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PROJECTIVE REPRESENTATIONS OF A QUIVER
WITH THREE VERTICES AND TWO EDGES AS
R[z]-MODULES

JUNCHEOL HAN AND SANGWON PARK*

ABSTRACT. In this paper we show that the projective properties of
representations of a quiver QQ = e — e — @ as left R[x]-modules. We
show that if P is a projective left R-module then o — ~ 0 —— P[]

is a projective representation of a quiver @) as R[z]-modules, but
Plz] —=0——>0 is not a projective representation of a quiver

Q@ as R[z]-modules, if P # 0. And we show a representation
0 Plz] 2

Plz] of a quiver () is a projective representation,

if P is a projective left R-module, but piy] id Plz] 0 isnot

a projective representation of a quiver @) as R[z]-modules, if P #

0. Then we show a representation p[z] —4s p[y] %5 p[s] of &

quiver @ is a projective representation, if P is a projective left R-
module.

1. Introduction

A quiver is just a directed graph with vertices and edges (arrows) [1].
We may consider many different types of quivers. We allow multiple
edges and multiple arrows, and edges going from a vertex back to the
same vertex. Originally a representation of the quiver assigned a vector
space to each vertex - and a linear map to each edge (or arrow) - with the
linear map going from the vector space assigned to the initial vertex to
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the one assigned to the terminal vertex. For example, a representation
of the quiver ) = e — ¢ — e is ] L>VQL>V3, Vi, Vy and Vs are
vector spaces and f, g are linear maps (morphisms). Then we extend
this representation to the left R-modules, a representation of the quiver
Q=o 0 eis M 5 M, 5 M, My, My and M; are left R-
modules and «, 8 are R-linear maps. Throughout this paper a (the)
quiver () means a (the) quiver ) = e — o — e.

If M is a left R-module, then the polynomial M|z| is a left R[x]-
module defined by

r(mo + mix + mex? - - 4+ ma') = rmo + rmyx + rmez® + - 4+ rmyat
+1

x(mo + mix + mox?- - + m;x') = mox + mix® + moz® + -+ muat L.

We call M(z] a polynomial module. Similarly we can define the power
series M|[[z]] as a left R[x]-module and we call a power series modules.
The following diagram

g1 92

M, M, Ms

k1 ko k3
N, " N, " Ns
0 0 0

is commutative which means hik; = kogi, hoko = k3ge, and k3gog1 =
hohiky = hokogn.

In [3] a homotopy of a quiver was developed and in [2] a cyclic quiver
ring was studies. The theory of projective representations were devel-
oped in [4] and the theory of injective representations were studied in
[5]. Recently, in [7] injective covers and envelopes of representations of
linear quivers were studied, and in [6] properties of multiple edges of
quivers were studied.

DEFINITION 1.1. [9] A left R-module P is said to be projective if given
any surjective linear map o : M’ — M and any linear map h : P — M
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, there is a linear map g : P — M’ such that o0 o ¢ = h. That is

M —2—= M 0

can always be completed to a commutative diagram.

DEFINITION 1.2. Let My, My, M3, N1, No, N3, Py, Py, P3 be left R—modules,
and ky : M7 — Ny, ko : My — N, ks : M3 — N3 be onto R-linear maps.
A representation P N P, 2 pyof a quiver Q = o — o — o is

called a projective representation if every diagram of representations

(P B, Py f, P3)

b b

M;) (N, 2 A, N3) 0 0 0)

g1 92

M,y M, M;

k1 ko k3
Ni— =Ny —— N
0 0 0

can be completed to a commutative diagram as follows :

1 bj
(P1*>P2*2>P3)

(M1 25 My %0 M) = (N 5 Ny % Ny) ——~ (0—> 0 —=0).
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2. Projective representation of a quiver () as R[r]-modules

THEOREM 2.1. If P is a projective left R-module then .o P|z]

is a projective representation of a quiver @) as R[x]-modules.

Proof. Let My, My, M3, Ny, No, N3 be left R[z]-modules, and k; : M; —
Ni, ko : My — Na, k3 : M3y — N3 be onto R[z]-linear maps, and
f : Plz] — N3 be an R[z]-linear map. And consider the following dia-
grams

g1 92

M, M, M

o ko ks
Ny " Ny " N3
0 0 0

and

(0 ——0—— Pfz])

b

(M -2 My —2 M) (N, e Ny 20 V) 0 0 0).

Since P is a projective left R-module, there exists an R-linear map ¢ :
P — Mj such that kst = f|p. Define ¢ : Plz] — M3 by t(py + prz +
s 4 pa™) = t(po) + t(p1)T + - -+ + t(p,)x". Then

kst(po + prx + - -+ + ppa™)

= k3(t(po) + t(p1)x + - + t(pa)2")

= (kst)(po) + (kst)(p1)z + -+ - + (kst) (pn)z"
= [lp(po) + flp(p1)z + -+ flp(pn)2”

= f(po+ p1x + -+ + pux™).

So we have kst = f. Therefore, we can complete the following diagram
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(0 —=0—=P[z])

L

(My 2 My 22 My) 2 (N} 2 Ny 2 Ny) — (0 —= 0 —= 0)

as a commutative diagram. Hence, 0 — 0 — P[z] is a projective repre-
sentation of a quiver () as R[x]-modules.
O

REMARK 2.2. We see that Plz] —=0—>0 is not a projective rep-

resentation of a quiver ) as R[z]-modules if P # 0, because the following
diagram

(Plz] —0—0)

j« ||

(Plz] %> Plz] —= 0) —= (P[z] —= 0 —=0) —= (0 —= 0 —=0)

can not be completed as a commutative diagram with

Plz] -4~ Pla]

]

. l
Plx] 0
l
;o
Similarly, Plz]] —0—=0 is not a projective representation of a

quiver @ as R[z]-modules if P # 0.

