tn
m−1(M1 + tn

M−mM2)

∫
Ω

|A ˆun,3|dx ≤ o(1).

Hence

− b

tn

∫
Ω

(Aun)+A ˆun,3dx+
1

tn

∫
Ω

f(Aun)A ˆun,3dx→ 0

and ˆun,3 → 0.
Similarly, ˆun,1 → 0. Since ˆun,2 → 0, ûn → 0 which is impossible.
Since (un)n is bounded, we can suppose un,1 ⇀ u1, un,2 → 0 and

un,3 ⇀ u3 for suitable ui in Zi, i = 1, 2, 3.
Let zn = P−un and vn = P+un. Applying P+ to equation (9)

vn + P+PHkn
(bA(Aun)+ − Af(Aun))→ 0.(6)

SinceA is compact and (un)n is bounded, Aun → Au. Hence bA(Aun)+−
Af(Aun) → bA(Au)+ − Af(Au) strongly and by equation (11), vn
converges strongly to v. Similarly Zn converges strongly to z. Since
PZ2un → 0, un → u = v+ z where v = P+u and z = P−u. Since un,1 →
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u1 and un,3 → u3, PZ1ũn → Ψ−1(u1) = u1 and PZ3ũn → Ψ−1(u3) = u3.
Since PZ2ũn is in a finite dimensional space, PZ2ũn converges to a point
ũ2.

Hence ũn converges to ũ = u1 + ũ2 + u3 and ũ is critical for Ĩb.

Lemma 4.2. The functional Ib |Z1⊕Z3 has no critical points u such
that Ib(u) < 0.

Proof. By contradiction, let (un) be a sequence such that un ∈ Z1⊕Z3,
Ib(un) < 0 for all n, Ib(un)→ 0, and PZ1⊕Z3∇Ib(un) = 0.

Arguing as in the proof of Lemma 2.5, up to a subsequence, (un)
converges to some u such that Ib(u) = 0 and PZ1⊕Z3∇Ib(u) = 0. Then

0 = < PZ1⊕Z3∇Ib(u), u > −2Ib(u)

=

∫
Ω

[2F (Au)− f(Au)Au]dx

= −
∫

Ω

p− 2

p
[(Au)+]p +

q − 2

q
[(Au)−]qdx.

Hence Au = 0 and u = 0.
Let ûn = un/‖un‖ and tn = ‖un‖. We have

(7) tnP
+ûn − tnP−ûn + bA(Aun)+ − Af(Aun) = 0.

Multiplying equation (12) by P+, we get

(8) v̂n + bA(Aun)+ − 1

tn
Af(Aun) = 0.

Multiplying equation (13) by v̂n and integrating over Ω,

‖v̂n‖2 =
1

tn

∫
Ω

f(Aun)Av̂ndx− b
∫

Ω

(Aûn)+Av̂ndx.

Arguing as in the proof of Lemma 3.2, v̂n → 0.
Similarly, ẑn → 0 and then ûn, which gives a contradiction.

Theorem 4.1. Assume that λk < c < λk+1. Let k ≥ i ≥ 2. Then
problem (1.1) has at least three nontrivial solutions.

Proof. We claim that there exists two critical points ui for Ib such
that, for i = 1, 2

(9) inf Ib(Sρ(Z2 ⊕ Z3)) ≤ Ib(ui) ≤ sup Ib(∆R(S1(Z2), Z1))

where ρ and R are as Theorem 3.4. By specify which theorem, we know
that the critical point û is distinguished from u1 and u2.
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To prove the claim, we consider the functional Ĩb. If we set

S̃ = Ψ−1(Sρ(Z2 ⊕ Z3)), Σ̃ = Ψ−1(ΣR(S1(Z2), Z1)), ∆̃ = Ψ−1(∆R(S1(Z2), Z1)).

By equation (9) and the definition of Ψ,

sup Ĩb(Σ̃) < inf Ĩb(S̃).

Due to Lemma 3.1,

inf Ĩb(S̃) < sup Ĩb(∆̃) ≤ 0.

Since the (P.S.)∗γ condition holds for Ĩb using the Theorem 3.7 in

Section 3.2, there exists two critical points ũi, i = 1, 2 for Ĩb such that

inf Ĩb(S̃) ≤ Ĩb(ũi) ≤ sup Ĩb(∆̃).(10)

We claim that ũi /∈ ∂C. Suppose that ũi ∈ ∂C. Since

0 = gradC̄ Ĩb(ũi) = PZ1⊕Z3(∇Ib)(ui)− [< ∇Ib(ui), PZ2ũi >]+PZ2ũi,

PZ1⊕Z3(∇Ib)(ui) = 0 where ui = Ψ(ũi). Then ui are critical for Ib |Z1⊕Z3 .
By equation (14) and equation (15), Ib(ui) < 0, but this contradicts
Lemma 4.2.

So ũi /∈ ∂C, since Ψ is a diffeomorphism in a neighborhood of ũn,
then ∇Ib(ui) = 0 where ui = Ψ(ũi), i = 1, 2.

References

[1] Choi, Q. H. and Jung, T., Multiplicity of solutions and source terms in a fourth
order nonlinear elliptic equation, Acta Mathematica Scientia 19 (4) (1999), 361–
374.

[2] Choi, Q. H. and Jung, T., Multiplicity results on nonlinear biharmonic operator,
Rocky Mountain J. Math. 29 (1) (1999), 141–164.

[3] Hofer, H., On strongly indefinite functionals with applications, Trans. Amer.
Math. Soc. 275 (1983), 185–214.

[4] Jung, T. S. and Choi, Q. H., Multiplicity results on a nonlinear biharmonic
equation, Nonlinear Analysis, Theory, Methods and Applications 30 (8) (1997),
5083–5092.

[5] Jung, T. S. and Choi, Q. H., A Variation of Linking for the Semilinear Bihar-
monic Problem , Preprint.

[6] Li, S. and Squlkin, A., Periodic solutions of an asymptotically linear wave equa-
tion, Nonlinear Analysis, Theory, Methods and Applications 1 (1993), 211–230.

[7] Micheletti, A. M. and Pistoia, A., Multiplicity results for a fourth-order semi-
linear elliptic problem, Nonlinear Analysis, TMA, 31 (7) (1998), 895–908.

[8] Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equat. 5 (3)
(1992), 561–565.



468 Tacksun Jung and Q-Heung Choi

Tacksun Jung
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail : tsjung@kunsan.ac.kr

Q-Heung Choi
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail : qheung@inha.ac.kr


	1. Introduction
	2. Preliminaries
	3. An Application of Linking Theory
	4. An Application of Category Theory
	References

