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SURFACES FOLIATED BY ELLIPSES WITH

CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN

3-SPACE

Ahmed T. Ali and Fathi M. Hamdoon

Abstract. In this paper, we study the surfaces foliated by ellipses
in three dimensional Euclidean space E3. We prove the following
results: (1) The surface foliated by an ellipse have constant Gaussian
curvature K if and only if the surface is flat, i.e. K = 0. (2) The
surface foliated by an ellipse is a flat if and only if it is a part of
generalized cylinder or part of generalized cone.

1. Introduction

A cyclic surface in Euclidean space E3 is a surface determined by a
smooth uni-parametric family of pieces of circles [4, 5]. The first exam-
ple of cyclic surface is a surface of revolution, that is, a surface which
is stable under a group of rotations that leave a straight-line point wise
fixed. The Riemann examples play a major role in the theory of minimal
surfaces [10]. Enneper [4,5] proved that for a cyclic minimal surface, the
planes containing the circles must be parallel and it is one of the ex-
amples obtained by Riemann. Nitsche [9] Proved that the surface must
be an open set of a sphere or, in non-spherical case, the circles must be
lie in parallel planes. In the latter case, the only possibilities are the
surfaces of revolution discovered by Delaunay [3].
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Let Γ = Γ(u) be an orthogonal smooth curve to each u-plane of the
foliation and denote by u its arc-length parameter. We assume that the
planes of the foliation are not parallel and let {t,n,b} be a moving frame
of the curve Γ, where t, n and b denote the tangent, principal normal
and binormal vectors respectively. Locally we parameterize the surface
M(u, v) by
(1)

X(u, v) = C(u)+r(u)
(
a cos[v] n+b sin[v] b

)
, v ∈ [0, 2π], a 6= b ∈ R

where r = r(u) > 0 and C = C(u) denote the center of each ellipse of
the foliation, the Frenet equations of the curve Γ are

(2)

 t′ = κn.
n′ = −κ t + τ b.
b′ = −τ n.

where the prime ′ denotes the derivative with respect to the u-parameter,
κ and τ are the curvature and torsion of Γ respectively. We assume that
κ 6= 0 because Γ is not straight line and let

(3) C′(u) = α t + β n + γ b

where α, β and γ are smooth functions on u.

Without loss of generality, we can assume that a = 1. It is worth
noting that when b = 1 the surface (1) is a cyclic surface foliated by a
smooth one-parameter family of circles in three dimensional Euclidean
space E3 which studied in Lopez [6–8]. In [6] he studied a surface in Eu-
clidean three space E3 with constant Gauss curvature foliated by circles.
In [7, 8] he studied surfaces in Euclidean 3-space that satisfy a special
Linear Weingarten (LW) condition of linear type as κ1 = c1κ2 + c2 and
c3H + c4K = c5, where ci i = 1, 2, ..., 5 are real numbers and κ1and k2
denote the principal curvatures while H and K denotes the the mean
and Gaussian curvatures at each point of the surface. Also, he proved
that:

(1): All cyclic surface with non-zero constant Gauss curvature must
be a surface of revolution [6].

(2): All cyclic LW-surface with κ1 = c1κ2 must be of Riemann type
[7].
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(3): All cyclic LW-surface with c3H + c4K = c5 must be a surface of
revolution, a Riemann minimal surface or a generalized cone [8].

In this paper, we will study the surface foliated by an ellipse. In this
case, the surface takes the form (1) such that b 6= 1. We will prove the
following main results for constant Gaussian curvature:

Theorem 1.1. The surface (1) foliated by an ellipse in E3 is a flat
if and only if it is a part of generalized cylinder or part of generalized
cone.

Theorem 1.2. The surface (1) foliated by an ellipse has constant
Gaussian curvature K in E3 if and only if K = 0.

On the other hand, Let M be a surface in R3 foliated by a pieces of
ellipses in parallel planes. Without loss of generality, we assume that
the planes of the foliation are parallel to x1x2-plane. Let

(4) X(u, v) =
(
f(u) + r(u) cos[v], g(u) + b r(u) sin[v], u

)
, u ∈ I, v ∈ J,

be a local parametrization of M . Then, we have the following theorem:

Theorem 1.3. Let M be a surface (4) in E3 with constant Gaussian
curvature K = K0 and foliated by pieces of ellipses in parallel planes.
Then

(1): K0 = 0.
(2): M must be parameterized, up a rigid motion of E3, as

(5) X(u, v) =
(
f1 u+f0, g1 u+g0, u

)
+
(
r1 u+r0

)(
cos[v], b sin[v], 0

)
,

where f0, f1, g0, g1, r0, r1, b ∈ R.

