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SIMPLIFYING AND FINDING ORDINARY

DIFFERENTIAL EQUATIONS IN TERMS OF THE

STIRLING NUMBERS

Feng Qi∗, Jing-Lin Wang, and Bai-Ni Guo

Abstract. In the paper, by virtue of techniques in combinatorial
analysis, the authors simplify three families of nonlinear ordinary
differential equations in terms of the Stirling numbers of the first
kind and establish a new family of nonlinear ordinary differential
equations in terms of the Stirling numbers of the second kind.

1. Motivation and main results

In [3, Theorem 1], it was acquired inductively and recursively that
the nonlinear differential equations

G(n)(t) =
(−1)n(n− 1)!

(1 + t)n

n+1∑
j=2

(j − 1)!Hn−1,j−2G
j(t) (1)

for n ∈ N have a solution G(t) = 1
ln(1+t)

, where Hn,0 = 1 for n ∈ N,

Hn,1 = Hn =
∑n

k=1
1
k

for n ∈ N, and

Hn,j =
n∑
k=j

Hk−1,j−1

k
, 2 ≤ j ≤ n. (2)
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In [4, Theorem 2.1], it was inductively and recursively obtained that
the family of differential equations

F (n)(t) =
(−1)n−1

(1 + λt)n

n∑
k=1

(k − 1)!λn−k(n− 1)!Hn−1,k−1e
−kF (t)

for n ∈ N have a solution

F (t) = ln

[
1 +

ln(1 + λt)

λ

]
. (3)

In [2, Theorem 2.1], as did in [3, 4], it was obtained inductively and
recursively that the differential equations

(n− 1)!e−nF (t) = (−1)n−1
n∑
k=1

λn−k(1 + λt)kak(n)F (k)(t), n ≥ 1

have a solution F (t) defined by (3), where an(n) = 1, a1(n) = 1, and

ak(n) =
n−k∑

ik−1=0

n−k−ik−1∑
ik−2=0

· · ·
n−k−ik−1−···−i2∑

i1=0

kik−1 · · · 2i1 .

We notice that, although the same method used in proofs of [2, The-
orem 2.1], [3, Theorem 1], and [4, Theorem 2.1] is effectual, however,
proofs of those main results in [2, Theorem 2.1], [3, Theorem 1], and [4,
Theorem 2.1] are much long and tedious, and formulations of those main
results in those papers [2–4] are less meaningful and significant.

The aim of this paper is, by virtue of techniques in combinatorial anal-
ysis, to simply and concisely verify and extend the above-mentioned [2,
Theorem 2.1], [3, Theorem 1] and [4, Theorem 2.1].

Our main results can be stated as the following two theorems.

Theorem 1.1. For n ∈ N, the nth derivative of the function G(t)
satisfies

G(n)(t) =
1

(1 + t)n

n∑
k=1

(−1)kk!s(n, k)Gk+1(t) (4)

and
n∑
k=1

S(n, k)(1 + t)kG(k)(t) =
(−1)nn!

[ln(1 + t)]n+1
, (5)
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where the Stirling numbers of the first and second kinds s(n, k) and
S(n, k) can be generated by

[ln(1 + x)]k

k!
=
∞∑
n=k

s(n, k)
xn

n!
and

(ex − 1)k

k!
=
∞∑
n=k

S(n, k)
xn

n!
.

Theorem 1.2. For n ∈ N, the nth derivative of the function F (t)
defined in (3) satisfies

F (n)(t) =

(
λ

1 + λt

)n n∑
k=1

(−1)k−1(k − 1)!

λk
s(n, k)e−kF (t) (6)

and
n∑
k=1

S(n, k)

(
1

λ
+ t

)k
F (k)(t) =

(−1)n−1(n− 1)!

[λ+ ln(1 + λt)]n
. (7)

2. Simple proofs of main results

Now we are in a position to prove our main results.

Proof of Theorem 1.1. In combinatorial analysis, the Faà di Bruno
formula plays an important role and can be described in terms of the
Bell polynomials of the second kind

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0, see [1, p. 134, Theorem A], by

dn

d tn
[f ◦ h(t)] =

n∑
k=0

f (k)(h(t))Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
(8)

for n ≥ 0, see [1, p. 139, Theorem C]. Setting f(u) = 1
u

and u = h(t) =
ln(1 + t) in (8) gives

G(n)(t) =
n∑
k=0

(
1

u

)(k)

Bn,k

(
1

1 + t
,− 1

(1 + t)2
, . . . , (−1)n−k

(n− k)!

