# LATTICE ORDERED SOFT NEAR RINGS 

Tahir Mahmood, Zia Ur Rehman, and Aslihan Sezgin*


#### Abstract

Keeping in view the expediency of soft sets in algebraic structures and as a mathematical approach to vagueness, in this paper the concept of lattice ordered soft near rings is introduced. Different properties of lattice ordered soft near rings by using some operations of soft sets are investigated. The concept of idealistic soft near rings with respect to lattice ordered soft near ring homomorphisms is deliberated.


## 1. Introduction

In daily life human beings face different kinds of uncertainties in fields like environmental sciences, economics, social sciences, engineering and medicine etc. To tackle such uncertainties different kinds of tools are used, such as fuzzy sets [27] and rough sets [17] etc. Although these tools are very affective $[2,12]$ but have their own limitations. In 1999, Molodtsov [16] came to front and introduced the concept of soft sets, which solved these uncertainties more effectively.

Molodtsov [16] when proposed the idea of soft set theory, he pointed out some basic results, and also predicted its future work. After that Maji et al [14] defined some basic operations on soft sets and after that applied the concept of soft sets in decision making problems [15]. But

[^0]later on Ali et al [3] proved that the operations defined in [14] have some shortcomings. In algebraic structures Aktas and Cagman [1] were the first who introduced the concept of soft groups. Aslam and Qurashi [5] also contributed in soft groups. Feng et al [8] initiated the concept of soft semirings and Sezgin et al [19] worked on soft near rings. Jun [11] initiated the idea of soft BCK/BCI-algebras. Ali et al [4] worked on lattice ordered soft sets and applied this concept in daily life problems. More recently Ma et al [13] applied the concept of soft sets in decision making methods based on certain hybrid soft set models. Zhan and others did a spade work in algebraic structures, decision making methods, fuzzy sets and rough sets by using the concept of soft sets [24-26]. For more applications of soft sets one can also see $[6,9,20,21,23]$.

In this paper the concept of lattice ordered soft near rings is introduced. Different properties of lattice ordered soft near rings by using the binary operations are investigated. The concept of idealistic soft near rings with respect to lattice ordered soft near ring homomorphisms is discussed.

An algebraic system $(\tilde{N},+, \cdot)$ is known to be right near ring $(N R)$ if it satisfies the following axioms:

1. $(\tilde{N},+)$ froms a group (not necessarily abelian),
2. $(\tilde{N}, \cdot)$ forms a semigroup,
3. $(a+b) \cdot c=a \cdot c+b \cdot c, \forall a, b, c \in \tilde{N}$.

Note that $a \cdot 0=0 \& a \cdot(-b)=-a \cdot b$, but $0 \cdot b \neq 0$, for $a$, $b \in \tilde{N}$, where $\tilde{N}$ will always denote a $N R$, if otherwise stated. From now onward instead of writing $a \cdot b$ we will write $a b$.

An element $d \in \tilde{N}$ is called distributive if $\forall n, n_{1} \in \tilde{N}, d\left(n+n_{1}\right)=$ $d n+d n_{1}$. We denote and define $\tilde{N} d=\{d \in \tilde{N}: d$ is distributive $\}$. Let $(M,+) \leq(\tilde{N},+)$ for $\tilde{N}$ with for all $a, b \in M \Rightarrow a b \in M$. Then $M$ is known as subnear ring $(\operatorname{sub} N R)$ of $\tilde{N}$. A normal subgroup $I$ of $(\tilde{N},+)$ is called an ideal of $\tilde{N}$ if $I \tilde{N}$ is subset of $\tilde{N}$, we write it as $I \tilde{N} \subseteq I$, and $\forall n, n_{1} \in \tilde{N}, i \in I, \quad n\left(n_{1}+i\right)-n n_{1} \in I$. Then we write $I \triangleleft \tilde{N}$. Let $\tilde{N}_{1}$ and $\tilde{N}_{2}$ be two $N R \mathrm{~s}, g: \tilde{N}_{1} \rightarrow \tilde{N}_{2}$ is called a $N R$ homomorphism if $\forall n_{1}, n_{2} \in \tilde{N} g\left(n_{1}+n_{2}\right)=g\left(n_{1}\right)+g\left(n_{2}\right)$ and $g\left(n_{1} n_{2}\right)=g\left(n_{1}\right) g\left(n_{2}\right)$ [18]. For all undefined concepts about prime $N$-ideals, we refer to [10].

Definition 1.1. [16] Let $\tilde{N}$ be a preliminary universe set and the parameter set be $E$. Let $P(\tilde{N})$ represent the power set of $\tilde{N}$ and $A \subseteq E$.

Then a pair $(F, A)$ is known as soft set $(S S)$ over $\tilde{N}$, where $F$ is a mapping $F: A \longrightarrow P(\tilde{N})$.

In other sense a $S S$ over $\tilde{N}$ is a parametrized family of subsets of the universe $\tilde{N}$, for $e \in A, F(e)$ may be considered as the set of $e$ approximate elements of the $S S(F, A)$.

Throughout in this section collection of all soft sets over $\tilde{N}$ will be represented by $S S(\tilde{N}), E_{N}$ will denote a parameter set and $A_{N}, B_{N} \subseteq$ $E_{N}$, if otherwise stated.

Definition 1.2. [14] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$. $\left(F, A_{N}\right)$ is known a soft subset of $\left(G, B_{N}\right)$ if

1) $A_{N} \subseteq B_{N} \quad \&$
2) $\forall e \in A_{N}, F(e)$ and $G(e)$ are the same approximations.

This relation is represented by $\left(F, A_{N}\right) \subseteq\left(G, B_{N}\right)$. Similarly $\left(F, A_{N}\right)$ is known a soft super set of $\left(G, B_{N}\right)$ if $\left(G, B_{N}\right)$ is a soft subset of $\left(F, A_{N}\right)$. This relationship is represented by $\left(F, A_{N}\right) \supseteq\left(G, B_{N}\right)$.

Definition 1.3. [14] If $\left(F, A_{N}\right)$ is a soft subset of $\left(G, B_{N}\right)$ and $\left(G, B_{N}\right)$ is soft subset of $\left(F, A_{N}\right)$, then $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ are said to be equal. It is represented by $\left(F, A_{N}\right)=\left(G, B_{N}\right)$.

Definition 1.4. [14] $\left(F, A_{N}\right) \in S S(\tilde{N})$ is known to be a null $S S$ represented by $\phi$ if $\forall e \in A_{N} \Rightarrow F(e)=\emptyset$ (null-set).

Definition 1.5. [14] $\left(F, A_{N}\right) \in S S(\tilde{N})$ is known to be an absolute $S S$ represented by $\hat{A}_{N}$ if $\forall e \in A_{N} \Rightarrow F(e)=\tilde{N}$.

Definition 1.6. [8] Let $\left(F, A_{N}\right) \in S S(\tilde{N})$. Support of $\left(F, A_{N}\right)$ is denoted and defined by $\operatorname{Supp}\left(F, A_{N}\right)=\left\{e \in A_{N}: F(e) \neq \emptyset\right\}$.

Definition 1.7. [14] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$. The binary operation $A N D$ of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{\wedge}\left(G, B_{N}\right)=$ $\left(H, A_{N} \times B_{N}\right)$ and defined by $H(\alpha, b)=F(\alpha) \cap G(b) \forall(\alpha, b) \in A_{N} \times B_{N}$.

Definition 1.8. [14] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$. The binary operation $O R$ of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{\vee}\left(G, B_{N}\right)=$ $\left(H, A_{N} \times B_{N}\right)$ and defined as $H(\alpha, b)=F(\alpha) \cup G(b) \forall(\alpha, b) \in A_{N} \times B_{N}$.