As a corollary of both theorem 1.2 and 1.3, we obtain:

Corollary 1.4. All surfaces foliated by an ellipses with constant
Gauss curvatures must be a surfaces of revolution.

2. Gaussian curvatures

Consider M a surface in E3 parameterized by X = X(u, v) and let U
denote the unit normal vector field on M . The tangent vectors to the
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parametric curves of the surface X(u, v) are

Xu =
∂X

∂ u
, Xv =

∂X

∂ v
,

and the unit normal on the surface is given by

U =
Xu ×Xv

|Xu ×Xv|
where × denotes the cross product of E3. The first fundamental qua-
dratic form on the surface is

I = 〈 dX, dX 〉 = E du2 + 2F du dv +Gdv2

with the first fundamental coefficients

E = 〈Xu,Xu 〉, F = 〈Xu,Xv 〉, G = 〈Xv,Xv 〉.
The second fundamental quadratic form is given by

II = 〈U, d2X 〉 = e du2 + 2f du dv + g dv2,

with second fundamental coefficients

e = 〈U,Xuu 〉, f = 〈U,Xuv 〉, g = 〈U,Xvv 〉.
Under this parameterization of the surface X = X(u, v), the Gaussian
curvature K is

(6) K =
e g − f 2

E G− F 2
.

The proof of our results depend on we can reduce the equation K =
constant to an expression as a linear combination of the trigonometric
function {cos[i v], sin[i v]}, i ∈ N, namely,

(7)
8∑

i=0

(
Ei cos[i v] + Fi sin[i v]

)
= 0

and Ei and Fi are functions on the variable u. In particular, the co-
efficients must vanish. The work then is to compute explicitly these
coefficients Ei and Fi by successive manipulations. The author were
able to obtain the results using the symbolic program Mathematica to
check their work. The computer was used in each calculation several
times, giving understandable expressions of the coefficients Ei and Fi.

Although the explicit computation of the Gaussian curvature K can
be obtained, for example, by using the Mathematica programme, its
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expression is some cumbersome. However, the key in our proofs lies that
one can write K as

(8) K =
P
(

cos[i v], sin[i v]
)

Q
(

cos[i v], sin[i v]
) =

∑4
i=0

(
Ai cos[i v] +Bi sin[i v]

)∑8
i=0

(
Ci cos[i v] +Di sin[i v]

) .
The assumption of the constancy of the scalar curvature K implies that
(8) converts into

(9) K Q(cos[i v], sin[i v])− P(cos[i v], sin[i v]) = 0.

Equation (9) means that if we write it as a linear combination of the
functions {cos[i v], sin[i v]} namely, (7), the corresponding coefficients
must vanish. From here, we will be able to describe all surfaces foliated
by an ellipses with constant Gaussian curvature. As we will see, it is not
necessary to give the (long) expression of K but only the coefficients of
higher order for the trigonometric functions.

We distinguish the cases K = 0 and K 6= 0. Without loss of gener-
ality, we can put τ(u) = λ(u)κ(u) and β(u) = µ(u)κ(u), where λ and µ
are functions of u.

3. Proof Theorem 1.1

In this section we assume that K = 0 on the surface X(u, v). From
(9), we have

P(cos[i v], sin[i v]) =
4∑

i=0

(Ai cos[i v] +Bi sin[i v]) = 0.

Then the work consists in the explicit computations of the coefficients Ai

and Bi. We distinguish different cases that fill all possible cases. Since

(10) B4 =
b r2 κ3

2

[
2µ γ − (1− b2)

(
r2 λ′ − 2λµα

)]
must be vanished, then we have two possibilities for µ as the following:

3.1. When µ 6= 0 then γ =
(b2 − 1)

(
2λµα− r2 λ′

)
2µ

. A straightfor-

ward computation shows that:

(11) A3 = −b2 κ3
[
3 f α−

(
4µ r′ − r µ′

)
r
]
,
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where f =
[
(b2 − 1)λ2 − 1

]
r2. According to the condition A3 = 0, let

us distinguish two possibilities of f as as the following:

