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SELF-DUAL CODES OVER Z,. OF SMALL LENGTHS

WHAN-HYUK CHOI AND YOUNG HO PARK!*

ABSTRACT. Self-dual codes of lengths less than 5 over Z, are com-
pletely classified by the second author [The classification of self-dual
modular codes, Finite Fields Appl. 17 (2011), 442-460]. The num-
ber of such self-dual codes are also determined. In this article we
will extend the results to classify self-dual codes over Z,> of length
less than 5 and give the number of codes in each class. Explicit and
complete classifications for small p’s are also given.

1. Introduction

A code over Zye of length n is a Zy-submodule of Zj.. Codes of
length n over Z,. have generator matrices permutation equivalent to the
standard form

Iy, Aon Ace Aoz ... Ager Age
0 ply, pAz pAiz ... pAiea pAie
(1) G=10 0 p2Ik2 p*Ags ... p2A2,e—1 p*Ase )
0 0 0 0 cen P, pTrAL
where the columns are grouped into blocks of sizes kg, k1, - - - , k., and the

k; are nonnegative integers adding to n [4]. A matrix with this standard
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form is said to be of type

(2) (D ()™ (p*)'= - (ke

The number of nonzero rows is called the rank of M and denoted by
rank M. ky is called the free rank.
The ambient space Zy. is endowed with the standard inner product

(U1, -+, vn) - (wr, - wy) = Viwy + -+ + VW

For a code C' of length n over Z,e, the dual code C* of C' is defined
by
Cr={veZ.|v-w=0foralweC}
If C'is a code of length n over Z,. with generator matrix of the form
(1) then C* has generator matrix of the form

Boe Bye-1 -+ DBy B By I,

pBie pBie1 -+ pBis pBia ph._, 0

Gt = p’Bse  D*Boe-1 -+ p*Bag p°Iy 0 0
peilBe—l,e p6711k1 te 0 0 0 0

where the column blocks have the same size as in G [4]. If C has type

1% (p)kr ... (pe~1)*e=1 then the dual code has type 1%epFe-1(p?)ke-2 ... (pe=1)k1

where k, =n — Zf:_g k;.

C'is self-orthogonal if C C C+. C is self-dual if C = C+. If C is
self-dual with type 1% (p)* ... (p¢~1)*ke1 | then k; = k._; for all i. For
any code C' of length n over Z, |C||C*| = p. If C is a self-orthogonal
code of length n and |C| = p°/2, then C is self-dual.

Next we discuss the equivalence of self-dual codes. Let

D =D}, = {diag(v1,%, " ) | % € Zm, 77 = 1}.

and let T,, = T, be the group of all monomial transformations on Z,
defined by

T, ={yo|veD,oebs,}

as in [8]. We will use the same notations and terminology as in [8]. The
group T,, acts on the set of all self-dual codes of length n over Z,, by
Ct = {ct| c € C}. Two self-dual codes C and C" are equivalent (denoted
C ~ (") if there exists an element ¢ € T}, such that C't = C’. The group
of all automorphisms of C' will be denoted by Aut(C').
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Self-dual codes of lengths less than 5 over Z, are completely classified
in [8]. The number of such self-dual codes are also determined. In this
article we will classify self-dual codes over Z,: of length less than 5.

2. Self-dual codes over Z,.

For codes over Z,2, every code C over Z,2 is permutation equivalent
to a code with generator matrix in standard form:

o= I, A1 By +pB;
O pIkz pcl

where Aj, By, By, C are matrices with entries from {0,1,--- ,p — 1}.
Associated with C' there are two codes over Z,, the residue code

R(C) ={r € Z, : Jy € Z, such that z + py € C}

and the torsion code Tor(C') = {y € Zy : py € C'} which have generator
matrices

I, A B
RO = (1 A B). )= (T B

respectively. If C' is self-dual, then R(C) is self-orthogonal.

THEOREM 2.1. Let p be an odd prime. There is a one-one correspon-
dence between self-dual codes C' of free rank 1 over Z,:

laz a3 -+ an—1 an+pb1

p pb2

C - p pb3
P pbn_1

where n is the length of the code, 0 < a;,b; < p, and self-orthogonal
codes R(C) = (1 ag -+ an—1 ay) over Z,.

THEOREM 2.2. If C is a self-dual code of free rank 1 over Z,», then
Aut(C) = Aut(R(C)).

