SELF-DUAL CODES OVER \mathbb{Z}_{p^2} OF SMALL LENGTHS ### Whan-hyuk Choi and Young Ho Park^{†,*} ABSTRACT. Self-dual codes of lengths less than 5 over \mathbb{Z}_p are completely classified by the second author [The classification of self-dual modular codes, Finite Fields Appl. 17 (2011), 442-460]. The number of such self-dual codes are also determined. In this article we will extend the results to classify self-dual codes over \mathbb{Z}_{p^2} of length less than 5 and give the number of codes in each class. Explicit and complete classifications for small p's are also given. ### 1. Introduction A code over \mathbb{Z}_{p^e} of length n is a \mathbb{Z}_{p^e} -submodule of $\mathbb{Z}_{p^e}^n$. Codes of length n over \mathbb{Z}_{p^e} have generator matrices permutation equivalent to the standard form $$(1) \qquad G = \begin{pmatrix} I_{k_0} & A_{01} & A_{02} & A_{03} & \dots & A_{0,e-1} & A_{0e} \\ 0 & pI_{k_1} & pA_{12} & pA_{13} & \dots & pA_{1,e-1} & pA_{1e} \\ 0 & 0 & p^2I_{k_2} & p^2A_{23} & \dots & p^2A_{2,e-1} & p^2A_{2e} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & p^{e-1}I_{k_{e-1}} & p^{e-1}A_{e-1,e} \end{pmatrix},$$ where the columns are grouped into blocks of sizes k_0, k_1, \dots, k_e , and the k_i are nonnegative integers adding to n [4]. A matrix with this standard This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. Received August 9, 2017. Revised August 30, 2017. Accepted September 13, 2017. ²⁰¹⁰ Mathematics Subject Classification: 11T71, 94B60. Key words and phrases: self-dual code, modular codes. [†] This research is supported by 2015 Research Grant from Kangwon National University (No. 520150414). ^{*} Corresponding author. [©] The Kangwon-Kyungki Mathematical Society, 2017. form is said to be of type (2) $$(1)^{k_0}(p)^{k_1}(p^2)^{k_2}\cdots(p^{e-1})^{k_{e-1}}.$$ The number of nonzero rows is called the rank of M and denoted by rank M. k_0 is called the $free\ rank$. The ambient space $\mathbb{Z}_{n^e}^n$ is endowed with the standard inner product $$(v_1, \cdots, v_n) \cdot (w_1, \cdots, w_n) = v_1 w_1 + \cdots + v_n w_n.$$ For a code C of length n over \mathbb{Z}_{p^e} , the dual code C^{\perp} of C is defined by $$C^{\perp} = \{ \mathbf{v} \in \mathbb{Z}_{p^e}^n \mid \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in C \}.$$ If C is a code of length n over \mathbb{Z}_{p^e} with generator matrix of the form (1) then C^{\perp} has generator matrix of the form $$G^{\perp} = \begin{pmatrix} B_{0e} & B_{0,e-1} & \cdots & B_{03} & B_{02} & B_{01} & I_{k_e} \\ pB_{1e} & pB_{1,e-1} & \cdots & pB_{13} & pB_{12} & pI_{k_{e-1}} & 0 \\ p^2B_{2e} & p^2B_{2,e-1} & \cdots & p^2B_{23} & p^eI_{k_{e-2}} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ p^{e-1}B_{e-1,e} & p^{e-1}I_{k_1} & \cdots & 0 & 0 & 0 & 0 \end{pmatrix}$$ where the