3.1.1. When f 6= 0 then α =

(
4µ r′ − r µ′

)
r

3 f
. From B2 = 0 and B3 =

0, their imply

(12)

(b2 − 1)κ f r2
(
2 f r′ − r f ′

)
µ′′ = 4 f κ3 µ

[
b2 f

(
3 r2 r′ − 4µ2 r′ + r µµ′

)
+b2 r2 µ

(
4µ r′ − r µ′

)
− 3 f2 r′

]
+ (1− b2)

[
6 f3 k3 µ r′

+4κ f ′
(
r µ′ − 4µ r′

) [
8µ2 r′ + r

(
f ′ − 2µµ′

)]
+ f2

(
40κµ r6′3

−2 r2 r′ κ′ µ′ + r
[
3µκ3 f ′ + 8µκ′ r′2 − 8κ r′

(
2 r′ µ′ + µ r′′

)])

+f

(
64κµ3 r′3 + r3 κ′ µ′ f ′ − 4κµ r r′2

[
3 f ′ + 8µµ′

]
+r2

[
6κµ′ r′ f ′ + 4µ

(
κ r′ µ′2 + f ′

[
κ r′ − r′ κ′

])])]
,

(13)

2κµ f r2
(
f − r2

)
f ′′ = 4κµ2 r3 f ′

(
r µ′ − 4µ r′

)
+r f

[
µ

(
κ
[
r f ′2 + 32 r µ2 r′2 + 4 f ′ r′

(
4µ2 − 3 r2

)]
− 2 r3 f ′ κ′

)

−2κ r µ′
[
f ′
(
r2 + 2µ2

)
+ 4µ2 r r′

]]
+4 f3

(
r κµ r′′ − r

[
r µ κ′ + κ

(
4µ r′ + r µ′

)])
+2 f2

[
4κµ r r′

(
f ′ + µµ′

)
− 16κµ3 r′2 + r2

(
10κµ r′2 + µκ f ′

+κµ′ f ′
)

+ 2 r3
[
r′
(
µκ′ + κµ′

)
− κµ r′′

]]
.

From the above equation, we will consider two cases:
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3.1.1.1 f 6= f0 r
2, for all arbitrary constant f0. If we substitute µ′′

and f ′′ from (12) and (13), in the coefficient B1 we obtain the following
condition:
(14)(

2 f r′ − r f ′
) [(

r µ′ − 4µ r′
)
µ− 3 f r′

] [(
r µ′ − 4µ r′

)2
− 9 f 2 κ2

]
= 0.

The above condition reduces to two solutions: µ′ =
4µ r′ ± 3κ f

r
and

µ′ =

(
3 f + 4µ2

)
r′

µ r
.

(I): µ′ =
4µ r′ + 3κ f

r
. If we substitute µ′ from this equation and

µ′′ from (12), in the condition µ′′ − dµ′

du
= 0, then we can obtain the

following condition:

(15)
(
κµ− r′

) [
5 (b2 − 1) (r f ′ − 2 f r′) + 4 b2 κµ (f − r2)

]
= 0.

The above condition yields two solutions:

(I-A): f ′ = 2
[f r′
r
− 2 b2 κµ (f − r2)

5 (b2 − 1) r

]
. Again the condition f ′′ −

df ′

du
= 0 reduced that:

(16)
(
f − r2

) [
2 (14 b2 − 15)κµ− 15 (b2 − 1) r′

]
= 0.

Because f 6= r2, the above condition leads to r′ =
2 (14 b2 − 15)κµ

15 (b2 − 1)
.

Now, a straightforward computation shows that, the remain coefficients
are:
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(17)

A0 =
b2 r κ4

50 (b2 − 1)

[
57 b2 r2 − 9

(
218 b2 − 225

)
f −

(
51 b2 − 55

) (
71 b2 − 75

)
µ2

b2 − 1

]
,

A1 =
4 b2 r κ4

45 (b2 − 1)

[
18
(
b2 r2 −

(
34 b2 − 35

)
f
)
−
(
25 b2 − 27

) (
43 b2 − 45

)
µ2

b2 − 1

]
,

A2 =
2 b2 r κ4

225 (b2 − 1)

[
18
(

3 b2 r2 − 2
(
49 b2 − 50

)
f
)
−
(
2925− 5580 b2 + 2659 b4

)
µ2

b2 − 1

]
,

A4 = b2 r2 κ4
[
µ2 − f −

b2
(
r2 − f

)
25 (b2 − 1)

]
.