(1 + t)n−k+1

)
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=
n∑
k=0

(−1)kk!

uk+1

(
1

1 + t

)n
(−1)n+kBn,k(0!, 1!, 2!, . . . , (n− k)!)

=
1

(1 + t)n

n∑
k=0

(−1)kk!

lnk+1(1 + t)
s(n, k)

=
1

(1 + t)n

n∑
k=0

(−1)kk!s(n, k)Gk+1(t)

=
1

(1 + t)n

n∑
k=1

(−1)kk!s(n, k)Gk+1(t)

for n ∈ N, where we used in the above lines the formula s(n, 0) = 0 for
n ∈ N and the identities

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1)

(9)
and

Bn,k(0!, 1!, 2!, . . . , (n− k)!) = (−1)n−ks(n, k) (10)

listed in [1, p. 135, Theorem B]. This means that the nonlinear differ-
ential equations (4) have a solution G(t).

The inversion theorem [10, Theorem 12.1, p. 171] reads that

an =
n∑

α=0

S(n, α)bα if and only if bn =
n∑
k=0

s(n, k)ak. (11)

Applying this inversion theorem to the equality (4) results in

(−1)nn!Gn+1(t) =
n∑
k=1

S(n, k)(1 + t)kG(k)(t), n ∈ N.

The equation (5) is thus proved. The proof of Theorem 1.1 is complete.

Second proof of the equation (4) in Theorem 1.1. In [6, Corollary 2.3],
it was inductively and recursively procured that the Stirling numbers of
the first kind s(n, k) for 1 ≤ k ≤ n can be expressed as

s(n, k) = (−1)n+k(n− 1)!
n−1∑
`1=1

1

`1

`1−1∑
`2=1

1

`2
· · ·

`k−3−1∑
`k−2=1

1

`k−2

`k−2−1∑
`k−1=1

1

`k−1
. (12)



Simplifying and Finding Ordinary Differential Equations 679

See also [5, p. 27, Remark 3.3]. Comparing (2) with (12), we observe
that

(−1)n+ks(n, k) = (n− 1)!Hn−1,k−1, n ≥ k ≥ 1. (13)

See also [7, p. 9, Section 2.5]. Then substituting (j − 2) by (k − 1) and
(n− 1)!Hn−1,k−1 by (−1)n+ks(n, k) in (1) leads to (4). The second proof
of the equation (4) is complete.

Proof of Theorem 1.2. Setting f(u) = ln(1 + u) and u = h(t) =
ln(1+λt)

λ
in (8) gives

F (n)(t) =
n∑
k=0

[ln(1 + u)](k)

× Bn,k

(
1

1 + λt
,− λ

(1 + λt)2
, . . . , (−1)n−k

(n− k)!λn−k

(1 + λt)n−k+1

)
=

n∑
k=0

[ln(1 + u)](k)
(

1

1 + λt

)n
(−1)n+kλn−kBn,k(0!, 1!, 2!, . . . , (n− k)!)

=

(
1

1 + λt

)n n∑
k=0

[ln(1 + u)](k)(−1)n+kλn−k(−1)n−ks(n, k)

=
1

(1 + λt)n

[
ln(1 + u)λns(n, 0) +

n∑
k=1

(−1)k−1(k − 1)!

(1 + u)k
λn−ks(n, k)

]

=
1

(1 + λt)n

n∑
k=1

(−1)k−1(k − 1)![
1 + ln(1+λt)

λ

]k λn−ks(n, k)

=
1

(1 + λt)n

n∑
k=1

(−1)k−1(k − 1)!λn−ks(n, k)e−kF (t)

for n ∈ N, where we used in the above lines the formula s(n, 0) = 0 for
n ∈ N and the identities (9) and (10). This means that the nonlinear
differential equations (6) have a solution F (t).

Applying the inversion theorem stated in (11) to the equation (6)
results in

(−1)n−1(n− 1)!

λn
e−nF (t) =

n∑
k=1

S(n, k)

(
1 + λt

λ

)k
F (k)(t).

The identity (7) is proved. The proof of Theorem 1.2 is complete.
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3. Remarks

Finally we list several remarks on our main and the closely related
results.

Remark 3.1. The relation (13) shows that we should not call the
quantities Hn,k defined in (2) the generalized harmonic numbers, as did
in [4, p. 745].

Remark 3.2. Till now we can see that formulations and proofs of
Theorems 1.1 and 1.2 in this paper are simpler, more concise, more
meaningful, and more significant than those in the papers [2–4].

Remark 3.3. This paper is an extended and simplified version of the
preprints [8, 9].

Acknowledgements. The authors are grateful to the anonymous refer-
ees for their careful corrections to and valuable comments on the original
version of this paper.
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