THEOREM 2.3. [9] Let 0,(n.k) be the number of self-orthogonal codes
of length n and dimension k over Z,, where p is odd prime. Then
1. If n is odd,
’?‘1 (n—1-2i) __ 1
op(n, k) — Hz:O <kp 4 )
[Ii- (' — 1)
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2. If n is even and k > 2,
(" * + (=D~ VpF M [T ("> — 1)
[T = 1)

Here n is the quadratic character of Z,.

op(n, k) =

THEOREM 2.4. [1] Let p be an odd prime. Given a self-orthogonal
code C, of dimension k over Z,, there are p**=1/2 self-dual codes over
Z,» whose residue code is C,. Therefore, the number of self-dual codes
of length n over Zy: is Nyz2(n) = 3 q<j<fn/o Tp(1, k)pk=1/2,

P (D) 2)(p-1)p2 -1

THEOREM 2.5. If n is even, o,(n,1) = =

Proof. The number of solutions of 22 + - -+ + 22 = (0 in Z, is given by
Pt (=12 (p — Dpz~ [5]. —~

3. Classification

There is a unique self-dual codes (p) of length 1 over Z,» and there is
a (unique) inequivalent self-dual code (1 @) over Z, of length 2 if and
only if p=1 (mod 4). It is clear that (” ) is a self-dual code over Z,.

The types of self-dual codes of length 3 are 1°°p°*, where 2¢y+e; = 3.
Thus any self-dual code C' of length 3 over Z,: is equivalent to

(ppp> or Cpp: (1abtrh)
where 0 < a,b,b; < p and b # 0.
For binary case, (2) & (2) @ (2) is the only self-dual code over Z4 of

length 3, and for ternary case there are two classes of self-dual codes
over Zg of length 3:

BeBe@), (F38)

THEOREM 3.1. Let p # 2,3. Then the non-trivial self-dual code over
Zy2 of length 3 is equivalent to one of the following classes of inequivalent
codes:

Class Caop Aut(Cqp)
6) a=0 1{(1), (13)}
i) | a%=1, a#+1 2.((123))
(i) [a®=1, > +2=0] 2.{(12)}

(iv) else 2.(1)
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THEOREM 3.2. Forp # 2,3, let Ny, Ny, N3, Ny be the number of class
(i), (ii), (iii), (iv) self-dual codes over Z,2 of length 3, respectively. These
numbers are determined as follows.

[p (mod24) [ Ny [ Na [ N3 | Ny |

1 1111 1)2?5
AEENARRNEE
11 010711 ﬁ
13 11110 &
17 1101 &
19 0|11 ﬁ
23 0101]0 é

24

Proof. We have the one-to-one correspondence between the set of self-
dual codes over Z,, the set of self-orthogonal codes over Z,> and the set
of self-dual codes over Z,. as follows:

1 a b 1 a b+ pby
( 1 —b a)(—)(lab)H( b e )
where 1+ a? +b* =0 (mod p). O

For 5 < p < 67, we give the classification in the following table. Here
(a,b) denotes the code C .

PPl © [ G) [ (i) | (iv) |

52 [ (0,7)

72 (2,32)

112 (1,19)

132 ] (0,70) | (3,126)

172 | (0,38) (1,24)

192 (7,315) | (1,63)

232 (2,169)

292 | (0,41) (2,71)

312 (5,800) (4,142)

3721 (0,117) | (10,248) (3,510)

4121 (0,378) (1,71) (2,703)

432 (36,49) | (1,801) (2,826)

477 (2,1052), (3,361)
532 | (0,500) (3,231), (4,1172)
597 (1,1275) | (3,1246), (6,776)
612 | (0,682) | (13,1328) (2,774), (8,1259)
677 (29,1645) | (1,2030) | (2,2091), (12,1626)
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Next, we consider the codes of length 4. The types of self-dual codes
of length 4 are 1°°p°', where 2eq 4+ ¢; = 4. Thus any self-dual code C' of
length 4 over Z,: is equivalent to one of

L (p)*,

2. Cg,b : (1 1 i’bZ)

3.CLy <1Zicgfzcl> where 0 < a,b,c < p and ¢ # 0.

Yy C3
There are two classes of self-dual codes over Z, of length 4:

@2 ®@2) e ©2), (1%;@

and there are three classes of self-dual codes over Zg of length 4:

@e@en. (0. (1)

36

THEOREM 3.3. Let p # 2,3. Then the self-dual code
Ci,b (M4 0)

over Z, is one of the following four classes of inequivalent codes:
Class C’ib Aut(Cib)
(i) | a®+1=0,b=0 4.Bg
(i) | a®=1, a# +1 2.A4
(i) [a®=1,*+2=0| 2.Bs
(iv) else 2.By
Codes from classes (i),(ii),(iii) are unique, if exist, up to equivalence.
THEOREM 3.4. For p # 2,3, let Ny, No, N3, Ny be the number of

class (1)), (iii), (iv) self-dual codes over Z,2 of length 4 and free rank 2,
respectively. These numbers are determined as follows.

|p (mod24) [Ny [No[N3| N, |

1 1] 1|1 |
5 TRREE
7 0|1 [0S
11 0o |1 [t
13 1] 1o |2t
17 10| 1 |pFEps
19 0|1 |1 £
23 0o o] &=
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Proof. The number of self-dual codes over Z,» of length 4 and free
rank 2 is given by 0,(4,2)p = 2(p + 1)p. By the mass formula