The system {A0 = 0, A1 = 0, A2 = 0, A4 = 0} is an algebraic system of
four unknown r, µ, f and b. Solving this system by Mathematica Pro-

gram, we have r = ±
√

6 f , µ = 0 and b = ±
√

5

2
which is contradiction

with µ 6= 0.

(I-B): µ =
r′

κ
. From this equation and equation of µ′ above, the

condition µ′ − dµ

du
= 0, gives

(18) r′′ =
3 f κ3 + 4κ r′2 + r r′ κ′

r κ
.

From A1 = 0, it implies

(19) f ′ =
18 f κ2 r′ + 16 r′3

r κ2
.

The condition f ′′ − df ′

du
= 0 gives

(20) r′2
(
f κ2 − r′2

) [
(17 f − 25 r2)κ2 − 8 r′2

]
= 0.

If r′ = 0, then µ = 0 contradiction. Therefore the above condition re-
duce two solutions:
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(I-B1): f =
1

17

[
25 r2 +

8 r′2

κ2

]
. Again the condition f ′ − df

du
= 0

leads r′2
(
κ2 r2 + r′2

)
= 0 which is contradiction.

(I-B2): f = −r
′2

κ2
. Again the condition f ′ − df

du
= 0 gives

(21) r r′ κ′ + κ
(
r′2 − r r′′

)
= 0.

The general solution of this equation is

(22) r(s) = r0 exp
[
r1

∫
κ(s) ds

]
, r0, r1 ∈ R.

Now, all coefficients Ai and Aj are equal zero. In this case we have:
(23)

λ(u) = m, m =

√
1 + r21
b2 − 1

, τ(u) = mκ(u),

α(u) = −κ(u) r(s), β(u) = r1 κ(u) r(u), γ(u) = −
(1 + r21

m

)
κ(u) r(u).

Therefore, the parametrization of the tangent of the curve C(u) is given
by:

C′(u) = −r′(u)

[
(1 + r21) b +m t

mr1

]
+ r1 κ(u) r(u) n.

Since λ(u) = m, then Γ(u) is a general helix, we can prove that:

− d

du

[
(1 + r21) b +m t

mr1

]
= r1 κ(u) n.

Hence, there exists C0 ∈ R3 such that

C(u) = C0 − r(u)

[
(1 + r21) b +m t

mr1

]
.

The parametrization of this surface is given by

(24) X(u, v) = C0 − r(u)

[
(1 + r21) b +m t

mr1
− cos[v] n− b sin[v] b

]
,

where b =

√
1 +m2 + r21

m
, r(u) = r0 exp

[
r1
∫
κ(u) du

]
such that the

curvature of the base curve κ(u) is arbitrary function of u and r0, r1 and
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the ratio
τ(u)

κ(u)
= m are arbitrary constants.

(II): µ′ =

(
3 f + 4µ2

)
r′

µ r
. If, we compute the µ′′ and compare it

with (12) we can obtain the following condition:

(25) r′′ =
κ2 µ2

r
+

3 r′2

r
+

3 f 2 r′
2

r µ2
+
r′ κ′

κ
.

If we substitute r′′ from the equation A1 = 0 and solve it we get:

(26) f ′ =
2 f κ2 µ2 r′ + 2

(
17 f + 16µ2

)
r′3

2 r
(
κ2 µ2 + r′2

) .

Again, by computing f ′′ from (26) and equating with f ′′ from (13), yields
the following condition:

r′2
(
f+µ2

) [
κ2 µ2

(
f−r2

) (
3κ2 µ2+7 r′2

)
+8
(

3 f−5 r2−2µ2
)
r′4
]

= 0.

The above condition implies three cases:

(II-A): f =
8
(
2µ2 + 5 r2

)
r′4 + κ2 µ2 r2

(
3κ2 µ2 + 7 r′2

)
3κ4 µ4 + 7κ2 µ2 r′2 + 24 r′4

. In this

case we have
(27)

A1 = − 32 b2 r κ r′3 (r2 + µ2)

µ3
(

3κ4 µ4 + 7κ2 µ2 r′2 + 24 r′4
)2 [3κ8 µ8 + 26κ6 µ6 r′2

+217κ4 µ4 r′4 + 314κ2 µ2 r′6 + 840 r′8
]
.

