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SOLUTIONS OF VECTOR VARIATIONAL INEQUALITY
PROBLEMS

SALAHUDDIN

ABSTRACT. In this paper, we prove the existence results of the so-
lutions for wvector variational inequality problems by using the || - |-
sequentially continuous mapping.

1. Introduction

Based on the research works originated by Hartmann and Stampac-
chia [12] in finite dimensional Euclidean spaces, Giannessi [11] stud-
ied the vector version of scalar variational inequalities. Vector varia-
tional inequalities have been developed and extended in several areas in-
cluding vector equilibrium problems and vector optimization problems,
see [1,4,6,9,10,15].

Inspired and motivated by recent works [2,5,8,10,13,14,17,18], in this
paper we prove the existence of solutions for vector variational inequality
problems by using the || - ||-sequentially continuous mapping.

Suppose that X and Y are two Banach spaces. A nonempty subset
P of X is called convex cone, if \P C Pforall A >0and P+ P C P. A
cone P is called pointed cone if P is a cone and PN (—P) = {0}, where
0 denotes the zero vector. Also, a cone P is called proper if it is properly
contained in X. Let K be a nonempty closed convex subset of X and
C : K — 2¥ be a multivalued mapping such that for each z € K,C(z)
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is a closed convex cone with intC(x) # (), where intC(z) denotes the
interior of C(x). The partial order <¢(,) on Y induced by C(x) is defined
by declaring y <¢( z if and only if 2 —y € C(z) for all z,y,2 € K.
We will write y <¢@) 2 if 2 —y € intC(x) in the case intC(x) # (. Let
A:KCX — L(X Y) be a mapping where L(X,Y) be the family of
all bounded linear mapping from X to Y and ( : K — X be a given
operator. The vector variational inequality problems for finding x € K
such that

(1.1) (A(z),C(y) — C(x)) & —intC(x), Vy € K.
Special Cases:
(i) We note that ( = idg,idx : K — K,idg(z) = z. Then (1.1)
reduces to the wvector variational inequality problems for finding
x € K such that

(1.2) (A(x),y —x) & —intC(z), Yy € K.

(ii) IfC(x) = Ry forall z € X, then (1.1) reduces to general variational
inequality problems for finding x € K such that

(1.3) (A(z),¢(y) = ¢(x)) 20, Vy € K.

(iii) If C(z) = Ry for all z € X, then (1.2) reduces to wvariational
inequality problems for finding x € K such that

(1.4) (A(z),y —2) >0, Vy € K
studied by Hartmann and Stampacchia [12].

DEFINITION 1.1. Let C : K — 2¥ be a multifunction such that C(x)
is a proper closed convex cone with intC(x) # (), then a mapping g :
K — X is called C,-convex if for each x,y € K and A € [0, 1],

(1=Ng(z) + Ag(y) — g((1 — Nz + Ay) € C(z),
and called affine if for each z,y € K and A € R,

g((L =Nz + Ay) = Ag(z) + (1 = N)g(y).

REMARK 1.2. If g : K — Y is a C,-convex vector valued function,
then

Z/\Zgyl ZA yi) €C(x), Yy, € K, \; €[0,1], i =1,2,--- ,n

Wlth Zi:l )\z = 1.
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DEFINITION 1.3. Suppose X and Y are two Banach spaces and T :
D C X — L(X,Y) is said to be weak to || - ||-sequentially continuous at
x € D if for every sequence {z,,} C D that converges weakly to = € D,
the sequence {T'(z,)} C L(X,Y) converges to T'(z) € L(X,Y) in the
topology of the norm L(X,Y"). We say that T is weak to |- ||-sequentially
continuous on D C X and it has the property at every point z € D.
The operator T': D C X — X is said to be weak to weak-sequentially
continuous at z € D, if for every sequence {x,} C D that converges
weakly to = € D, then the sequence {T'(z,)} C X is converges weakly
to T'(x) C X. We say that T is weak to weak-sequentially continuous
on D C X, then it has property at every point x € D.