Definition 1.9. [14] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$. Then union of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{U}_{B}\left(G, B_{N}\right)=\left(H, C_{N}\right)$, where $C_{N}=A_{N} \cup B_{N}$ and $\forall \varsigma \in C_{N}$

$$
H(\varsigma)= \begin{cases}F(\varsigma) & \text { if } \varsigma \in A_{N}-B_{N} \\ G(\varsigma) & \text { if } \varsigma \in B_{N}-A_{N} \\ F(\varsigma) \cup G(\varsigma) & \text { if } \varsigma \in A_{N} \cap B_{N}\end{cases}
$$

Definition 1.10. [14] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$ such that $C_{N}=$ $A_{N} \cap B_{N} \neq \emptyset$. Intersection of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{\cap}\left(G, B_{N}\right)=\left(H, C_{N}\right)$ and defined by $H(\varsigma)=F(\varsigma)$ or $G(\varsigma) \forall$ $\varsigma \in C_{N}$.

Definition 1.11. [3] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$ such that $C_{N}=$ $A_{N} \cap B_{N} \neq \emptyset$. Restricted union of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{U_{R}}\left(G, B_{N}\right)=\left(L, C_{N}\right)$ and defined by $L(\varsigma)=F(\varsigma) \cup G(\varsigma) \forall$ $\varsigma \in C_{N}$.

Definition 1.12. [3] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$ such that $C_{N}=$ $A_{N} \cap B_{N} \neq \emptyset$. Restricted intersection of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{\cap_{R}}\left(G, B_{N}\right)=\left(H, C_{N}\right)$ and defined by $H(\varsigma)=F(\varsigma) \cap$ $G(\varsigma) \forall \varsigma \in C_{N}$.

Definition 1.13. [3] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S S(\tilde{N})$. Extended intersection of $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is represented by $\left(F, A_{N}\right) \widetilde{\cap_{E}}\left(G, B_{N}\right)=$ $\left(H, C_{N}\right)$, where $C_{N}=A_{N} \cup B_{N}$ and $\forall \varsigma \in C_{N}$ and defined as

$$
H(\varsigma)= \begin{cases}F(\varsigma) & \text { if } \varsigma \in A_{N}-B_{N} \\ G(\varsigma) & \text { if } \varsigma \in B_{N}-A_{N} \\ F(\varsigma) \cap G(\varsigma) & \text { if } \varsigma \in A_{N} \cap B_{N}\end{cases}
$$

Definition 1.14. [7] A partially ordered set $(P O S) £$ is said to be a lattice iff for every $\alpha, b \in £, \sup \{\alpha, b\}, \inf \{\alpha, b\} \in £$.

In our next study $E_{N}$ will always denote a lattice, if otherwise stated.
Definition 1.15. [4] A $S S\left(F, A_{N}\right)$ is known as lattice ordered soft set $(L O S S)$ over $\tilde{N}$ (anti-lattice ordered soft sets $(A L O S S)$ over $\tilde{N})$ if $a_{1} \preceq \alpha_{2} \Rightarrow F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right)\left(F\left(\alpha_{1}\right) \supseteq F\left(\alpha_{2}\right)\right), \forall \alpha_{1}, \alpha_{2} \in A_{N}$.

Definition 1.16. [19] Let $\left(F, A_{N}\right)$ be a non-null $S S$ over $\tilde{N}$. Then $\left(F, A_{N}\right)$ is known as soft near ring $(S N R)$ over $\tilde{N}$ if $F(a)$ is the $\operatorname{subNR}$ of $\tilde{N}, \forall \alpha \in \operatorname{Supp}\left(F, A_{N}\right)$.

From now onward, if stated otherwise, collection of all soft near rings over $\tilde{N}$ will be denoted by $\operatorname{SNR}(\tilde{N})$.

Definition 1.17. [19] Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in S N R(\tilde{N})$. Then $\left(F, A_{N}\right)$ is known sub soft near ring $(\operatorname{subSNR})$ of $\left(G, B_{N}\right)$ if $A_{N} \subseteq B_{N}$ and $F(\alpha)$ is a $\operatorname{sub} N R$ of $G(\alpha), \forall \alpha \in \operatorname{Supp}\left(F, A_{N}\right)$.

## 2. Lattice Ordered Soft Near Rings

In this section we define lattice ordered soft near rings, anti-lattice ordered soft near rings and discuss the associated results.

Definition 2.1. A soft set $\left(F, A_{N}\right)$ over $\tilde{N}$ is said to be lattice (antilattice) ordered soft near ring over $\tilde{N}$ iff
(1) $F(\alpha)$ is a $\operatorname{sub} N R$ of $\tilde{N} \forall \alpha \in A_{N}$,
(2) If $\alpha_{1} \preccurlyeq \alpha_{2}$ then $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right),\left(F\left(\alpha_{1}\right) \supseteq F\left(\alpha_{2}\right)\right)$, for any $\alpha_{1}$, $\alpha_{2} \in A_{N,}$.

Definition 2.2. From now onward $\operatorname{LOSNR}(\tilde{N})$ will denote the collection of all lattice ordered soft near rings over $\tilde{N}$ and $\operatorname{ALOSNR}(\tilde{N})$ will denote the collection of all anti-lattice ordered soft near rings over $\tilde{N}$.

Definition 2.3. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. $\left(F, A_{N}\right)$ is said to be LOS subNR of $\left(G, B_{N}\right)$ if it satisfies the following conditions:
(1) $A_{N} \subseteq B_{N}$
(2) $F(\alpha)$ is $\operatorname{subNR}$ of $G(b)$ for $\alpha \in \operatorname{Supp}\left(F, A_{N}\right)$.

Example 2.4. Consider $\tilde{N}=\mathbb{Z}_{8}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ with $\overline{0} \preccurlyeq \overline{1} \preccurlyeq$ $\overline{2} \preccurlyeq \overline{3} \preccurlyeq \overline{4} \preccurlyeq \overline{5} \preccurlyeq \overline{6} \preccurlyeq \overline{7}$. Take $A_{N}=\{\overline{1}, \overline{2}, \overline{4}\}$ define $F: A_{N} \longrightarrow P(\tilde{N})$ by
$F(\alpha)=\{n \in \tilde{N}: \alpha n=\overline{0}\}$, then $\left(F, A_{N}\right)=\{F(\overline{1})=\{\overline{0}\}, F(\overline{2})=$ $\{\overline{0}, \overline{4}\}, F(\overline{4})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}\}$ is $\operatorname{LOSNR}$.

Now let $B_{N}=\{\overline{1}, \overline{2}, \overline{4}\}$ and let define $G: B_{N} \longrightarrow P(\tilde{N})$ by
$G(b)=\{n \in \tilde{N}: b n \in\{\overline{0}, \overline{4}\}\}$, then $G(\overline{1})=\{\overline{0}, \overline{4}\}, G(\overline{2})=$ $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}, G(\overline{4})=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}, \Longrightarrow\left(G, B_{N}\right)=\{G(\overline{1})=\{\overline{0}, \overline{4}\}$, $G(\overline{2})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}, G(\overline{4})=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}\}$ is $\operatorname{LOSNR}$.

Now for $\overline{1} \in \operatorname{Supp}\left(F . A_{N}\right), F(\overline{1})=\{\overline{0}\}$ is $\operatorname{subNR}$ of $G(\overline{1})=\{\overline{0}, \overline{4}\}$, for $\overline{2} \in \operatorname{Supp}\left(F, A_{N}\right), F(\overline{2})=\{\overline{0}, \overline{4}\}$ is $\operatorname{subNR}$ of $G(\overline{2})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$, for $\overline{4} \in$ $\operatorname{Supp}\left(F, A_{N}\right), F(\overline{4})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is $\operatorname{subNR}$ of $G(\overline{4})=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ with $A_{N} \subseteq B_{N}$. So $\left(F, A_{N}\right)$ is a LOS subNR of $\left(G, B_{N}\right)$.

Theorem 2.5. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then, $\left(F, A_{N}\right)$ $\widetilde{\wedge}\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, whenever $\left(F, A_{N}\right) \widetilde{\wedge}\left(G, B_{N}\right)$ is non-null $S S(\tilde{N})$.