column blocks have the same size as in G [4]. If C has type $1^{k_0}(p)^{k_1}\cdots(p^{e-1})^{k_{e-1}}$ then the dual code has type $1^{k_e}p^{k_{e-1}}(p^2)^{k_{e-2}}\cdots(p^{e-1})^{k_1}$, where $k_e=n-\sum_{i=0}^{e-1}k_i$. C is self-orthogonal if $C \subset C^{\perp}$. C is self-dual if $C = C^{\perp}$. If C is self-dual with type $1^{k_0}(p)^{k_1} \cdots (p^{e-1})^{k_{e-1}}$, then $k_i = k_{e-i}$ for all i. For any code C of length n over $\mathbb{Z}_{p^e} |C||C^{\perp}| = p^{en}$. If C is a self-orthogonal code of length n and $|C| = p^{en/2}$, then C is self-dual. Next we discuss the equivalence of self-dual codes. Let $$\mathbb{D} = \mathbb{D}_m^n = \{ \operatorname{diag}(\gamma_1, \gamma_2, \cdots, \gamma_n) \mid \gamma_i \in \mathbb{Z}_m, \ \gamma_i^2 = 1 \}.$$ and let $\mathbb{T}_m = \mathbb{T}_m^n$ be the group of all monomial transformations on \mathbb{Z}_m^n defined by $$\mathbb{T}_m = \{ \gamma \sigma \mid \gamma \in \mathbb{D}, \sigma \in S_n \}$$ as in [8]. We will use the same notations and terminology as in [8]. The group \mathbb{T}_m acts on the set of all self-dual codes of length n over \mathbb{Z}_m by $Ct = \{ct \mid c \in C\}$. Two self-dual codes C and C' are equivalent (denoted $C \sim C'$) if there exists an element $t \in \mathbb{T}_m^n$ such that Ct = C'. The group of all automorphisms of C will be denoted by $\operatorname{Aut}(C)$. Self-dual codes of lengths less than 5 over \mathbb{Z}_p are completely classified in [8]. The number of such self-dual codes are also determined. In this article we will classify self-dual codes over \mathbb{Z}_{p^2} of length less than 5. # 2. Self-dual codes over \mathbb{Z}_{p^2} For codes over \mathbb{Z}_{p^2} , every code C over \mathbb{Z}_{p^2} is permutation equivalent to a code with generator matrix in standard form: $$G = \begin{pmatrix} I_{k_1} & A_1 & B_1 + pB_2 \\ 0 & pI_{k_2} & pC_1 \end{pmatrix}$$ where A_1, B_1, B_2, C_1 are matrices with entries from $\{0, 1, \dots, p-1\}$. Associated with C there are two codes over \mathbb{Z}_p , the residue code $$R(C) = \{x \in \mathbb{Z}_p^n : \exists y \in \mathbb{Z}_p^n \text{ such that } x + py \in C\}$$ and the torsion code $\text{Tor}(C) = \{y \in \mathbb{Z}_p^n : py \in C\}$ which have generator matrices $$R(C) = \begin{pmatrix} I_{k_1} & A_1 & B_1 \end{pmatrix}, \quad \operatorname{Tor}(C) = \begin{pmatrix} I_{k_1} & A_1 & B_1 \\ 0 & I_{k_2} & C_1 \end{pmatrix}$$ respectively. If C is self-dual, then R(C) is self-orthogonal. THEOREM 2.1. Let p be an odd prime. There is a one-one correspondence between self-dual codes C of free rank 1 over \mathbb{Z}_{p^2} $$C: \begin{pmatrix} 1 & a_2 & a_3 & \cdots & a_{n-1} & a_n + pb_1 \\ p & & & pb_2 \\ p & & & pb_3 \\ & & \ddots & & \vdots \\ p & & pb_{n-1} \end{pmatrix}$$ where n is the length of the code, $0 \le a_i, b_j < p$, and self-orthogonal codes $R(C) = (1 \ a_2 \ \cdots \ a_{n-1} \ a_n)$ over \mathbb{Z}_p . THEOREM 2.2. If C is a self-dual code of free rank 1 over \mathbb{Z}_{p^2} , then $\operatorname{Aut}(C) = \operatorname{Aut}(R(C))$. THEOREM 2.3. [9] Let $\sigma_p(n.k)$ be the number of self-orthogonal codes of length n and dimension k over \mathbb{Z}_p , where p is odd prime. Then 1. If n is odd, $$\sigma_p(n,k) = \frac{\prod_{i=0}^{k-1} (p^{(n-1-2i)} - 1)}{\prod_{i=1}^{k} (p^i - 1)}.$$ 2. If n is even and $k \geq 2$, $$\sigma_p(n,k) = \frac{(p^{n-k} + \eta((-1)^{\frac{n}{2}})(p^k - 1)p^{\frac{n}{2}-k})\prod_{i=1}^{k-1}(p^{n-2i} - 1)}{\prod_{i=1}^k(p^i - 1)}.$$ Here η is the quadratic character of \mathbb{Z}_p . THEOREM 2.4. [1] Let p be an odd prime. Given a self-orthogonal code C_p of dimension k over \mathbb{Z}_p , there are $p^{k(k-1)/2}$ self-dual codes over \mathbb{Z}_{p^2} whose residue code is C_p . Therefore, the number of self-dual codes of length n over \mathbb{Z}_{p^2} is $N_{p^2}(n) = \sum_{0 \le k \le \lceil n/2 \rceil} \sigma_p(n,k) p^{k(k-1)/2}$. THEOREM 2.5. If n is even, $$\sigma_p(n,1) = \frac{p^{n-1} + \eta((-1)^{\frac{n}{2}})(p-1)p^{\frac{n}{2}-1} - 1}{p-1}$$. *Proof.* The number of solutions of $$x_1^2 + \cdots + x_n^2 = 0$$ in \mathbb{Z}_p is given by $p^{n-1} + \eta((-1)^{n/2})(p-1)p^{\frac{n}{2}-1}$ [5]. #### 3. Classification There is a unique self-dual codes (p) of length 1 over \mathbb{Z}_{p^2} and there is a (unique) inequivalent self-dual code $(1 \ a)$ over \mathbb{Z}_{p^2} of length 2 if and only if $p \equiv 1 \pmod{4}$. It is clear that $\binom{p}{p}$ is a self-dual code over \mathbb{Z}_{p^2} . The types of self-dual codes of length 3 are $1^{e_0}p^{e_1}$, where $2e_0 + e_1 = 3$. Thus any self-dual code C of length 3 over \mathbb{Z}_{p^2} is equivalent to $$\begin{pmatrix} p \\ p \end{pmatrix}$$ or $C_{a,b}: \begin{pmatrix} 1 & a & b+pb_1 \\ p & pc \end{pmatrix}$ where $0 \le a, b, b_1 < p$ and $b \ne 0$. For binary case, $(2) \oplus (2) \oplus (2)$ is the only self-dual code over \mathbb{Z}_4 of length 3, and for ternary case there are two classes of self-dual codes over \mathbb{Z}_9 of length 3: $$(3) \oplus (3) \oplus (3), \quad ({}^{1} {}^{2} {}^{2} {}^{3} {}^{6}).$$ THEOREM 3.1. Let $p \neq 2, 3$. Then the non-trivial self-dual code over \mathbb{Z}_{p^2} of length 3 is equivalent to one of the following classes of inequivalent codes: | Class | $C_{a,b}$ | $\operatorname{Aut}(C_{a,b})$ | |-------|---------------------------|-------------------------------| | (i) | a = 0 | $4.\{(1),(13)\}$ | | (ii) | $a^6 = 1, \ a \neq \pm 1$ | $2.\langle (123)\rangle$ | | (iii) | $a^2 = 1, \ b^2 + 2 = 0$ | $2.\{(12)\}$ | | (iv) | else | 2.