PropoSITION 1.4. [13] Let A: K C X — L(X,Y) be a given op-
erator. If A is weak to || - ||-sequentially continuous and K is weakly
compact and convex. Then variational inequality admits a solution.

Let Z and Y be two arbitrary sets. The inverse of a mapping f : Z —
Y is defined as the set valued mapping f~':Y = Z,

) ={z€Z: () = y}.
A single valued selection of a multivalued mapping F : Z = Y is the
single valued mapping f : Z — Y satisfying

f(z) € F(z), Vz € Z.

THEOREM 1.5. [7] Let Y be a topological vector space with a pointed
closed and convex cone C such that intC # (), then for all x,y,z € Y, we
have

(i) x —y € —intC and v ¢ —intC = y ¢ —intC;

(i) r+ye€ —Candx+ z ¢ —intC = z —y ¢ —intC;
(i) z+2z—y & —intC and —y € —C = z + z &€ —intC;
(iv) z+y & —intC andy — z € —C = x + z € —intC.

2. Main Results

THEOREM 2.1. Let K be a nonempty subset of X. Let A : K C X —
L(X,Y) and ¢ : K — X be the given operators. Assume that ((K) is
weakly compact and convex. Assume further that for every sequence
{z,} € K the following condition holds:
if the sequence {((z,)} C ((K) converges weakly to ((x) C ((K) then
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the sequence {A(x,)} C L(X,Y) is the norm convergent to A(z) C
L(X,Y).
Then (1.1) admits a solution.

Proof. Consider 3 : ((K) — K is a single valued selection of (7. Let

{u,} € ((K) be a weakly convergent sequence to u € X. From the weak
compactness of ((K), we have u € ((K). We show that

(Ao pB)(u,) — (Ao B)(u), as n — oo.

Since {u,} C ((K), there exists a sequence {z,} C K such that u, =
((xn),n €N,
Analogously, u = ((z) for some z € K, then

C(B(un)) = up,n € N and ((B(u)) = u.

Hence the sequence {((/5(uy))} is converges weakly to ¢(S(u)). From the
hypothesis of the theorem

(Ao B)(u,) — (Ao p)(u),n — oo.
Hence the operator Ao : ((K) — L(X,Y) is weak to || - ||-sequentially
continuous. From Proposition 1.4, there exists u € ((K') such that
(Ao pB)(u),v —u) & —intC(z),Vv € ((K).
Since for every y € K, there exists v € ((K) such that

((y) =,
and
(Ao B)(u),¢(y) —u) & —intC(x),Vy € K.
Since ((f(u)) = u. Thus
(AB(w)), C(y) = C(B(u))) & —intC(x),Vy € K,

or equivalently f(u) € K is a solution of (1.1) O

REMARK 2.2. The condition {((x,)} C ((K) is converges weakly to
((z) € ((K), then the sequence {A(z,)} C L(X,Y) is norm convergent
to A(x) C L(X,Y). From Theorem 2.1 implies that

¢'(¢(z)) C AT (A(2)) for € K.

Let € K and ((K) be the weakly sequentially closed, there exists a
sequence {((x,)} € ((K) converges to ((z) in the weak topology of
X. But the sequence {A(z,)} converges strongly to A(z). Let y €

¢7'(¢(x)), then
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hence {A(x,)} is converges strongly to A(y).
Therefore A(y) = A(x), hence y € A1 (A(x)).

COROLLARY 2.3. Let K C X be a weakly compact, A : K C X —
L(X,Y) and ¢ : K — X be the given operators. Assume that ((K) is
convex, ( is weak to weak-sequentially continuous. Further assume that
for every sequence {x,} C K the following condition holds:
if the sequence {((z,)} C ((K) is converges weakly to ((x) C ((K) then
the sequence {A(x,)} C L(X,Y) is norm convergent to A(x) C L(X,Y).
Then (1.1) admits a solution.

Proof. We prove that ((K) is weakly compact and conclusion follows
from Theorem 2.1. From Eberlein Smulian Theorem [3], ((K) is weakly
compact if and only if, it is weakly sequentially compact. To prove that
((K) is weakly sequentially compact, let {u,} be an arbitrary sequence
in ((K). Then there exists a sequence {z,} C K such that

Up = C($n)>n e N.