Proof. As by Definition 1.7 we know that $(F, A)_{N} \widetilde{\wedge}\left(G, B_{N}\right)=\left(H, C_{N}\right)$ with $C_{N}=A_{N} \times B_{N}$. Then for any $\alpha \in A_{N}, b \in B_{N}$ and for $H(\alpha, b)=$ $F(\alpha) \cap G(b)$, where $F(\alpha)$ and $G(b)$ are subN $R$ over $\tilde{N}$. As $\left(H, A_{N} \cap B_{N}\right)$ is
non-empty then $F(\alpha) \cap G(b) \neq \emptyset$. Also we know that intersection of any number of $\operatorname{subNRs}$ of $\tilde{N}$ is $\operatorname{subNR}$ over $\tilde{N}$. So $H(\alpha, b)=F(\alpha) \cap G(b)$ is subNR over $\tilde{N}$. Hence $\left(H, A_{N} \widetilde{\cap} B_{N}\right)$ is $S N R$ over $\tilde{N}$.

Now we have to show that ( $H, A_{N} \widetilde{\cap} B_{N}$ ) contains lattice order. Since $A_{N}, B_{N} \subseteq E_{N}$ so partial order is promoted into $A_{N}$ and $B_{N}$ from $E_{N}$. Now for $\alpha_{1} \preceq_{A_{N}} \alpha_{2}$ we have $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right) \forall \alpha_{1}, \alpha_{2} \in A_{N}$, for $b_{1} \preceq_{B_{N}} b_{2}$ we have $G\left(b_{1}\right) \subseteq G\left(b_{2}\right) \quad \forall b_{1}, b_{2} \in B_{N}$. Now $\preceq$ is the partial order on $C_{N}$ which is transferred by partial orders on $A_{N}$ and $B_{N}$, therefore for any $\left(\alpha_{1}, b_{1}\right),\left(\alpha_{2}, b_{2}\right) \in C_{N}$ if $\left(\alpha_{1}, b_{1}\right) \preceq\left(\alpha_{2}, b_{2}\right)$ then $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right)$ and $G\left(b_{1}\right) \subseteq G\left(b_{2}\right)$ implies $F\left(\alpha_{1}\right) \cap G\left(b_{1}\right) \subseteq F\left(\alpha_{2}\right) \cap G\left(b_{2}\right) \Rightarrow H\left(\alpha_{1}, b_{1}\right) \subseteq$ $H\left(\alpha_{2}, b_{2}\right)$.

Hence $\left(F, A_{N}\right) \widetilde{\wedge}\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.
Remark 2.6. The binary operation $O R$ of two $L O S N R$ s may or may not be a $L O S N R$.

Example 2.7. Consider the nearring $\tilde{N}=\mathbb{Z}_{8}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ with $\overline{0} \preceq \overline{1} \preceq \overline{2} \preceq \overline{3} \preceq \overline{4} \preceq \overline{5} \preceq \overline{6} \preceq \overline{7}$. Let $A_{N}=\{\overline{2}, \overline{4}\}$ and define $F: A_{N} \rightarrow P(\tilde{N})$ by
$H(\alpha)=\{n \in \tilde{N}: \alpha n=\overline{0}\}$, then $\left(F, A_{N}\right)=\{F(\overline{2})=\{\overline{0}, \overline{4}\}, F(\overline{4})=$ $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}\}$.

Now take $B_{N}=\{\overline{1}, \overline{2}, \overline{4}\}$ and define $G: B_{N} \rightarrow P(\tilde{N})$ by
$G(b)=\{n \in \tilde{N}: b n \in\{\overline{0}, \overline{4}\}\}$, then $\left(G, B_{N}\right)=\{G(\overline{1})=\{\overline{0}, \overline{4}\}$, $G(\overline{2})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}, \quad G(\overline{4})=\tilde{N}\}$. Here $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

Now $A_{N} \times B_{N}=\{(\overline{2}, \overline{1}),(\overline{2}, \overline{2}),(\overline{2}, \overline{4}),(\overline{4}, \overline{1}),(\overline{4}, \overline{2}),(\overline{4}, \overline{4})\}$, then $\left(L, C_{N}\right)=$ $\{L(\overline{2}, \overline{1})=\{\overline{0}, \overline{4}\}, L(\overline{2}, \overline{2})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}, \quad L(\overline{2}, \overline{4})=\{\tilde{N}\}, \quad L(\overline{4}, \overline{1})=$ $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}, L(\overline{4}, \overline{2})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}, L(\overline{4}, \overline{4})=N \notin \operatorname{LOSNR}(\tilde{N})$.

Theorem 2.8. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then, $\left(F, A_{N}\right) \widetilde{\vee}$ $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, whenever $\left(F, A_{N}\right) \widetilde{V}\left(G, B_{N}\right)$ is non-null $S S(\tilde{N})$ and either $F(\alpha) \subseteq G(b)$ or $G(b) \subseteq F(\alpha)$.

Proof. For any $(\alpha, b) \in A_{N} \times B_{N}$ we consider that $F(\alpha) \subseteq G(b)$. By Definition 1.8 we know that $\left(F, A_{N}\right) \widetilde{\vee}\left(G, B_{N}\right)=\left(L, C_{N}\right), \quad C_{N}=$ $A_{N} \times B_{N}$, then for any $(\alpha, b) \in A_{N} \times B_{N}$ we have $L(\alpha, b)=F(\alpha) \cup G(b)$, where $F(\alpha)$ and $G(b)$ are subN $R$ over $\tilde{N}$.

Now as $A_{N} \subseteq B_{N}$, then $A_{N} \cap B_{N}=A_{N} \Rightarrow\left(L, A_{N} \times B_{N}\right)=\left(L, A_{N}\right)$ $\Rightarrow F(x) \Rightarrow\left(F, A_{N}\right) \widetilde{\vee}\left(G, B_{N}\right)=\left(F, A_{N}\right)$, and $\left(F, A_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

Hence $\left(F, A_{N}\right) \widetilde{V}\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

Theorem 2.9. $\operatorname{Let}\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then $\left(F, A_{N}\right) \widetilde{ल}_{R}$ $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, whenever $\left(F, A_{N}\right) \widetilde{\cap_{R}}\left(G, B_{N}\right)$ is non-null $\operatorname{SS}(\tilde{N})$.

Proof. As by Definition 1.12 we know that $\left(F, A_{N}\right) \widetilde{\cap}_{R}\left(G, B_{N}\right)=\left(H, C_{N}\right)$, where $C_{N}=A_{N} \cap B_{N}$ with $A_{N} \cap B_{N} \neq \emptyset$, then for $\varsigma \in C_{N}$ we have $H(\varsigma)=F(\varsigma) \cap G(\varsigma)$, where $F(a)$ and $G(b)$ are $\operatorname{subNR}$ over $\tilde{N}$. As ( $H, A_{N} \cap B_{N}$ ) is non-empty then $F(\alpha) \cap G(b) \neq \emptyset$, Also we know that intersection of any number of subNRs over $\tilde{N}$ is $\operatorname{subNR}$ over $\tilde{N}$. So $H(\varsigma)=F(\alpha) \cap G(b)$ is $\operatorname{sub} N R$ over $\tilde{N}$. Hence ( $\left.H, A_{N} \cap B_{N}\right)$ is $\mathrm{S} N R$ over $\tilde{N}$.

Now we have to show that ( $H, A_{N} \cap B_{N}$ ) contains lattice ordered. Since $A_{N}, B_{N} \subseteq E_{N}$, so partial order is promoted into $A_{N}$ and $B_{N}$ from $E_{N}$. Now for $\alpha_{1} \preccurlyeq_{A_{N}} \alpha_{2}$ we have $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right) \forall \alpha_{1}, \alpha_{2} \in$ $A_{N}$, for $b_{1} \preccurlyeq_{B_{N}} b_{2}$ we have $G\left(b_{1}\right) \subseteq G\left(b_{2}\right) \forall b_{1}, b_{2} \in B_{N}$. And for $\varsigma_{1}$ $\preccurlyeq_{C_{N}} \varsigma_{2}$ we have $F\left(\varsigma_{1}\right) \subseteq F\left(\varsigma_{2}\right)$ and $G\left(\varsigma_{1}\right) \subseteq G\left(\varsigma_{2}\right) \forall \varsigma_{1}, \varsigma_{2} \in C_{N}$. Also $F\left(\varsigma_{1}\right) \cap G\left(\varsigma_{1}\right) \subseteq F\left(\varsigma_{2}\right) \cap G\left(\varsigma_{2}\right) \Rightarrow H\left(\varsigma_{1}\right) \subseteq H\left(\varsigma_{2}\right)$.