(1) | THEOREM 3.2. For $p \neq 2, 3$, let N_1, N_2, N_3, N_4 be the number of class (i), (ii), (iii), (iv) self-dual codes over \mathbb{Z}_{p^2} of length 3, respectively. These numbers are determined as follows. | $p \pmod{24}$ | N_1 | N_2 | N_3 | N_4 | |---------------|-------|-------|-------|-------------------| | 1 | 1 | 1 | 1 | $\frac{p-25}{24}$ | | 5 | 1 | 0 | 0 | $\frac{p-5}{24}$ | | 7 | 0 | 1 | 0 | $\frac{p-7}{24}$ | | 11 | 0 | 0 | 1 | $\frac{p-11}{24}$ | | 13 | 1 | 1 | 0 | $\frac{p-13}{24}$ | | 17 | 1 | 0 | 1 | $\frac{p-17}{24}$ | | 19 | 0 | 1 | 1 | $\frac{p-19}{24}$ | | 23 | 0 | 0 | 0 | $\frac{p+1}{24}$ | *Proof.* We have the one-to-one correspondence between the set of selfdual codes over \mathbb{Z}_p , the set of self-orthogonal codes over \mathbb{Z}_{p^2} and the set of self-dual codes over \mathbb{Z}_{p^2} as follows: $$\begin{pmatrix} 1 & a & b \\ 1 & -b & a \end{pmatrix} \leftrightarrow (1 \ a \ b) \leftrightarrow \begin{pmatrix} 1 & a & b + pb_1 \\ p & pc \end{pmatrix}$$ where $1 + a^2 + b^2 = 0 \pmod{p}$. For $5 \le p \le 67$, we give the classification in the following table. Here (a,b) denotes the code $C_{a,b}$. | p^2 | (i) | (ii) | (iii) | (iv) | |----------|---------|-----------|----------|---------------------| | 5^2 | (0,7) | | | | | 7^{2} | | (2,32) | | | | 11^{2} | | | (1,19) | | | 13^{2} | (0,70) | (3,126) | | | | 17^{2} | (0,38) | | (1,24) | | | 19^{2} | | (7,315) | (1,63) | | | 23^{2} | | | | (2,169) | | 29^{2} | (0,41) | | | (2,71) | | 31^{2} | | (5,800) | | (4,142) | | 37^{2} | (0,117) | (10,248) | | (3,510) | | 41^{2} | (0,378) | | (1,71) | (2,703) | | 43^{2} | | (36,49) | (1,801) | (2,826) | | 47^{2} | | | | (2,1052), (3,361) | | 53^{2} | (0,500) | | | (3,231), (4,1172) | | 59^{2} | | | (1,1275) | (3,1246), (6,776) | | 61^{2} | (0,682) | (13,1328) | | (2,774), (8,1259) | | 67^{2} | | (29,1645) | (1,2030) | (2,2091), (12,1626) | Next, we consider the codes of length 4. The types of self-dual codes of length 4 are $1^{e_0}p^{e_1}$, where $2e_0 + e_1 = 4$. Thus any self-dual code C of length 4 over \mathbb{Z}_{p^2} is equivalent to one of - 1. $(p)^4$, 2. $C_{a,b}^2 : {1 \atop 1-b \atop 0} {a \atop 0}$ 3. $C_{a,b,c}^1 : {1 \atop p} {a \atop p} {b \atop pc_2 \atop pc_3}$ where $0 \le a, b, c < p$ and $c \ne 0$. There are two classes of self-dual codes over \mathbb{Z}_4 of length 4: $$(2) \oplus (2) \oplus (2) \oplus (2), \quad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$ and there are three classes of self-dual codes over \mathbb{Z}_9 of length 4: $$(3) \oplus (3) \oplus (3), \quad \begin{pmatrix} 1 & 1 & 4 \\ 1 & 5 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 3 & 1 & 4 \\ 3 & 3 & 6 \end{pmatrix}$$ Theorem 3.3. Let $p \neq 2, 3$. Then the self-dual code $$C_{a,b}^2: \begin{pmatrix} 1 & a & b \\ 1 & -b & a \end{pmatrix}$$ over \mathbb{Z}_{p^2} is one of the following four classes of inequivalent codes: | Class | $C_{a,b}^2$ | $\operatorname{Aut}(C_{a,b}^2)$ | |-------|---------------------------|---------------------------------| | (i) | $a^2 + 1 = 0, \ b = 0$ | $4.B_{8}$ | | (ii) | $a^6 = 1, \ a \neq \pm 1$ | $2.A_{4}$ | | (iii) | $a^2 = 1, \ b^2 + 2 = 0$ | $2.B_{8}$ | | (iv) | else | $2.B_{4}$ | Codes from classes (i),(ii),(iii) are unique, if exist, up to equivalence. Theorem 3.4. For $p \neq 2, 3$, let N_1, N_2, N_3, N_4 be the number of class (i)), (iii), (iv) self-dual codes over \mathbb{Z}_{p^2} of length 4 and free rank 2, respectively. These numbers are determined as follows. | $p \pmod{24}$ | N_1 | N_2 | N_3 | N_4 | |---------------|-------|-------|-------|---------------------------| | 1 | 1 | 1 | 1 | $\frac{p^2 + p - 26}{24}$ | | 5 | 1 | 0 | 0 | $\frac{p^2 + p - 6}{24}$ | | 7 | 0 | 1 | 0 | $\frac{p^2 + p - 8}{24}$ | | 11 | 0 | 0 | 1 | $\frac{p^2 + p - 12}{24}$ | | 13 | 1 | 1 | 0 | $\frac{p^2 + p - 14}{24}$ | | 17 | 1 | 0 | 1 | $\frac{p^2 + p - 18}{24}$ | | 19 | 0 | 1 | 1 | $\frac{p^2 + p - 20}{24}$ | | 23 | 0 | 0 | 0 | $\frac{p^2+p}{24}$ | *Proof.* The number of self-dual codes over \mathbb{Z}_{p^2} of length 4 and free rank 2 is given by $\sigma_p(4,2)p = 2(p+1)p$. By the mass formula $$N_4 = \frac{1}{48}(2(p+1)p - 12N_1 - 16N_2 - 24N_3).$$ Here $$48 = \frac{2^4 \cdot 4!}{|2.B_4|}$$, $12 = \frac{2^4 \cdot 4!}{|4.B_8|}$, etc. THEOREM 3.5. Let $p \neq 2, 3$. Then any self-dual code $C_{a,b,c}^1$ of rank 3 is equivalent to one of the following inequivalent codes: | Class | $C^1_{a,b,c}$ | $\operatorname{Aut}(C^1_{a,b,c})$ | |--------|--------------------------------------------------------------|-----------------------------------| | (i) | a = b = 0 | $8.\langle (14), (23)\rangle$ | | (ii) | $b = 0, a^6 = 1, a^2 \neq 1, c^2 \neq 1$ | $4.\langle (124)\rangle$ | | (iii) | $b = 0, a^2 = 1$ | $4.S_2$ | | (iv) | $b = 0, a \neq 0, a^6 \neq 1, c^6 \neq 1, a^2 \neq c^2$ | 4.(1) | | (v) | $a^2 = 1 \neq b^2 = c^2$ | $2.\langle (1324), (12)\rangle$ | | (vi) | $a^2 = b^2 = 1$ | $2.S_3$ | | (vii) | $1 = a^2, b^2, c^2 \ distinct$ | $2.S_2$ | | (viii) | $a^2 = -1, b^2 \neq \pm 1, b^4 \neq -1$ | $2.\{(1),(14)(23)\}$ | | (ix) | $a^2 = -1, b^2 \neq \pm 1, b^4 = -1$ | $2.\langle (1243)\rangle$ | | (x) | $1, a^2, b^2, c^2$ are all distinct, $a^2, b^2, c^2 \neq -1$ | 2.(1) | *Proof.* It is enough to classify $R(C) = \langle (1, a, b, c) \rangle$ over \mathbb{Z}_p . When b = 0, the classification goes back to the case of $C_{a,c}^2$. Suppose $b \neq 0$. For $t = \gamma \sigma \in \mathbb{T}$, $\sigma \in S_4$, $k \in \mathbb{Z}_p$, we have that $$(1, a, b, c)\gamma\sigma = k(1, a, b, c) \iff (1, a^2, b^2, c^2)\sigma = k^2(1, a^2, b^2, c^2).