It is easy to see that A1 = 0 if r = r0, where r0 is an arbitrary constant.

The condition r′′ − d2r

du2
gives κ2 µ2 = 0 contradiction.

(II-B): When f = −µ2, then µ′ =
µ r′

r
which means µ(u) = µ1 r(u),

where µ1 is an arbitrary constant. From (25) we get r′′ = µ2
1 r κ

2 +
κ′ r′

r
. By solving this equation, one can obtain r(s) = R0 cosh

[
R1 +

µ0

∫
κ(s) ds

]
. Now, all coefficients Ai and Aj are zero. Therefore, we
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have:
(28)

λ(s) = m, m =

√
1 + µ2

1

b2 − 1
, τ(s) = mκ(u),

α(u) = −r
′(u)

µ1

, β(u) = µ1 κ(u) r(u), γ(u) = −(1 + µ2
1) r

′(u)

mµ1

.

The parametrization of the tangent of the curve C(u) can be written in
the following form:

C′(u) = −r′(u)

[
(1 + µ2

1) b +m t

mr1

]
+ µ1 κ(u) r(u) n.

Because λ(u) = m, then Γ(u) is a general helix and then:

− d

du

[
(1 + µ2

1) b +m t

mµ1

]
= µ1 κ(u) n.

So that, there exists C0 ∈ R3 such that

C(u) = C0 − r(u)

[
(1 + µ2

1) b +m t

mµ1

]
.

Now, the parametrization of this surface is given by

(29) X(u, v) = C0 − r(u)

[
(1 + µ2

1) b +m t

mµ1

− cos[v] n− b sin[v] b

]
,

where b =

√
1 +m2 + µ2

1

m
, r(u) = R0 cosh

[
R1 +µ0

∫
κ(u) du

]
such that

the curvature of the base curve κ(s) is arbitrary function of u and R0,

R1, µ1 and the ratio
τ(u)

κ(u)
= m are arbitrary constants.

3.1.1.2 f = f0 r
2, where f0 is an arbitrary constant. In this case,

the solution of the equation A4 = 0 is µ(u) = µ2 r(u), where µ2 =√
−f0 is an arbitrary constant. Here, all coefficients Ai and Aj are zero.
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Therefore, we can obtain the following:
(30)

λ(s) = m, m =

√
1 + µ2

2

b2 − 1
, τ(s) = mκ(u),

α(u) = −r
′(u)

µ2

, β(u) = µ2 κ(u) r(u), γ(u) = −(1 + µ2
2) r

′(u)

mµ2

.

Hence, the parametrization of the tangent of the curve C(u) is given by:

C′(u) = −r′(u)

[
(1 + µ2

2) b +m t

mr2

]
+ µ2 κ(u) r(u) n.

Since λ(u) = m, then Γ(u) is a general helix, we can prove that:

− d

du

[
(1 + µ2

2) b +m t

mµ2

]
= µ2 κ(u) n.

Therefore, there exists C0 ∈ R3 such that

C(u) = C0 − r(u)

[
(1 + µ2

2) b +m t

mµ2

]
.

Now, the parametrization of this surface is given by

(31) X(u, v) = C0 − r(u)

[
(1 + µ2

2) b +m t

mµ2

− cos[v] n− b sin[v] b

]
,

where b =

√
1 +m2 + µ2

2

m
, while r(u) is an arbitrary function of u. Also,

µ1 and the ratio
τ(u)

κ(u)
= m are an arbitrary constants while the curvature

and κ(s) of the base curve is arbitrary function of u.

3.1.2. When f = 0, then λ = ± 1√
b2 − 1

. For computation, A4 =

1

2
b2 r κ4 µ leads contradiction with µ 6= 0.
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3.2. µ = 0. Then B4 =
1

2
b (b2 − 1)κ3 r3 λ′ is vanished when λ(u) = λ0,

where λ0 is arbitrary constant. Then A4 = 3 b2
[
λ10
(
b2 − 1

)
− 1
]
r2 κ3 α,

that is α = 0 or λ =
1√
b2 − 1

. If α = 0, then
(
α, β, γ

)
= (0, 0, 0)

contradiction. Now, λ =
1√
b2 − 1

and the equation A4 = 0, lead γ(u) =

√
b2 − 1α(u). Therefore A2 =

2 b3 r2 κ3 r′√
b2 − 1

= 0, gives r(u) = r0, where r0

is arbitrary constant. Now all coefficients Ai, Bi are trivially zero and
the parametrization of the tangent of the curve C(u) is given by