Hence $\left(F, A_{N}\right) \widetilde{\cap_{R}}\left(G, B_{N}\right)=\left(H, A_{N} \cap B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.
Remark 2.10. The restricted union of two LOSNRs may or may not be a $L O S N R$.

Example 2.11. Consider $\tilde{N}=\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ with $\overline{0} \preccurlyeq \overline{1} \preccurlyeq$ $\overline{2} \preccurlyeq \overline{3} \preccurlyeq \overline{4} \preccurlyeq \overline{5}$. Take $A_{N}=\{\overline{1}, \overline{2}\}$ define $F: A_{N} \longrightarrow P(\tilde{N})$ by
$F(\alpha)=\{n \in \tilde{N}: \alpha n=\overline{0}\}$, then $\left(F, A_{N}\right)=\{F(\overline{1})=\{\overline{0}\}, F(\overline{2})=$ $\{\overline{0}, \overline{3}\}\}$ is LOSNR.

Now $B_{N}=\{\overline{2}, \overline{3}\}$ define $G: B_{N} \longrightarrow P(\tilde{N})$ by
$G(b)=\{n \in \tilde{N}: b n \in\{\overline{0}, \overline{2}, \overline{4}\}\}$, then $\left(G, B_{N}\right)=\{G(\overline{2})=\{\overline{0}, \overline{2}, \overline{4}\}$, $G(\overline{3})=\{\overline{0}, \overline{2}, \overline{4}\}\}$ is $\operatorname{LOSNR}$.

Now let us consider $\left(F, A_{N}\right) \widetilde{U_{R}}\left(G, B_{N}\right)$. Then $\left(F, A_{N}\right) \widetilde{U_{R}}\left(G, B_{N}\right)=$ $\left(L, A_{N} \cap B_{N}\right)$, where $L(\varsigma)=F(\varsigma) \cup G(\varsigma)$ for $\varsigma \in A_{N} \cap B_{N}$.

Now for $2 \in A_{N} \cap B_{N}$ we have $L(2)=F(2) \cup G(2)=\{\overline{0}, \overline{2}, \overline{3}, \overline{4}\}$ is not subNRSo $\left(F, A_{N}\right) \widetilde{U_{R}}\left(G, B_{N}\right)$ is not LOSNR.

Theorem 2.12. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then $\left(F, A_{N}\right) \widetilde{U_{R}}$ $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, whenever $\left(F, A_{N}\right) \widetilde{\cup_{R}}\left(G, B_{N}\right)$ is non-null SS over $\tilde{N}$ and one of them is soft subset of the other.

Proof. Let $\left(F, A_{N}\right) \subseteq\left(G, B_{N}\right)$ with $A_{N} \subseteq B_{N}$. As by Definition 1.11 we know that $\left(F, A_{N}\right) \widetilde{\cup_{R}}\left(G, B_{N}\right)=\left(H, C_{N}\right), \quad C_{N}=A_{N} \cap B_{N} \quad$ with
$A_{N} \cap B_{N} \neq \emptyset$. Then for any $\varsigma \in C_{N}$ we have $H(\varsigma)=F(\alpha) \cup G(b)$, where $F(\alpha)$ and $G(b)$ are $\operatorname{sub} N R$ over $\tilde{N}$.

Now as $A_{N} \subseteq B_{N}$, then $A_{N} \cap B_{N}=A_{N} \Rightarrow\left(H, A_{N} \cap B_{N}\right)=\left(H, A_{N}\right)$ $\Rightarrow F(x) \Rightarrow\left(F, A_{N}\right) \cup_{R}\left(G, B_{N}\right)=\left(F, A_{N}\right)$, but $\left(F, A_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

Hence $\left(F, A_{N}\right) \widetilde{\cup_{R}}\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.
Theorem 2.13. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then $\left(F, A_{N}\right) \widetilde{\cap_{E}}$ $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, whenever $\left(F, A_{N}\right) \widetilde{\cap_{E}}\left(G, B_{N}\right)$ be non-null $S S(\tilde{N})$.

Theorem 2.14. $\operatorname{Let}\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then $\left(F, A_{N}\right) \widetilde{\cap_{B}}$ $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, provided $A_{N} \cap B_{N} \neq \emptyset$.

Remark 2.15. The union of two $L O S N R$ s may or may not be a LOSNR.

Example 2.16. Consider $\tilde{N}=\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ with $\overline{0} \preccurlyeq \overline{1} \preccurlyeq$ $\overline{2} \preccurlyeq \overline{3} \preccurlyeq \overline{4} \preccurlyeq \overline{5}$. Take $A_{N}=\{\overline{1}, \overline{2}\}$ define $F: A_{N} \longrightarrow P(\tilde{N})$ by
$F(\alpha)=\{n \in \tilde{N}: \alpha n=\overline{0}\}$, then $\left(F, A_{N}\right)=\{F(\overline{1})=\{\overline{0}\}, F(\overline{2})=$ $\{\overline{0}, \overline{3}\}\}$ is LOSNR.

Now $B_{N}=\{\overline{2}, \overline{3}\}$ define $G: B_{N} \longrightarrow P(\tilde{N})$ by
$G(b)=\{n \in \tilde{N}: b n \in\{\overline{0}, \overline{2}, \overline{4}\}\}$, then $\left(G, B_{N}\right)=\{G(\overline{2})=\{\overline{0}, \overline{2}, \overline{4}\}$, $G(\overline{3})=\{\overline{0}, \overline{2}, \overline{4}\}\}$ is $\operatorname{LOSNR}$.

Now let us consider $\left(F, A_{N}\right) \widetilde{U_{B}}\left(G, B_{N}\right)$. Then $\left(F, A_{N}\right) \widetilde{U_{B}}\left(G, B_{N}\right)=$ $\left(L, A_{N} \cup B_{N}\right)$ and define by

$$
L(\varsigma)= \begin{cases}F(\varsigma) & \text { if } \varsigma \in A_{N}-B_{N} \\ G(\varsigma) & \text { if } \varsigma \in B_{N}-A_{N} \quad \forall \varsigma \in A_{N} \cup B_{N} \text {. } \quad \text { if } \varsigma \in A_{N} \cap B_{N}\end{cases}
$$

Now for $\overline{2} \in A_{N} \cap B_{N}$ we have $L(\overline{2})=F(\overline{2}) \cup G(\overline{2})=\{\overline{0}, \overline{2}, \overline{3}, \overline{4}\}$ is not subNR. So $\left(F, A_{N}\right) \widetilde{U_{B}}\left(G, B_{N}\right)$ is not LOSNR.

Theorem 2.17. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. Then $\left(F, A_{N}\right) \widetilde{U_{B}}$ $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, whenever $\left(F, A_{N}\right) \widetilde{U_{B}}\left(G, B_{N}\right)$ is non-null $S S(\tilde{N})$ and $A_{N} \cap B_{N}=\emptyset$ or one of them is soft subset of other.