COROLLARY 2.3. If P is a projective left R-module then
0 —= 0 — P[[z]] is a projective representation of a quiver Q) as R[x]-

N

I
Oi.

modules.
Let Z, denotes the ring of integers modulo n.

ExAaMPLE 2.4. Let R = Zg, then P = Z, is a projective Zg-module.
0 — 0 — Zy[x] is a projective representation of a quiver Q) as Zg[z|-

modules.
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THEOREM 2.5. A representation () P[z] —4~ Pz of a quiver

() is a projective representation, if P is a projective left R-module.

Proof. Let f : Plx] — Ny be an R[z]-linear map and k; : M; —
N, ky : My — Ny k3 : M3 — N3 be onto R|x]-linear maps and
choose hyf : Plx] — N3 as an R|z]-linear map. Consider the following
diagrams

g1 92
M,y M, Ms
k1 ko k3

M " Ny " N3

and

(0 — Pla] —% P[a])

b

(M; 2 My —2 M) —— (N} e N, 20 ) (0 —= 0 —>0).

Then since P is a projective left R-module, there exists ¢ : P — M, such
that k’gt = f|p

Define t : P[x] — My by t(ng+nix +---+n;z') = t(ng) +t(ny)x +- -+
t(n;)z". Then

kot(ng 4+ nix 4 - -+ + ngz’)

= ko(t(no) + t(ny)x + - - + t(n;)a")

= (kot)(no) + (hat)(n1)x + - - - + (hot) (n)2’
= flp(no) + flp(ny)x + - + flp(ni)a’

= f(no +mx + -+ n;z’).

Now let got : Plx] — M3 be an R[z]-linear map, then kzgot = hokat =
haf. So we have the following commutative diagram
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(0 ——= Plz] % Pla])

,ﬁ»i;F~¢;@~y” | s

(MI‘LMQﬁM@ S VAT AL I A 0 0 0).

Hence, P is a projective left R-module implies a representation

0 Plz] id Plz] is a projective representation of a quiver Q).
O
REMARK 2.6. We see that Plz] _d Plz] —=0 1s not a projective

representation of a quiver @) as R[x]-modules if P # 0, because the
following diagram

(Pla] %= P[z] — 0)

oo

id

(Pla] %> Pla] ~% Pla]) — (P[a] % P[z] —= 0) — (0 —= 0 —= 0)

can not be completed as a commutative diagram with

Plz] =%~ Plz] - Plz]

d

Plz] -4 P[x] 0
0 0 0.
Similarly, P[[z]] i P[[x]] — 0 s not a projective representation

of a quiver @) as R[x]-modules if P # 0.

COROLLARY 2 7. If P is a projective left R-module then
0 — PJ[[z]] _d P[] is a projective representation of a quiver () as

.

R|z]-modules.

EXAMPLE 2.8. Let R = Zg, then P = Z, is a projective Zg-module.
0 — Zo[z] _d Zo|x] is a projective representation of a quiver @) as

Zg|z]-modules.
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THEOREM 2.9. A representation ply] 2. p[z] —4s p|y] of a quiver
() is a projective representation, if P is a projective left R-module.

Proof. Let f : Plx] — Nj be an R[z]-linear map and k; : M; — N,
ky : My — Ny k3 : My — N3 be onto R|x]-linear maps and choose

hif : Plz] — Ny and hohyf : Plx] — N3 as R[x]-linear maps. And
consider the following diagrams

g1 92

M, M, M;

k1 ko k3
Ny ——= Ny ——= Nj
0 0 0

and

(Pla] %= Plz] —% Pla])

if \thf ithlf

(My 2 My 2 M) —— (N} 2 Ny —"20 ) (0 —= 0 —=0).

Then since P is a projective left R-module, there exists ¢t : P — M, such
that kit = fp.

Define t : P[x] — My by t(ng+mnx+---+n;2') = t(ng) +t(ny)z+- -+
t(n;)z". Then

kit(ng 4+ nix + - - - + nga’)

= ki(t(no) + t(ny)x + - - - + t(n;)x")

= (k1t)(no) + (kat)(n1)x + - - - + (Kat) (ni)a’
= flp(no) + flp(n)x + - + flp(ni)a’

= f(no +mx + -+ nat).

Now let git : Plx] — My be an R[z]-linear map, then kygit = hikit =
hif. And let gogit : P[z] — Mz be an R[z]-linear map. Then k3gogit =
hokogit = hohikit = hahif. So we have the following commutative
diagram
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~_(Pla] "% Pla] = Pla])
B Ve VA TV

(My 5 My 22 My) = (N~ Ny~ Ng) —= (0 —= 0 —> 0).

Hence, P is a projective left R-module implies a representation

Plx] id Plx] id Plx] is a projective representation of a quiver ).
[
COROLLARY 2.10. If P is a projective left R-module then
PJ[z]] i PJ[z]] _id PJ[z]] is a projective representation of a quiver
Q) as R[z]-modules.

EXAMPLE 2.11. Let R = Zg, then P = Z5 is a projective Zg-module.
Zylx] =L Zy[x] —L> Z,[x] Is a projective representation of a quiver @

as Zg|x]-modules.
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