$$ Thus $k^2=1,a^2,b^2,c^2$ and σ can be determined once we know the equalities among $1,a^2,b^2,c^2$. For example, suppose that $1=a^2,b^2,c^2$ are distinct. Now $(1,1,b^2,c^2)\sigma=(k^2,k^2,k^2b^2,k^2c^2)$ implies that $k^2=1$, $\sigma(1)=1,2$ and $\sigma(3)=3$, $\sigma(4)=4$. Next, for $\gamma\in\mathbb{D}$, $(1,1,b,c)\gamma=k(1,1,b,c)$ implies $\gamma=\pm(1,1,1,1)$. THEOREM 3.6. For $p \neq 2, 3$, let N_1, N_2, \dots, N_{10} be the number of class (i), (ii), \dots , (x) self-dual codes over \mathbb{Z}_{p^2} of length 4 and free rank 1, respectively. These numbers are determined as follows. | p(24) | N_1 | N_2 | N_3 | N_4 | N_5 | N_6 | N_7 | N_8 | N_9 | N_{10} | |-------|-------|-------|-------|-------------------|-------|-------|------------------|-----------------|-------|-----------------------------------| | 1 | 1 | 1 | 1 | $\frac{p-25}{24}$ | 1 | 1 | $\frac{p-17}{8}$ | $\frac{p-9}{8}$ | 1 | $\frac{(p+1)^2-28p+216}{192}$ | | 5 | 1 | 0 | 0 | $\frac{p-5}{24}$ | 1 | 0 | $\frac{p-5}{8}$ | $\frac{p-5}{8}$ | 0 | $\frac{(p+1)^2 - 28p + 104}{192}$ | | 7 | 0 | 1 | 0 | $\frac{p-7}{24}$ | 0 | 1 | $\frac{p-7}{8}$ | 0 | 0 | $\frac{(p+1)^2-16p+48}{192}$ | | 11 | 0 | 0 | 1 | $\frac{p-11}{24}$ | 0 | 0 | $\frac{p-3}{8}$ | 0 | 0 | $\frac{(p+1)^2-16p+32}{192}$ | | 13 | 1 | 1 | 0 | $\frac{p-13}{24}$ | 1 | 1 | $\frac{p-13}{8}$ | $\frac{p-5}{8}$ | 0 | $\frac{(p+1)^2 - 28p + 168}{192}$ | | 17 | 1 | 0 | 1 | $\frac{p-17}{24}$ | 1 | 0 | $\frac{p-9}{8}$ | $\frac{p-9}{8}$ | 1 | $\frac{(p+1)^2 - 28p + 152}{192}$ | | 19 | 0 | 1 | 1 | $\frac{p-19}{24}$ | 0 | 1 | $\frac{p-11}{8}$ | 0 | 0 | $\frac{(p+1)^2-16p+96}{192}$ | | 23 | 0 | 0 | 0 | $\frac{p+1}{24}$ | 0 | 0 | $\frac{p+1}{8}$ | 0 | 0 | $\frac{(p+1)^2 - 16p - 16}{192}$ | *Proof.* We consider the classes (viii) and (ix). In these cases $\{1, a^2, b^2, c^2\} = \{1, -1, b^2, -b^2\}$, where $b^2 \neq 0, \pm 1, p \equiv 1 \pmod{4}$. There exists b with $b^4 = -1$ if and only if $p \equiv 1 \pmod{8}$, and in that case, $(1, a, b, c) = (1, i, \pm b, \pm ib)$ or $(1, i, \pm bi, \pm b)$ with $i^2 = -1$, and hence $N_9 = 1$. Now $(1, a^2, b^2, c^2) \sim (1, -1, \pm b^2, \mp b^2) \sim (1, -1, \pm 1/b^2, \mp 1/b^2)$. These four are distinct iff $b^4 \neq -1$. Thus $4N_8 + 2N_9 = \frac{(p-1)}{2} - 2$. Once N_1, \dots, N_9 is determined, N_{10} can be computed by the mass formula: $$\sum_{i} \frac{2^4 \cdot 4!}{|\operatorname{Aut}(C_i)|} = 3p^2 + 4p + 2,$$ where C_i runs through the representatives of inequivalent self-dual codes. Finally we give the complete classification for small p's in the following table. Here (a, b, c) denotes the codes $C_{a,b,c}^1$. | p^2 | i | ii | iii | iv | V | |----------|-----------|--------------|----------|-------------|-------------| | 5^2 | (0, 0, 7) | | | | (1, 2, 12) | | 7^{2} | | (2,0,17) | | | | | 11^{2} | | | (1,0,19) | | | | 13^{2} | (0,0,70) | (3,0,43) | | | (1, 5, 34) | | 17^{2} | (0,0,38) | | (1,0,24) | | (1, 4, 72) | | 19^{2} | | (7,0,46) | (1,0,63) | | | | 