Proof. As by Definition $1.9\left(F, A_{N}\right) \widetilde{U_{B}}\left(G, B_{N}\right)=\left(L, C_{N}\right)$, where $C_{N}=$ $A_{N} \cup B_{N}$. Now for any $\varsigma \in C_{N}$
are subNR of $\tilde{N}$. As $A_{N} \cap B_{N}=\emptyset$ so we have

$$
L(\varsigma)= \begin{cases}F(\varsigma) & \text { if } \varsigma \in A_{N}-B_{N} \\ G(v) & \text { if } \varsigma \in B_{N}-A_{N}\end{cases}
$$

When $\varsigma \in A_{N}-B_{N}$, then $\Rightarrow L(\varsigma)=F(\varsigma) \Rightarrow\left(L, C_{N}\right)=\left(F, C_{N}\right)$, $\left(F, A_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. So $\left(L, C_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

When $\varsigma \in B_{N}-A_{N}$, then $L(\varsigma)=G(\varsigma) \Rightarrow\left(L, C_{N}\right)=\left(G, B_{N}\right)$, $\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. So $\left(L, C_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

Now consider $\left(F, A_{N}\right) \subseteq\left(G, B_{N}\right)$ with $A_{N} \subseteq B_{N} \Rightarrow L(\varsigma)=G(v) \Rightarrow$ $\left(L, C_{N}\right)=\left(G, B_{N}\right) .\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N}) \Rightarrow\left(L, C_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$, hence $\left(F, A_{N}\right) \widetilde{U_{B}}\left(G, B_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$.

## 3. Lattice Ordered Idealistic Soft Near Rings

Definition 3.1. Let $\left(F, A_{N}\right) \in \operatorname{LOSNR}(\tilde{N})$. A non-empty $S S(M, I)$ over $\tilde{N}$ is known the LOISNR over $\tilde{N}$ represented by $(M, I) \triangleleft\left(F, A_{N}\right)$ if the following conditions are satisfied:
(1) $I \subseteq A_{N}$,
(2) $\forall \alpha \in \operatorname{Supp}(M, I), M(\alpha) \triangleleft F(\alpha)$ and $\forall \alpha_{1}, \alpha_{2} \in \alpha_{N}$ with $\alpha_{1} \preceq \alpha_{2}, M\left(\alpha_{1}\right) \preceq M\left(\alpha_{2}\right)$.

From now onward collection of all lattice ordered idealistic soft near rings over $\tilde{N}$ will be represented by $\operatorname{LOISNR(\tilde {N})\text {.}}$

Example 3.2. Let $\tilde{N}=\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ with $\overline{0} \preceq \overline{1} \preceq \overline{2} \preceq$ $\overline{3} \preceq \overline{4} \preceq \overline{5}$. Now $I=\{\overline{1}, \overline{2}\}$ and define $M: I \rightarrow P(\tilde{N})$ by $M(I)=$ $\{n \in \tilde{N}:$ in $=\overline{0}\}$, then $(M, I)=\{M(\overline{1})=\{\overline{0}\}, M(\overline{2})=\{\overline{0}, \overline{3}\}\}$ $\Rightarrow M(\overline{1}) \subseteq M(\overline{2})$. Hence $(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

Theorem 3.3. $\operatorname{Let}\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \widetilde{\wedge}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, whenever $\left(M_{1}, I_{1}\right) \widetilde{\wedge}\left(M_{2}, I_{2}\right)$ is non-null $S S(\tilde{N})$.

Proof. As by Definition 1.7 we know that $\left(M_{1}, I_{1}\right) \widetilde{\wedge}\left(M_{2}, I_{2}\right)=(M, I)$ where $I=I_{1} \times I_{2}$ with $I_{1} \cap I_{2} \neq \emptyset$. Then for $\alpha_{1} \in I_{1}, \alpha_{2} \in I_{2}$ and for $\left(\alpha_{1}, \alpha_{2}\right) \in I_{1} \times I_{2}$ we have $M\left(\alpha_{1}, \alpha_{2}\right)=M_{1}\left(\alpha_{1}\right) \cap M_{2}\left(\alpha_{2}\right)$, where $M_{1}\left(\alpha_{1}\right)$ and $M_{2}\left(\alpha_{2}\right)$ are both ideals of $\tilde{N}$.

As $(M, I)$ is non-empty, then $M_{1}\left(\alpha_{1}\right) \cap M_{2}\left(\alpha_{2}\right) \neq \emptyset$. Since the intersection of any number of ideals is a ideal $\tilde{N}, M\left(\alpha_{1}, \alpha_{2}\right)=M_{1}\left(\alpha_{1}\right) \cap$ $M_{2}\left(\alpha_{2}\right)$ is ideal over $\tilde{N}$. Hence $(M, I)$ is ideal $S S(\tilde{N})$.

Now we have to show that $(M, I)$ contains lattice order. Since $I_{1}$, $I_{2} \subseteq E_{N}$, so partial order is promoted into $I_{1}$ and $I_{2}$ from $E_{N}$.

Now for $\alpha_{1} \preceq_{I_{1}} \alpha_{2}$, we have $M_{1}\left(\alpha_{1}\right) \subseteq M_{1}\left(\alpha_{2}\right), \quad \forall b_{1}, b_{2} \in I_{2}$, for $b_{1} \preceq_{I_{2}} b_{2}$ we have $M_{2}\left(b_{1}\right) \subseteq M\left(b_{2}\right), \forall b_{1}, b_{2} \in I_{2}$. Now $\preceq$ is the partial order on $I$ which is promoted by partial order on $I_{1}$ and $I_{2}$, therefore for any $\left(\alpha_{1}, b_{1}\right),\left(\alpha_{2}, b_{2}\right) \in I_{1} \times I_{2}$ we have $M_{1}\left(\alpha_{1}\right) \subseteq M_{1}\left(\alpha_{2}\right)$ and $M_{2}\left(b_{1}\right) \subseteq$ $M\left(b_{2}\right)$ this implies $M_{1}\left(\alpha_{1}\right) \cap M_{2}\left(b_{1}\right) \subseteq M_{1}\left(\alpha_{2}\right) \cap M_{2}\left(b_{2}\right) \Rightarrow M\left(\alpha_{1}, b_{1}\right) \subseteq$ $M\left(\alpha_{2}, b_{2}\right)$.

Hence $\left(M_{1}, I_{1}\right) \widetilde{\wedge}\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$.
Theorem 3.4. Let $\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \widetilde{v}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, whenever $\left(M_{1}, I_{1}\right) \widetilde{V}\left(M_{2}, I_{2}\right)$ is non-null $S S(\tilde{N})$ and either $M_{1}\left(\alpha_{1}\right) \subseteq M_{2}\left(\alpha_{2}\right)$ or $M_{2}\left(\alpha_{2}\right) \subseteq M_{1}\left(\alpha_{1}\right)$.

Proof. For any $\left(\alpha_{1}, \alpha_{2}\right) \in I_{1} \times I_{2}$ we consider that $M_{1}\left(\alpha_{1}\right) \subseteq M_{2}\left(\alpha_{2}\right)$. By Definition $1.8\left(M_{1}, I_{1}\right) \widetilde{V}\left(M_{2}, I_{2}\right)=(M, I)$, where $I=I_{1} \times I_{2}$ and for any $\left(\alpha_{1}, \alpha_{2}\right) \in I_{1} \times I_{2}$ we have $M\left(\alpha_{1}, \alpha_{2}\right)=M_{1}\left(\alpha_{1}\right) \cup M_{2}\left(\alpha_{2}\right)$. As $M_{1}\left(\alpha_{1}\right) \subseteq M_{2}\left(\alpha_{2}\right), M_{1}\left(\alpha_{1}\right) \cup M_{2}\left(\alpha_{2}\right)=M_{2}\left(\alpha_{1}\right) \Rightarrow\left(M_{2}, I_{2}\right)=(M, I)$, $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. So $(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

It follows that $\left(M_{1}, I_{1}\right) \widetilde{V}\left(M_{2}, I_{2}\right)=(M, I) \in \operatorname{LOISNR}(\tilde{N})$.
Theorem 3.5. Let $\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \widetilde{\cap_{R}}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, whenever $\left(M_{1}, I_{1}\right) \widetilde{\cap_{R}}\left(M_{2}, I_{2}\right)$ is a non-null $S S$ over $\tilde{N}$.