C′(u) =
α(s)

m

(
m t + b

)
,

where m =
1√
b2 − 1

. Since Γ(u) is a general helix, then
d
(
m t + b

)
du

= 0

and hence, m t + b is a fixed vector. Therefore, there exists C0 ∈ R3

such that

C(u) = C0 +
(
m t + b

)
Ω(u),

where Ω(u) =
1

m

∫
α(u) du is arbitrary function of u. The parameteri-

zation of this surface is given by

(32) X(u, v) = C0+
(
m t+b

)
Ω(u)+c

(
m cos[v] n+

√
1 +m2 sin[v] b

)
,

where c =
r0
m

and m are arbitrary constants.

Remark 3.1. The developable surface (24) foliated by an ellipse is a

special surface of (31) when r(u) = r0 exp
[
r1
∫
κ(u) du

]
.

Remark 3.2. The developable surface (29) foliated by an ellipse is a

special surface of (31) when r(u) = R0 cosh
[
R1 + µ0

∫
κ(u) du

]
.

Lemma 3.3. The surface (1) foliated by an ellipse is developable if
and only if it takes the general forms (31) or (32).

Lemma 3.4. If the base curve Γ(u) is not a general helix, then the
surface (1) foliated by an ellipse is non-developable.
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Now, we will introduce the position vector of two obtained developable
surfaces foliated by an ellipse in Euclidean 3-space. Firstly, we write the
following Theorem

Theorem 3.5. The position vector C of a general helix whose tangent
vector makes a constant angle with a fixed straight line in the space, is
expressed in the natural representation form as follows:
(33)

C(u) =
√

1− n2

∫ (
cos
[√

1 +m2

∫
κ(u)du

]
, sin

[√
1 +m2

∫
κ(u)du

]
,m
)
du,

where m =
n√

1− n2
, n = cos[φ] and φ is the angle between the fixed

straight line e3 (axis of a general helix) and the tangent vector of the
curve C.

(1): The position vector X(u, v) =
(
x1, x2, x3

)
of the surface (31)

takes the following form:

(34)



x1 = r(u)

[(
Q−

√
1 +Q2 sin[v]

)
cos
[
Φ
]
− cos[v] sin

[
Φ
]]
,

x2 = r(u)

[(
Q−

√
1 +Q2 sin[v]

)
sin
[
Φ
]

+ cos[v] cos
[
Φ
]]
,

x3 =

√
1 +Q2 r(u)

mQ

[
Q sin[v]−

√
1 +Q2

]
,

where Q =
µ2√

1 +m2
, and Φ =

√
1 +m2

∫
κ(u)du. Note that in this

surface, r(s) and κ(s) are arbitrary function of the variable u while Q
and m are arbitrary constants. It is worth noting that for the above
surface we have

x21 + x22 =
(m2Q2

1 +Q2

)
x23.

So that, we can write the following Lemma:

Lemma 3.6. The developable surface (31) foliated by an ellipse is
represented a generalized cone in Euclidean 3-space.
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(2): The position vector of the surface (32) reduces to the following
form:

(35) X(u, v) =
(
X1, X2, X3

)
) =

(
−M0 sin

[
Θ
]
,M0 cos

[
Θ
]
,Ω

)

where M0 = mc, Θ = v−
√

1 +m2
∫
κ(u)du and Ψ = Ω(u) + c sin

[
Θ +

√
1 +m2

∫
κ(u)du

]
. Note that, Ω(u) and κ(u) are arbitrary functions

of the variable u while m and c are an arbitrary constant. It is easy to
see that, for the above surface the following condition is satisfied:

X2
1 +X2

2 = M2.

The above condition gives the following Lemma:

Lemma 3.7. The developable surface (32) foliated by an ellipse is
represents a generalized cylinder in Euclidean 3-space.

From the above, the main Theorem (1.1) is proved.

4. Proof Theorem 1.2

In this section, we assume that the the surface (1) has a non-zero
constant Gaussian curvature K. In this case equation (9) can be written
in the form

8∑
i=0

Ei(u) cos[i v] + Fi(u) sin[i v] = 0

One begin to compute the coefficients Ei and Fi. The first coefficient

E8 =
1

16
(b2 − 1)K κ4 r6

[
1− (b2 − 1)λ2

]
= 0,

leads to

λ = ± 1√
b2 − 1

.