1
24.41 24.41
Here 48 = 2 Ba] 12 = B, ete: 0

THEOREM 3.5. Let p # 2,3. Then any self-dual code C , . of rank 3
is equivalent to one of the following inequivalent codes:

Class C;b’c Aut(C’ibﬁ)
(i) a=b=0 8.((14), (23))
(ii) b=0,a=1,a2#1,2 #1 4.((124))
(iii) b=0,a’=1 4.55
(iv) b=0,a#0,a%#1, 8 #1, a® # 2 4.(1)

(v a2=1#0=¢ 2.((1324), (12))
(vi) a2 = =1 2.53

(vii) 1 =a?,b%, ¢ distinct 2.5,

(viii a?=—1,b0% # +1, bT # -1 2.{(1), (14)(23)}
(ix) a?=—1,b0%#+1, b1 = -1 2.((1243))
(x 1,a%,b%,¢? are all distinct, a®,b%,c? # —1 2.(1)

Proof. It is enough to classify R(C) = ((1,a,b,c)) over Z,. When
b = 0, the classification goes back to the case of C’f’c. Suppose b # 0.
Fort =~vo €T, 0 € S4, k € Z,, we have that

(1,a,b,¢)y0 = k(1,a,b,¢) <= (1,a* b* c*)o = k*(1,a%, b, c?).

Thus k2 = 1,a%,b%, ¢® and o can be determined once we know the equal-
ities among 1,a? b%,¢?. For example, suppose that 1 = a?,b% ¢* are
distinct. Now (1,1,0%,c*)o = (k2 k% k*b?, k*c®) implies that k? = 1,
o(1) = 1,2 and 0(3) = 3, 0(4) = 4. Next, for v € D, (1,1,b,¢)y =
k(1,1,b,c) implies v = 4+(1,1,1,1). H

THEOREM 3.6. For p # 2,3, let Ny, Ny,---, Njg be the number of
class (i), (ii), - - -, (x) self-dual codes over Z,» of length 4 and free rank
1, respectively. These numbers are determined as follows.
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[p(24) [ N1 [ Na [ N3 | Ny [ Ns|Nes| Nz | Ng [Ny | Nio \
1 1)1 | [ B a0 | et e ] g | ElP2eees
5 1]olofes|1]o]|ed el | b2
7 ol lolello] 1] 0|0 B0
11 oo 1 eElolo|22]0]0 EBtEI%§%§£t§2
13 |1 1o B0 | [eB]e5] o | )l
17 [ 1o [ a o | e e | Erioeels
19 0|11 |e2lof1 |22 0o wn?#
23 [ofolofel]o]o|et] oo el loelt

Proof. We consider the classes (viii) and (ix). In these cases {1,a?b% ¢*} =
{1,-1,0% —b*}, where b? # 0,41, p = 1 (mod 4). There exists b with
b* = —1 if and only if p = 1 (mod 8), and in that case, (1,a,b,c) =
(1,4, 4b, &ib) or (1,4, +bi, £b) with 72 = —1, and hence Ny = 1.

Now (1,a?,b% c?) ~ (1, =1, 4% Fb*) ~ (1,—1,+1/b* F1/b?). These
four are distinct iff b* # —1. Thus 4Ng + 2Ny = &2 9,

2

Once Ny, ---, Ny is determined, Nig can be computed by the mass
formula:
> ZoA a2
e
where C; runs through the representatives of inequivalent self-dual codes.
O

Finally we give the complete classification for small p’s in the following
table. Here (a,b,c) denotes the codes Cy ..

[ p* ] i [ i [ i [ v ] v \
52 | (0,0,7) (1,2,12)
72 (2,0,17)

112 (1,0,19)

1321 (0,0,70) | (3,0,43) (1,5,34)
172 | (0,0,38) (1,0,24) (1,4,72)
192 (7,0,46) | (1,0,63)

232 (2,0,169)

2921 (0,0,41) (2,0,71) | (1,12,70)
317 (5,0,161) (4,0,142)

3721 (0,0,117) | (10,0, 248) (3,0,510) | (1,6,228)
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’ P2 ‘ vi ‘ vii ‘ viii ‘ ix ‘ X ‘
52
7] (1,1,12)
112 (1,2,29)
132 ] (1,1,45) (5,6,48)
172 (1,6,110) (4,5,139) | (4,8,53)
192 | (1,1,137) | (1,5,50) (2,3,104)
(1,3,239)
232 (1,6,56) (2,4,212)
(1,7,100)
(1,2,136) (12,13,47)
292 (1,6,181) (12,14, 325) (3,5,96)
(1,11,333) | (12,19, 149)
(1,2,98) (2,44,234)
312 | (1,1,82) | (1,3,446) (2,9,289)
(1,9,107) (3,8,53)
(1,3,64) gg; ég (2,5,231)
37% | (1,1,206) | (1,5,618) (6’9’609) (2,13,97)
(1,9,425) (6,12, 208) (3,4,495)

Remark. Many of the results in this article reappear in [3] with more

details.
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