Proof. By Definition $1.12\left(M_{1}, I_{1}\right) \widetilde{\cap_{R}}\left(M_{2}, I_{2}\right)=(M, I)$, as $M(\alpha)=$ $M_{1}(\alpha) \cap M_{2}(\alpha)$, where $I=I_{1} \cap I_{2}, \forall \alpha \in I$. Since $I_{1} \subseteq A_{N}$ and $I_{2} \subseteq A_{N}$, it is obvious that $I \subseteq A_{N}$. Then for $\alpha \in I$ we have $M(\alpha)=$ $M_{1}(\alpha) \cap M_{2}(\alpha)$. We deduce that the non-empty sets $M_{1}(\alpha)$ and $M_{2}(\alpha)$ are both ideals of $F(\alpha)$. Since the intersection of any number of ideals of $\tilde{N}$ is an ideal of $\tilde{N}, M(\alpha)=M_{1}(\alpha) \cap M_{2}(\alpha)$ is an ideal of $\tilde{N}$, therefore $\left(M_{1}, I_{1}\right) \widetilde{\cap_{R}}\left(M_{2}, I_{2}\right)$ is an ideal $S S$ over $\tilde{N}$.

Now we have to show that $(M, I)$ contains lattice ordered. Since $I_{1}$, $I_{2} \subseteq E_{N}$ so partial order is promoted into $I_{1}$ and $I_{2}$ from $E_{N}$. Now for $\alpha_{1} \preceq_{I_{1}} \alpha_{2}$ we have $M_{1}\left(\alpha_{1}\right) \subseteq M_{1}\left(\alpha_{2}\right) \quad \forall b_{1}, b_{2} \in I_{1}$, for $b_{1} \preceq_{I_{2}} b_{2}$ we have $M_{2}\left(b_{1}\right) \subseteq M_{2}\left(b_{2}\right) \forall b_{1}, b_{2} \in I_{2}$ and for $\varsigma_{1} \preceq_{I} \varsigma_{2}$ we have $M_{1}\left(\varsigma_{1}\right) \subseteq$ $M_{1}\left(\varsigma_{2}\right)$ and $M_{2}\left(\varsigma_{1}\right) \subseteq M_{2}\left(\varsigma_{2}\right) \quad \forall \varsigma_{1}, \varsigma_{2} \in I$ also $M_{1}\left(\varsigma_{1}\right) \cap M_{2}\left(\varsigma_{1}\right) \subseteq$ $M_{1}\left(\varsigma_{2}\right) \cap M_{2}\left(\varsigma_{2}\right) \Rightarrow M\left(\varsigma_{1}\right) \subseteq M\left(\varsigma_{2}\right)$.

Hence $\left(M_{1}, I_{1}\right) \widetilde{\cap_{R}}\left(M_{2}, I_{2}\right)=(M, I) \in \operatorname{LOISNR}(\tilde{N})$.
Theorem 3.6. Let $\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \widetilde{U_{R}}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, whenever $\left(M_{1}, I_{1}\right) \widetilde{\cup_{R}}\left(M_{2}, I_{2}\right)$ is non-null $\operatorname{SS}(\tilde{N})$ and one of them is soft subset of other.

Proof. By Definition 1.11 we know that $\left(M_{1}, I_{1}\right) \widetilde{U_{R}}\left(M_{2}, I_{2}\right)=(M, I)$, where $I=I_{1} \cap I_{2}$ with $I_{1} \cap I_{2}=\emptyset$, for $\alpha \in I . M(\alpha)=M_{1}(\alpha) \cup M_{2}(\alpha)$, where $M_{1}(\alpha)$ and $M_{2}(\alpha)$ are both ideals of $\tilde{N}$.

Since $I_{1} \subseteq I_{2}$, then $I_{1}=I_{1} \cap I_{2} \Rightarrow\left(M_{1}, I_{1}\right)=(M, I) \Rightarrow\left(M_{1}, I_{1}\right) \cup_{R}$ $\left(M_{2}, I_{2}\right)=\left(M_{1}, I_{1}\right),\left(M_{1}, I_{1}\right) \in \operatorname{LOISNR}(\tilde{N}) . \operatorname{So}(M, I) \in \operatorname{LOISNR}(\tilde{N})$. Hence, $\left(M_{1}, I_{1}\right) \cup_{R}\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$.

Theorem 3.7. Let $\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \cap_{B}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, provided $I_{1} \cap I_{2} \neq \emptyset$.

Theorem 3.8. Let $\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \widetilde{U_{B}}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, whenever $\left(M_{1}, I_{1}\right) \widetilde{U_{B}}\left(M_{2}, I_{2}\right)$ is non-null $S S(\tilde{N})$ and $I_{1} \cap I_{2}=\emptyset$ or if $\left(M_{1}, I_{1}\right) \subseteq\left(M_{2}, I_{2}\right)$ or $\left(M_{2}, I_{2}\right) \subseteq\left(M_{1}, I_{1}\right)$.

Proof. By Definition 1.9 we know that $\left(M_{1}, I_{1}\right) \widetilde{U_{B}}\left(M_{2}, I_{2}\right)=(M, I)$, where $I=I_{1} \cup I_{2}, \quad \forall \alpha \in I$

$$
M(\alpha)=\left\{\begin{array}{ll}
M_{1}(\alpha) & \text { if } \alpha \in I_{1}-I_{2} \\
M_{2}(\alpha) & \text { if } \alpha \in I_{2}-I_{1} \\
M_{1}(\alpha) \cup M_{2}(\alpha) & \text { if } \alpha \in I_{1} \cap I_{2}
\end{array} \text {, where } M_{1}(\alpha)\right. \text { and }
$$

$M_{2}(\alpha)$ are ideals of $\tilde{N}$. As $I_{1} \cap I_{2}=\emptyset$ so we have
$M(\alpha)= \begin{cases}M_{1}(\alpha) & \text { if } \alpha \in I_{1}-I_{2} \\ M_{2}(\alpha) & \text { if } \alpha \in I_{2}-I_{1}\end{cases}$
When $\alpha \in I_{1}-I_{2} \Rightarrow M(\alpha)=M_{1}(\alpha) \Rightarrow\left(M_{1}, I_{1}\right)=(M, I),\left(M_{1}, I_{1}\right) \in$ $\operatorname{LOISNR}(\tilde{N})$. So $(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

When $\alpha \in I_{2}-I_{1} \Rightarrow M(\alpha)=M_{2}(\alpha) \Rightarrow\left(M_{2}, I_{2}\right)=(M, I),\left(M_{2}, I_{2}\right) \in$ $\operatorname{LOISNR}(\tilde{N})$. So $(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

Now consider $\left(M_{1}, I_{1}\right) \cup_{E}\left(M_{2}, I_{2}\right)$ with $I_{1} \subseteq I_{2} \Rightarrow M(\alpha)=M_{1}(\alpha) \Rightarrow$ $\left(M_{1}, I_{1}\right)=(M, I), \quad\left(M_{1}, I_{1}\right) \in \operatorname{LOISNR}(\tilde{N}) \Rightarrow(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

Hence $\left(M_{1}, I_{1}\right) \widetilde{U_{B}}\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$.
Theorem 3.9. Let $\left(M_{1}, I_{1}\right),\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$. Then $\left(M_{1}, I_{1}\right) \widetilde{\tilde{\Omega}_{E}}$ $\left(M_{2}, I_{2}\right) \in \operatorname{LOISNR}(\tilde{N})$, whenever $\left(M_{1}, I_{1}\right) \widetilde{\cap_{E}}\left(M_{2}, I_{2}\right)$ is non-null $S S(\tilde{N})$ and $I_{1} \cap I_{2}=\emptyset$.

