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SELF-DUAL CODES OVER Zp2 OF SMALL LENGTHS

Whan-hyuk Choi and Young Ho Park†,∗

Abstract. Self-dual codes of lengths less than 5 over Zp are com-
pletely classified by the second author [The classification of self-dual
modular codes, Finite Fields Appl. 17 (2011), 442-460]. The num-
ber of such self-dual codes are also determined. In this article we
will extend the results to classify self-dual codes over Zp2 of length
less than 5 and give the number of codes in each class. Explicit and
complete classifications for small p’s are also given.

1. Introduction

A code over Zpe of length n is a Zpe-submodule of Znpe . Codes of
length n over Zpe have generator matrices permutation equivalent to the
standard form

(1) G =


Ik0 A01 A02 A03 . . . A0,e−1 A0e

0 pIk1 pA12 pA13 . . . pA1,e−1 pA1e

0 0 p2Ik2 p2A23 . . . p2A2,e−1 p2A2e

· · · · . . . · ·
0 0 0 0 . . . pe−1Ike−1 pe−1Ae−1,e

 ,

where the columns are grouped into blocks of sizes k0, k1, · · · , ke, and the
ki are nonnegative integers adding to n [4]. A matrix with this standard
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form is said to be of type

(2) (1)k0(p)k1(p2)k2 · · · (pe−1)ke−1 .

The number of nonzero rows is called the rank of M and denoted by
rankM . k0 is called the free rank.

The ambient space Znpe is endowed with the standard inner product

(v1, · · · , vn) · (w1, · · · , wn) = v1w1 + · · ·+ vnwn.

For a code C of length n over Zpe , the dual code C⊥ of C is defined
by

C⊥ = {v ∈ Znpe | v ·w = 0 for all w ∈ C}.
If C is a code of length n over Zpe with generator matrix of the form

(1) then C⊥ has generator matrix of the form

G⊥ =


B0e B0,e−1 · · · B03 B02 B01 Ike
pB1e pB1,e−1 · · · pB13 pB12 pIke−1 0
p2B2e p2B2,e−1 · · · p2B23 peIke−2 0 0
· · · · · · · · ·

pe−1Be−1,e pe−1Ik1 · · · 0 0 0 0


where the column blocks have the same size as in G [4]. If C has type
1k0(p)k1 · · · (pe−1)ke−1 then the dual code has type 1kepke−1(p2)ke−2 · · · (pe−1)k1 ,
where ke = n−

∑e−1
i=0 ki.

C is self-orthogonal if C ⊂ C⊥. C is self-dual if C = C⊥. If C is
self-dual with type 1k0(p)k1 · · · (pe−1)ke−1 , then ki = ke−i for all i. For
any code C of length n over Zpe |C||C⊥| = pen. If C is a self-orthogonal
code of length n and |C| = pen/2, then C is self-dual.

Next we discuss the equivalence of self-dual codes. Let

D = Dn
m = {diag(γ1, γ2, · · · , γn) | γi ∈ Zm, γ2i = 1}.

and let Tm = Tnm be the group of all monomial transformations on Znm
defined by

Tm = {γσ | γ ∈ D, σ ∈ Sn}
as in [8]. We will use the same notations and terminology as in [8]. The
group Tm acts on the set of all self-dual codes of length n over Zm by
Ct = {ct | c ∈ C}. Two self-dual codes C and C ′ are equivalent (denoted
C ∼ C ′) if there exists an element t ∈ Tnm such that Ct = C ′. The group
of all automorphisms of C will be denoted by Aut(C).
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Self-dual codes of lengths less than 5 over Zp are completely classified
in [8]. The number of such self-dual codes are also determined. In this
article we will classify self-dual codes over Zp2 of length less than 5.

2. Self-dual codes over Zp2

For codes over Zp2 , every code C over Zp2 is permutation equivalent
to a code with generator matrix in standard form:

G =

(
Ik1 A1 B1 + pB2

0 pIk2 pC1

)
where A1, B1, B2, C1 are matrices with entries from {0, 1, · · · , p − 1}.
Associated with C there are two codes over Zp, the residue code

R(C) = {x ∈ Znp : ∃y ∈ Znp such that x+ py ∈ C}
and the torsion code Tor(C) = {y ∈ Znp : py ∈ C} which have generator
matrices

R(C) =
(
Ik1 A1 B1

)
, Tor(C) =

(
Ik1 A1 B1

0 Ik2 C1

)
respectively. If C is self-dual, then R(C) is self-orthogonal.