23^{2} | | | | (2,0,169) | | | 29^{2} | (0,0,41) | | | (2,0,71) | (1, 12, 70) | | 31^{2} | | (5,0,161) | | (4,0,142) | | | 37^{2} | (0,0,117) | (10, 0, 248) | | (3, 0, 510) | (1, 6, 228) | | p^2 | vi | vii | viii | ix | X | |----------|-------------|--------------|---------------|------------|---------------------------| | 5^{2} | | | | | | | 7^{2} | (1, 1, 12) | | | | | | 11^{2} | | (1, 2, 29) | | | | | 13^{2} | (1, 1, 45) | | (5, 6, 48) | | | | 17^{2} | | (1, 6, 110) | (4, 5, 139) | (4, 8, 53) | | | 19^{2} | (1, 1, 137) | (1, 5, 50) | | | (2, 3, 104) | | | | (1, 3, 239) | | | | | 23^{2} | | (1, 6, 56) | | | (2, 4, 212) | | | | (1, 7, 100) | | | | | | | (1, 2, 136) | (12, 13, 47) | | | | 29^{2} | | (1, 6, 181) | (12, 14, 325) | | (3, 5, 96) | | | | (1, 11, 333) | (12, 19, 149) | | | | | | (1, 2, 98) | | | (2,44,234) | | 31^{2} | (1, 1, 82) | (1, 3, 446) | | | (2, 9, 289) | | | | (1, 9, 107) | | | (3, 8, 53) | | | | (1, 3, 64) | (6,7,143) | | (2, 5, 231) | | 37^{2} | (1, 1, 206) | (1,5,618) | (6, 8, 248) | | (2, 3, 231) $(2, 13, 97)$ | | | (1, 1, 200) | (1, 9, 425) | (6, 9, 609) | | (3, 4, 495) | | | | (1,0,120) | (6, 12, 298) | | (0, 1, 100) | *Remark.* Many of the results in this article reappear in [3] with more details. ### References - [1] J.M.P. Balmaceda, R.A.L. Betty and F.R. Nemenzo, Mass formula for self-dual codes over \mathbb{Z}_{p^2} , Discrete Math. 308 (2009), 2984–3002 - [2] K. Betsumiya, S. Georgiou, T.A. Gulliver, M. Harada, and C. Kououvinos, *On self-dual codes over some prime fields*, Discrete Math. **262** (2009), 37–58. - [3] W. Choi, The classification of self-dual codes over Galois rings of length 4, Ph.D thesis, Kangwon National University, 2017. - [4] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Comin. Theory Ser. A 62 (1993), 30–45. - [5] R. Lidl and H. Neiderreiter, "Finite fields" in Encyclop. Math. Its Applic. vol. 20. 2nd ed., Cambridge University Press, Cambridge, 1997 - [6] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977. - [7] G. Nebe, E. Rains and N.J.A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006 - [8] Y. H. Park, The classification of self-dual modular codes, Finite Fields Appl. 17 (2011), 442-460 - [9] V.S. Pless, The number of isotropic subspaces in a finite geometry, Atti. Accad. Naz. Lincei Rend. 39 (1965) 418–421 - [10] V.S. Pless, On the uniqueness of the Golay codes, J. Combin. Theory 5 (1968) 215–228 - [11] E. Rains and N.J.A. Sloane, *Self-dual codes*, in the Handbook of Coding Theory, V.S. Pless and W.C. Huffman, eds., Elsevier, Amsterdam, 1998, 177-294. # Whan-hyuk Choi Department of Mathematics Kangwon National University Chuncheon, Korea *E-mail*: whchoi@kangwon.ac.kr # Young Ho Park Department of Mathematics Kangwon National University Chuncheon, Korea *E-mail*: yhpark@kangwon.ac.kr