Proof. By Definition 1.13 we know that $\left(M_{1}, I_{1}\right) \widetilde{\cap_{E}}\left(M_{2}, I_{2}\right)=(M, I)$, where $I=I_{1} \cup I_{2}, \forall \alpha \in I$

$$
M(\alpha)=\left\{\begin{array}{ll}
M_{1}(\alpha) & \text { if } \alpha \in I_{1}-I_{2} \\
M_{2}(\alpha) & \text { if } \alpha \in I_{2}-I_{1} \\
M_{1}(\alpha) \cap M_{2}(\alpha) & \text { if } \alpha \in I_{1} \cap I_{2}
\end{array}, \quad \text { where } M_{1}(\alpha)\right. \text { and }
$$

$M_{2}(\alpha)$ are ideals of $\tilde{N}$. As $I_{1} \cap I_{2}=\emptyset$ so we have

$$
M(\alpha)= \begin{cases}M_{1}(\alpha) & \text { if } \alpha \in I_{1}-I_{2} \\ M_{2}(\alpha) & \text { if } \alpha \in I_{2}-I_{1}\end{cases}
$$

When $\alpha \in I_{1}-I_{2} \Rightarrow M(\alpha)=M_{1}(\alpha) \Rightarrow\left(M_{1}, I_{1}\right)=(M, I),\left(M_{1}, I_{1}\right) \in$ $\operatorname{LOISNR}(\tilde{N})$. So $(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

Since $\alpha \in I_{2}-I_{1} \Rightarrow M(\alpha)=M_{2}(\alpha) \Rightarrow\left(M_{2}, I_{2}\right)=(M, I),\left(M_{2}, I_{2}\right) \in$ $\operatorname{LOISNR}(\tilde{N})$. So is $(M, I) \in \operatorname{LOISNR}(\tilde{N})$.

It follows that $\left(M_{1}, I_{1}\right) \widetilde{\cap_{E}}\left(M_{2}, I_{2}\right)$ is $\operatorname{LOISNR}$ over $\left(F, A_{N}\right)$.

## 4. Lattice Ordered Soft Near Ring Homomorphism

Definition 4.1. Let $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ be two $\operatorname{LOSNR}$ over $\tilde{N}_{1}$ and $\tilde{N}_{2}$ respectively and $f: \tilde{N}_{1} \rightarrow \tilde{N}_{2}$ and $h: A_{N} \rightarrow B_{N}$ be two functions. We say that $(f, h)$ is lattice ordered soft near ring homomorphism $(L O S N R H)$ from $\left(F, A_{N}\right)$ to $\left(G, B_{N}\right)$ if it satisfies the following conditions
(1) $f: \tilde{N}_{1} \rightarrow \tilde{N}_{2}$ is a near ring homomorphism (NRH).
(2) $h: A_{N} \rightarrow B_{N}$ is an onto mapping.
(3) $f(F(\alpha))=G(h(\alpha)) \forall \alpha \in A_{N}$.
(4) $\forall \alpha_{1}, \alpha_{2} \in A_{N}$ with $\alpha_{1} \preceq \alpha_{2}$ we have $f\left(F\left(\alpha_{1}\right) \preceq f\left(F\left(\alpha_{2}\right)\right)\right.$.

Example 4.2. Let $\tilde{N}_{1}=3 Z_{6}, \tilde{N}_{2}=Z_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, A_{N}=$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ with $\alpha_{1} \preceq \alpha_{2} \preceq \alpha_{3}$ and $B_{N}=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ with $\beta_{1} \preceq \beta_{2} \preceq$ $\beta_{3}$.

Now define $f: \tilde{N}_{1} \rightarrow \tilde{N}_{2}$ by $f(n)=3 n$,
$h: A_{N} \rightarrow B_{N}$ by $h\left(\alpha_{i}\right)=\beta_{i}$ for $1 \leq i \leq 3$,
$F: A \rightarrow P\left(\tilde{N}_{1}\right)$ by $F\left(\alpha_{1}\right)=\{\overline{0}\}, F\left(\alpha_{2}\right)=F\left(\alpha_{3}\right)=\tilde{N}_{1}$ and
$G: A \rightarrow P\left(\tilde{N}_{2}\right)$ by $G\left(\beta_{1}\right)=\{\overline{0}\}, G\left(\beta_{2}\right)=G\left(\beta_{3}\right)=3 \tilde{N}_{2}$.
Then $(f, h)$ is LOSNRH from ( $F, A_{N}$ ) to $\left(G, B_{N}\right)$.
Theorem 4.3. Let $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}\left(\tilde{N}_{1}\right)$. If $f: \tilde{N}_{1} \rightarrow$ $\tilde{N}_{2}$ be a NRH, then $\left(f(F), A_{N}\right), \quad\left(f(G), B_{N}\right) \in \operatorname{LOSNR}\left(\tilde{N}_{2}\right)$ and if $\left(G, B_{N}\right)$ is LOS subNR of $\left(F, A_{N}\right)$, then $\left(f(G), B_{N}\right)$ is LOS subNR of $\left(f(F), A_{N}\right)$.

Proof. Given that $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}\left(\tilde{N}_{1}\right)$. Then we have $\forall \alpha_{1}, \alpha_{2} \in \operatorname{Supp}\left(F, A_{N}\right), \alpha_{1} \preceq \alpha_{2}$ we have $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right)$. Similarly $\forall b_{1}, b_{2} \in \operatorname{Supp}\left(G, B_{N}\right), b_{1} \preceq b_{2}$ we have $G\left(b_{1}\right) \subseteq G\left(b_{2}\right)$, where we have $G\left(b_{1}\right), G\left(b_{2}\right), \quad F\left(\alpha_{1}\right)$ and $F\left(\alpha_{2}\right)$ are all subNR over $N_{1}$.

Now $f(F): A_{N} \rightarrow P\left(\tilde{N}_{2}\right)$ is defined by $f(F)(\alpha)=g(F(\alpha)) \forall \alpha \in A_{N}$ and $\quad f(G): B_{N} \rightarrow P\left(\tilde{N}_{2}\right)$ is defined by $f(G)(b)=f(G(b)) \forall b \in B_{N}$.

Now consider $m_{1}, m_{2} \in F\left(\alpha_{1}\right)$, as we have $F\left(\alpha_{1}\right)$ is $\operatorname{sub} N R$ of $\tilde{N}_{1}$, then we have $m_{1}-m_{2} \in F\left(\alpha_{1}\right), m_{1} m_{2} \in F\left(\alpha_{1}\right)$. Let $F\left(m_{1}\right), F\left(m_{2}\right)$ $\in g\left(\left(\alpha_{1}\right)\right)$.

Now consider $m_{1}-m_{2} \in F\left(\alpha_{1}\right) \Rightarrow f\left(m_{1}-m_{2}\right) \in f\left(F\left(\alpha_{1}\right) \Rightarrow f\left(m_{1}\right)-\right.$ $f\left(m_{2}\right) \in f\left(F\left(\alpha_{1}\right)\right)$ and $m_{1} m_{2} \in F\left(\alpha_{1}\right) \Rightarrow f\left(m_{1} m_{2}\right) \in f\left(F\left(\alpha_{1}\right) \Rightarrow\right.$ $f\left(m_{1}\right) f\left(m_{2}\right) \in f\left(F\left(\alpha_{1}\right)\right)$.

As $f\left(m_{1}\right)-f\left(m_{2}\right) \in f\left(F\left(\alpha_{1}\right)\right)$ and $f\left(m_{1}\right) f\left(m_{2}\right) \in f\left(F\left(\alpha_{1}\right)\right)$. So $f\left(F\left(\alpha_{1}\right)\right)$ is subNR of $\tilde{N}_{2}$, in similar way we have $f\left(F\left(\alpha_{1}\right)\right)$ is subNR of $\tilde{N}_{2}$.

Hence $\forall \alpha \in A_{N}, f(F(\alpha))$ is subNR of $\tilde{N}_{2}$. So we have $\left(f(F), A_{N}\right)$ is $S N R$ over $\tilde{N}_{2}$. Similarly we have $\left(f(G), B_{N}\right)$ is $S N R$ over $\tilde{N}_{2}$, as we have $\left(G, B_{N}\right)$ is LOS subNR of $\left(F, A_{N}\right)$, so $\forall b \in B_{N}, G(b)$ is subNR of $F(b)$, therefore $f(G)(b))$ is subNR of $f(F(b))$ and It follows that $\left(f(G), B_{N}\right)$ is soft subNR of $\left(f(F), A_{N}\right)$.