Theorem 2.1. Let p be an odd prime. There is a one-one correspon-
dence between self-dual codes C of free rank 1 over Zp2

C :


1 a2 a3 ··· an−1 an+pb1
p pb2

p pb3

...
...

p pbn−1


where n is the length of the code, 0 ≤ ai, bj < p, and self-orthogonal
codes R(C) = (1 a2 · · · an−1 an) over Zp.

Theorem 2.2. If C is a self-dual code of free rank 1 over Zp2 , then
Aut(C) = Aut(R(C)).

Theorem 2.3. [9] Let σp(n.k) be the number of self-orthogonal codes
of length n and dimension k over Zp, where p is odd prime. Then

1. If n is odd,

σp(n, k) =

∏k−1
i=0 (p(n−1−2i) − 1)∏k

i=1(p
i − 1)

.
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2. If n is even and k ≥ 2,

σp(n, k) =
(pn−k + η((−1)

n
2 )(pk − 1)p

n
2
−k)
∏k−1

i=1 (pn−2i − 1)∏k
i=1(p

i − 1)
.

Here η is the quadratic character of Zp.

Theorem 2.4. [1] Let p be an odd prime. Given a self-orthogonal
code Cp of dimension k over Zp, there are pk(k−1)/2 self-dual codes over
Zp2 whose residue code is Cp. Therefore, the number of self-dual codes
of length n over Zp2 is Np2(n) =

∑
0≤k≤[n/2] σp(n, k)pk(k−1)/2.

Theorem 2.5. If n is even, σp(n, 1) = pn−1+η((−1)
n
2 )(p−1)p

n
2 −1−1

p−1 .

Proof. The number of solutions of x21 + · · ·+ x2n = 0 in Zp is given by
pn−1 + η((−1)n/2)(p− 1)p

n
2
−1 [5].

3. Classification

There is a unique self-dual codes (p) of length 1 over Zp2 and there is
a (unique) inequivalent self-dual code (1 a) over Zp2 of length 2 if and
only if p ≡ 1 (mod 4). It is clear that ( p p ) is a self-dual code over Zp2 .

The types of self-dual codes of length 3 are 1e0pe1 , where 2e0 +e1 = 3.
Thus any self-dual code C of length 3 over Zp2 is equivalent to(

p
p
p

)
or Ca,b :

(
1 a b+pb1
p pc

)
where 0 ≤ a, b, b1 < p and b 6= 0.

For binary case, (2) ⊕ (2) ⊕ (2) is the only self-dual code over Z4 of
length 3, and for ternary case there are two classes of self-dual codes
over Z9 of length 3:

(3)⊕ (3)⊕ (3), ( 1 2 2
3 6 ) .

Theorem 3.1. Let p 6= 2, 3. Then the non-trivial self-dual code over
Zp2 of length 3 is equivalent to one of the following classes of inequivalent
codes:

Class Ca,b Aut(Ca,b)
(i) a = 0 4.{(1), (13)}
(ii) a6 = 1, a 6= ±1 2.〈(123)〉
(iii) a2 = 1, b2 + 2 = 0 2.{(12)}
(iv) else 2.(1)
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Theorem 3.2. For p 6= 2, 3, let N1, N2, N3, N4 be the number of class
(i), (ii), (iii), (iv) self-dual codes over Zp2 of length 3, respectively. These
numbers are determined as follows.

p (mod 24) N1 N2 N3 N4

1 1 1 1 p−25
24

5 1 0 0 p−5
24

7 0 1 0 p−7
24

11 0 0 1 p−11
24

13 1 1 0 p−13
24

17 1 0 1 p−17
24

19 0 1 1 p−19
24

23 0 0 0 p+1
24

Proof. We have the one-to-one correspondence between the set of self-
dual codes over Zp, the set of self-orthogonal codes over Zp2 and the set
of self-dual codes over Zp2 as follows:(

1 a b
1 −b a

)
↔ (1 a b)↔

(
1 a b+ pb1

p pc

)
where 1 + a2 + b2 = 0 (mod p).