The coefficient F6 becomes

F6 = 2 b (b2 − 1)K κ3 r4 µ
[
γ − α

√
b2 − 1

]
.

For vanishes the above coefficient, we have two possibilities:
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4.1. When µ(u) = 0, the coefficient E6 becomes:

E6 = (1− b2)K κ2 r4
(
α
√
b2 − 1− γ

)2
.

The vanishing ofE6 gives γ = α
√
b2 − 1. Now, F4 = 4 b3

√
b2 − 1K κ3 r5 r′ =

0, which means r = r0 where r0 is arbitrary constant. Finally, the coef-
ficient E4 = −b4K κ4 r6 leads to contradiction.

4.2. γ = α
√
b2 − 1. Now, F6 = b2 (b2 − 1)K κ4 r4 µ2 = 0 gives µ = 0

and this case has been discussed previously. Therefore the proof of the
Theorem 1.2 is completed.

5. Proof Theorem 1.3

Let M be a surface (4)in E3 with constant Gauss curvature K = K0

and foliated by a pieces of ellipses in parallel planes. If we put K0 =
P

W
in the computations of the Gauss curvature K, yields
(36)

W = r

[(
1 + g′2

) (
1− cos[2v]

)
+ b2

(
1 + f ′2) (1 + cos[2v]

)
+2 b

(
b r′2 + 2 r′

(
g′ sin[v] + b f ′ cos[v]) + 2 f ′ g′ sin[2v]

)]2
,

(37) P = −4 b
(
b r′′ + g′′ sin[v] + b f ′′ cos[v]

)
.

5.1. K0 6= 0. The identity (9) writes as:

4∑
i=0

(Ai cos[i v] +Bi sin[i v]) = 0.

A computations yields

(38)
A4 = −K0 r

2

(
b4 f ′4 − 6 b2 f ′2 g′2 + g′4 + (b2 − 1)

[
b2
(
1 + 2 f ′2

)
−
(
1 + 2 g′2

)])
,

B4 = 2 bK0 r f
′ g′
[
1 + g′2 − b2

(
1 + f ′2

)]
.
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According to the condition B4 = 0, we have distinguish three possi-
bilities as the following:

5.1.1. f ′ = 0 and f(u) = f0, where f0 is arbitrary constant. In this case

A4 =
K0 r

2

(
b2 − 1 − g′2

)2
= 0 which implies g(u) = ±

√
b2 − 1u + g0,

where g0 is an arbitrary constant and |b| > 1. Therefore the coefficient
A2 implies 8 (b2−1)K0 r r

′2 = 0 and thus r(u) = r0, where r0 is arbitrary
constant. In this case, A0 = 0, yields 4 b4K0 r0 = 0 contradiction.

5.1.2. g′ = 0 and g(u) = g0, where g0 is arbitrary constant. In this case

A4 =
K0 r

2

[
1−b2

(
1+f ′2)]2 = 0 which implies f(u) = ±

√
1− b2 u
b

+f0,

where f0 is an arbitrary constant and |b| < 1. Therefore the coefficient
A2 implies 8 (b2−1)K0 r r

′2 = 0 and thus r(u) = r0, where r0 is arbitrary
constant. With these conditions A0 = 4K0 r0 = 0 contradiction.

5.1.3. f ′ 6= 0 and g′ 6= 0 at some u-interval. Since B4 = 0, then

g′ = ±
√
b2
(

1 + f ′2
)
− 1. Taking in account A4 = 0, it follows

2 b2K0 r f
′2
[
b2
(
1 + f ′2)− 1

]
= 0,

which leads to f(u) =
(√ 1

b2
− 1
)
u + f0. Then, the coefficient A2 =

8 b2K0

(
b2 − 1

)
r r′ must be vanishes. Therefore r(u) = r0 and A0 =

−4K0 r0 = 0 contradiction.

5.2. K0 = 0. Identity (9) leads to P = 0. In view of the above expres-
sion of P , it follows that r′′ = f ′′ = g′′ = 0. As consequence, there are
constants r0, r1, f0, f1, g0 and g1 such that

(39)

 r(u) = r1 u+ r0,
f(u) = f1 u+ f0,
g(u) = g1 u+ g0,

that is, the functions f , g and r are linear on u and so, the surface is a
generalized cone. Therefore the proof of Theorem 1.3 is completed.
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