As it is given that $\left(F, A_{N}\right),\left(G, B_{N}\right) \in \operatorname{LOSNR}\left(\tilde{N}_{1}\right)$, then by Definition we have $\forall \alpha_{1}, \alpha_{2} \in A_{N}, \alpha_{1} \preceq \alpha_{2}$ we have $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right)$. Similarly $\forall b_{1}, b_{2} \in B_{N}, b_{1} \preceq b_{2}$ we have $G\left(b_{1}\right) \subseteq G\left(b_{2}\right)$.

Now let $m_{1} \in F\left(\alpha_{1}\right) \Rightarrow g\left(m_{1}\right) \in g\left(F\left(\alpha_{1}\right)\right)$. Now as $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right)$ and $m_{1} \in F\left(\alpha_{1}\right) \Rightarrow m_{1} \in F\left(\alpha_{2}\right) \Rightarrow f\left(m_{1}\right) \in f\left(F\left(\alpha_{2}\right)\right)$. As for $f\left(m_{1}\right) \in$ $f\left(F\left(\alpha_{1}\right)\right)$ we have $f\left(m_{1}\right) \in f\left(F\left(\alpha_{2}\right) \Rightarrow f\left(F\left(\alpha_{1}\right) \subseteq f\left(F\left(\alpha_{2}\right)\right)\right.\right.$.

This implies that $\left(f\left(F, A_{N}\right)\right.$ is $\operatorname{LOSNR}\left(\tilde{N}_{2}\right)$ and similarly we have $\left(f(G), B_{N}\right) \in \operatorname{LOSNR}\left(\tilde{N}_{2}\right)$ such that $\left(f\left(F, A_{N}\right)\right.$ is LOS $\operatorname{sub} N R$ of $\left(f(G), B_{N}\right)$.

Theorem 4.4. Let $\left(F, A_{N}\right)$ and $\left(G, B_{N}\right)$ is LOSNR over $\tilde{N}_{1}$ and $\tilde{N}_{2}$ respectively, where $\tilde{N}_{1}$ and $\tilde{N}_{2}$ are two NRs and $(f, h)$ is a LOSNRH from $\left(F, A_{N}\right)$ to $\left(G, B_{N}\right)$. If $\left(F, A_{N}\right)$ is LOISNR over $\tilde{N}_{1}$, then $\left(G, B_{N}\right)$ is LOISNR over $\tilde{N}_{2}$.

Proof. Given that $\left(F, A_{N}\right) \in \operatorname{LOISNR}\left(\tilde{N}_{1}\right)$, then by we have $\forall, \alpha_{1}$, $\alpha_{2} \in A_{N}, \alpha_{1} \preceq_{A_{N}} \alpha_{2}$ we have $F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{2}\right)$, where we have $F\left(\alpha_{1}\right)$ and $F\left(\alpha_{2}\right)$ are ideal of $\tilde{N}_{1}$. Also as it is given that $\left(G, B_{N}\right) \in \operatorname{LOSNR}\left(\tilde{N}_{2}\right)$, then $\forall b_{1}, b_{2} \in B_{N}, b_{1} \preceq_{B_{N}} b_{2}$ we have $G\left(b_{1}\right) \subseteq G\left(b_{2}\right)$, where we have $G\left(b_{1}\right)$ and $G\left(b_{2}\right)$ are ideal of $\tilde{N}_{2}$. Also as $(f, h)$ is a LOSNRH from $\left(F, A_{N}\right)$ to $\left(G, B_{N}\right)$, then for any $b_{1} \in B_{N}$ there exists an element $\alpha_{1} \in$ $A_{N}$ for which we have $b_{1}=h\left(\alpha_{1}\right) \Rightarrow G\left(b_{1}\right)=G\left(h\left(\alpha_{1}\right)=f\left(F\left(\alpha_{1}\right)\right)\right.$. As $F\left(\alpha_{1}\right)$ is ideal of $\tilde{N}_{1}$, so $f\left(F\left(\alpha_{1}\right)\right)$ is a ideal $N R$ of $G\left(h\left(b_{1}\right)\right)$. Similarly
for any $b_{2} \in B_{N}$, there exists an element $\alpha_{2} \in A_{N}$ for which we have $b_{2}=h\left(\alpha_{2}\right)$ and $f\left(F\left(\alpha_{2}\right)\right)$ is an ideal of $G\left(h\left(b_{2}\right)\right)$. Thus, $\left(G, B_{N}\right) \in$ $\operatorname{LOISNR}\left(\tilde{N}_{2}\right)$.

## References

[1] H. Aktas and N. C̣ağman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
[2] M. I. Ali, A note on soft sets, rough sets and fuzzy soft sets, Comput. Math. Appl. 11 (2011) 3329-3332.
[3] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547-1553.
[4] M. I. Ali, T. Mahmood, M. M. Rehman and M. F. Aslam, On lattice ordered soft sets, Appl Soft Comput. 36 (2015) 499-505.
[5] M. Aslam and M. Qurashi, Some contributions to soft groups, Annals of Fuzzy Math. and Infor. 4 (2012) 177-195.
[6] A. O. Atagün and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011) 592-601.
[7] G. Birkhoff, Lattice theory, American Mathematical Socity (1967).
[8] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628.
[9] F. Feng, C. Li, B. Davvaz and M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14 (2010) 899-911
[10] F. Taşdemir, A. O. Atagün, H. Altndiş, Different prime N-ideals and IFP Nideals, Indian J. Pure Appl. Math. 44(4), 527-542, 2013.
[11] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413.
[12] G. J. Klir and T. A. Folger, Fuzzy sets, Uncertainty and Inform. Prentice-Hall 24 (1987) 141-160.
[13] X. Ma, Q. Liu, J. Zhan, A survey of decision making methods based on certain hybrid soft set models, Artificial Intelligence Review 47 (2017) 507-530.
[14] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
[15] P. K. Maji, A. R. Roy and R. Biswas, An Application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083.
[16] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 1931.
[17] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341-356.
[18] G. Pilz, Near-rings, N. Holl. Publ. Comp. Amst. New York-Oxford, 1983.
[19] A. Sezgin, A. O. Atagün and E. Ayg" un, A Note on soft near-rings and Idealistic soft near-rings, Comut. Math. Appl. 25 (2011) 53-68.
[20] A. Sezgin and A. O. Atagün, On operations of soft sets, Comput. Math. Appl. 61 (2011) 1457-1467.
[21] Q. M. Sun, Z. L. Zhang and J. Liu, Soft sets and soft modules, Lecture notes in Comput. Sci. 5009 (2008) 403-409.
[22] J. D. Yadav, Fuzzy soft near ring, MNK. Appl. 4 (2015) 94-101.
[23] C. F. Yang, A Note on soft set theory, Comput. Math. Appl. 56 (2008) 18991900.
[24] J. Zhan, Q. Liu and T. Herawan, A novel soft rough set: soft rough hemirings and its multicriteria group decision making, Applied Soft Computing 54 (2017) 393-402.
[25] J. Zhan, M. I. Ali and N. Mehmood, On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods, Applied Soft Computing 56 (2017) 446-457.
[26] J. Zhan, Q. Liu and B. Davvaz, A new rough set theory: rough soft hemirings, Journal of Intelligent \& Fuzzy Systems 28 (2015) 1687-1697.
[27] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.

## Tahir Mahmood

Department of Mathematics
International Islamic University
Islamad, Pakistan
E-mail: tahirbakhat@iiu.edu.pk

## Zia Ur Rehman

Department of Mathematics
International Islamic University
Islamad, Pakistan
E-mail: ziaurrehmanktk03@gmail.com

## Aslihan Sezgin

Department of Elementary Education, Amasya University
Amasya, Turkey
E-mail: aslihan.sezgin@amasya.edu.tr


[^0]:    Received March 7, 2018. Revised September 8, 2018. Accepted September 10, 2018.

    2010 Mathematics Subject Classification: 03G25,20D05.
    Key words and phrases: Near Rings; Soft Near Rings; Lattice Ordered Soft Near Rings; Lattice Ordered Soft Near Ring Homomorphism.

    * Corresponding author.
    (c) The Kangwon-Kyungki Mathematical Society, 2018.

    This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