For 5 ≤ p ≤ 67, we give the classification in the following table. Here
(a, b) denotes the code Ca,b.

p2 (i) (ii) (iii) (iv)

52 (0,7)
72 (2,32)
112 (1,19)
132 (0,70) (3,126)
172 (0,38) (1,24)
192 (7,315) (1,63)
232 (2,169)
292 (0,41) (2,71)
312 (5,800) (4,142)
372 (0,117) (10,248) (3,510)
412 (0,378) (1,71) (2,703)
432 (36,49) (1,801) (2,826)
472 (2,1052), (3,361)
532 (0,500) (3,231), (4,1172)
592 (1,1275) (3,1246), (6,776)
612 (0,682) (13,1328) (2,774), (8,1259)
672 (29,1645) (1,2030) (2,2091), (12,1626)
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Next, we consider the codes of length 4. The types of self-dual codes
of length 4 are 1e0pe1 , where 2e0 + e1 = 4. Thus any self-dual code C of
length 4 over Zp2 is equivalent to one of

1. (p)4,
2. C2

a,b :
(
1 a b
1 −b a

)
3. C1

a,b,c :
(

1 a b c+pc1
p pc2
p pc3

)
where 0 ≤ a, b, c < p and c 6= 0.

There are two classes of self-dual codes over Z4 of length 4:

(2)⊕ (2)⊕ (2)⊕ (2),
(

1 1 1 1
2 2
2 2

)
and there are three classes of self-dual codes over Z9 of length 4:

(3)⊕ (3)⊕ (3), ( 1 1 4
1 5 1 ) ,

(
1 1 4
3
3 6

)
Theorem 3.3. Let p 6= 2, 3. Then the self-dual code

C2
a,b :

(
1 a b
1 −b a

)
over Zp2 is one of the following four classes of inequivalent codes:

Class C2
a,b Aut(C2

a,b)

(i) a2 + 1 = 0, b = 0 4.B8

(ii) a6 = 1, a 6= ±1 2.A4

(iii) a2 = 1, b2 + 2 = 0 2.B8

(iv) else 2.B4

Codes from classes (i),(ii),(iii) are unique, if exist, up to equivalence.

Theorem 3.4. For p 6= 2, 3, let N1, N2, N3, N4 be the number of
class (i)), (iii), (iv) self-dual codes over Zp2 of length 4 and free rank 2,
respectively. These numbers are determined as follows.

p (mod 24) N1 N2 N3 N4

1 1 1 1 p2+p−26
24

5 1 0 0 p2+p−6
24

7 0 1 0 p2+p−8
24

11 0 0 1 p2+p−12
24

13 1 1 0 p2+p−14
24

17 1 0 1 p2+p−18
24

19 0 1 1 p2+p−20
24

23 0 0 0 p2+p
24
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Proof. The number of self-dual codes over Zp2 of length 4 and free
rank 2 is given by σp(4, 2)p = 2(p+ 1)p. By the mass formula

N4 =
1

48
(2(p+ 1)p− 12N1 − 16N2 − 24N3).

Here 48 = 24·4!
|2.B4| , 12 = 24·4!

|4.B8| , etc.

Theorem 3.5. Let p 6= 2, 3. Then any self-dual code C1
a,b,c of rank 3

is equivalent to one of the following inequivalent codes:

Class C1
a,b,c Aut(C1

a,b,c)

(i) a = b = 0 8.〈(14), (23)〉
(ii) b = 0, a6 = 1, a2 6= 1, c2 6= 1 4.〈(124)〉
(iii) b = 0, a2 = 1 4.S2

(iv) b = 0, a 6= 0, a6 6= 1, c6 6= 1, a2 6= c2 4.(1)
(v) a2 = 1 6= b2 = c2 2.〈(1324), (12)〉
(vi) a2 = b2 = 1 2.S3

(vii) 1 = a2, b2, c2 distinct 2.S2

(viii) a2 = −1, b2 6= ±1, b4 6= −1 2.{(1), (14)(23)}
(ix) a2 = −1, b2 6= ±1, b4 = −1 2.〈(1243)〉
(x) 1, a2, b2, c2 are all distinct, a2, b2, c2 6= −1 2.(1)

Proof. It is enough to classify R(C) = 〈(1, a, b, c)〉 over Zp. When
b = 0, the classification goes back to the case of C2

a,c. Suppose b 6= 0.
For t = γσ ∈ T, σ ∈ S4, k ∈ Zp, we have that

(1, a, b, c)γσ = k(1, a, b, c) ⇐⇒ (1, a2, b2, c2)σ = k2(1, a2, b2, c2).