We show that {((x,)} has a weakly convergent subsequence in ((K).
Since {x,} is a sequence in the weakly compact set K and {z,} has a
weakly convergent subsequence. Let {x,,} be a subsequence of {z,},
that is weakly converges to z € K. Since ( is weak to weak sequen-
tially continuous, then {((z,,)} is converges weakly to ((z) and proof is
completed. O]

DEFINITION 2.4. [11] An operator T': D C X — L(X,Y) is called
monotone if for all z,y € D, we have

(T(z) =T(y),y — =) > 0.

T is monotone relative to the operator v : D — X if for all x,y € D, we
have

(T(z) = T(y),7(y) —v(x)) > 0.

We note that v = idp, then T is called continuous on finite dimen-
sional subspaces if for every finite dimensional subspace M C X, the
restriction of T" to D N M is weak continuous, that is for every sequence
{z,} € DN M converges to x € M, the sequence {A(z,)} C L(X,Y) is
converges to A(z) in the weak topology of L(X,Y"), see [16].

THEOREM 2.5. Let X and Y be the two reflexive Banach spaces.
Let A: K C X — L(X,Y) be the monotone relative to ( : K —
X, where ((K) is weakly compact and convex. Assume that for every
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finite dimensional subset L C ((K) and for every sequence {z,} C X
such that ((z,) C L, and if the sequence {((z,)} C L is converges to
C(z) C ((K), then the sequence { A(z,)} C L(X,Y) is weakly converges
to A(x) C L(X,Y).

Then (1.1) admits a solution.

Proof. Suppose 8 : ((K) — K is a single valued selection of (™! and
u,v € ((K). Then

(Ao B)(u) = (Ao B)(v),u —v) = (Alz) — Aly), ¢(z) — C(y))

where x = (u),y = (v). Since A is monotone relative to ¢, we have

(A(z) = Aly), C(x) = C(y)) & —intC(x).

Hence the operator Ao 3 : ((K) — L(X,Y) is monotone. Let M be a
finite dimensional subspace of X and L = M N((K). Let {u,} C L be a
sequence converges to u € ((K). Since M is finite dimensional subspace
then it is closed. Hence from weak compactness of ((K), we get that
u € L.

Now, we have to show that the sequence {(A o 8)(u,)} € L(X,Y) con-
verges to {(A o 5)(u)} € L(X,Y) in the weak topology of L(X,Y).
Since {u,} C ((K), there exists {z,} C K such that uw, = ((z,).
Analogously v = ((x) for some x € K, since f : ((K) — K is a
single valued selection of (7. Observe that ((8(u,)) = u, € L and
C((B(u)) = u € L. Hence {¢(B(uy))} is converges to ¢(S(u)). From the
hypothesis of the theorem, the sequence {A(f(u,))} C L(X,Y) con-
verges weakly to A(B(u)) C L(X,Y) as n — oo, which show that 4o 3
is continuous on finite dimensional subspace, there exists u € ((K') such
that

(Ao p)(u),v —u) & —intC(z),Vv € ((K).
Since for every y € K, there exists v € ((K) such that
(y) =,
we have
(Ao p)(u),C(y) —u) & —intC(x),Vy € K.
Observe that ((8(u)) = u. Thus

(AB(w)), C(y) = C(B(u))) & —intC(x),Yv € K,
or equivalently (u) € K is a solution of (1.1). O
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COROLLARY 2.6. Let X and Y be the two reflexive Banach spaces.

Assume that K is weakly compact, ((K) is convex and weak to weak
sequentially continuous. Let A be a monotone relation to (. Further,
assume that for every finite dimensional subset L C ((K) and for every
sequence {z,} C K such that ((x,) C L, and if the sequence {((z,)} C
L converges to ((x) C ((K), then the sequence {A(x,)} C L(X,Y) is
weakly converges to A(z) C L(X,Y).

Then (1.1) admits a solution.
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