Thus k2 = 1, a2, b2, c2 and σ can be determined once we know the equal-
ities among 1, a2, b2, c2. For example, suppose that 1 = a2, b2, c2 are
distinct. Now (1, 1, b2, c2)σ = (k2, k2, k2b2, k2c2) implies that k2 = 1,
σ(1) = 1, 2 and σ(3) = 3, σ(4) = 4. Next, for γ ∈ D, (1, 1, b, c)γ =
k(1, 1, b, c) implies γ = ±(1, 1, 1, 1).

Theorem 3.6. For p 6= 2, 3, let N1, N2, · · · , N10 be the number of
class (i), (ii), · · · , (x) self-dual codes over Zp2 of length 4 and free rank
1, respectively. These numbers are determined as follows.
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p (24) N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

1 1 1 1 p−25
24 1 1 p−17

8
p−9
8 1 (p+1)2−28p+216

192

5 1 0 0 p−5
24 1 0 p−5

8
p−5
8 0 (p+1)2−28p+104

192

7 0 1 0 p−7
24 0 1 p−7

8 0 0 (p+1)2−16p+48
192

11 0 0 1 p−11
24 0 0 p−3

8 0 0 (p+1)2−16p+32
192

13 1 1 0 p−13
24 1 1 p−13

8
p−5
8 0 (p+1)2−28p+168

192

17 1 0 1 p−17
24 1 0 p−9

8
p−9
8 1 (p+1)2−28p+152

192

19 0 1 1 p−19
24 0 1 p−11

8 0 0 (p+1)2−16p+96
192

23 0 0 0 p+1
24 0 0 p+1

8 0 0 (p+1)2−16p−16
192

Proof. We consider the classes (viii) and (ix). In these cases {1, a2, b2, c2} =
{1,−1, b2,−b2}, where b2 6= 0,±1, p ≡ 1 (mod 4). There exists b with
b4 = −1 if and only if p ≡ 1 (mod 8), and in that case, (1, a, b, c) =
(1, i,±b,±ib) or (1, i,±bi,±b) with i2 = −1, and hence N9 = 1.

Now (1, a2, b2, c2) ∼ (1,−1,±b2,∓b2) ∼ (1,−1,±1/b2,∓1/b2). These

four are distinct iff b4 6= −1. Thus 4N8 + 2N9 = (p−1)
2
− 2.

Once N1, · · · , N9 is determined, N10 can be computed by the mass
formula: ∑

i

24 · 4!

|Aut(Ci)|
= 3p2 + 4p+ 2,

where Ci runs through the representatives of inequivalent self-dual codes.

Finally we give the complete classification for small p’s in the following
table. Here (a, b, c) denotes the codes C1

a,b,c.

p2 i ii iii iv v

52 (0, 0, 7) (1, 2, 12)
72 (2, 0, 17)
112 (1, 0, 19)
132 (0, 0, 70) (3, 0, 43) (1, 5, 34)
172 (0, 0, 38) (1, 0, 24) (1, 4, 72)
192 (7, 0, 46) (1, 0, 63)
232 (2, 0, 169)
292 (0, 0, 41) (2, 0, 71) (1, 12, 70)
312 (5, 0, 161) (4, 0, 142)
372 (0, 0, 117) (10, 0, 248) (3, 0, 510) (1, 6, 228)
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p2 vi vii viii ix x

52

72 (1, 1, 12)
112 (1, 2, 29)
132 (1, 1, 45) (5, 6, 48)
172 (1, 6, 110) (4, 5, 139) (4, 8, 53)
192 (1, 1, 137) (1, 5, 50) (2, 3, 104)

232
(1, 3, 239)
(1, 6, 56)
(1, 7, 100)

(2, 4, 212)

292
(1, 2, 136)
(1, 6, 181)
(1, 11, 333)

(12, 13, 47)
(12, 14, 325)
(12, 19, 149)

(3, 5, 96)

312 (1, 1, 82)
(1, 2, 98)
(1, 3, 446)
(1, 9, 107)

(2, 44, 234)
(2, 9, 289)
(3, 8, 53)

372 (1, 1, 206)
(1, 3, 64)
(1, 5, 618)
(1, 9, 425)

(6, 7, 143)
(6, 8, 248)
(6, 9, 609)
(6, 12, 298)

(2, 5, 231)
(2, 13, 97)
(3, 4, 495)

Remark. Many of the results in this article reappear in [3] with more
details.
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