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SOLUTIONS OF VECTOR VARIATIONAL INEQUALITY

PROBLEMS

Salahuddin

Abstract. In this paper, we prove the existence results of the so-
lutions for vector variational inequality problems by using the ‖ · ‖-
sequentially continuous mapping.

1. Introduction

Based on the research works originated by Hartmann and Stampac-
chia [12] in finite dimensional Euclidean spaces, Giannessi [11] stud-
ied the vector version of scalar variational inequalities. Vector varia-
tional inequalities have been developed and extended in several areas in-
cluding vector equilibrium problems and vector optimization problems,
see [1, 4, 6, 9, 10,15].
Inspired and motivated by recent works [2, 5, 8, 10, 13, 14, 17, 18], in this
paper we prove the existence of solutions for vector variational inequality
problems by using the ‖ · ‖-sequentially continuous mapping.

Suppose that X and Y are two Banach spaces. A nonempty subset
P of X is called convex cone, if λP ⊆ P for all λ ≥ 0 and P +P ⊂ P. A
cone P is called pointed cone if P is a cone and P ∩ (−P ) = {0}, where
0 denotes the zero vector. Also, a cone P is called proper if it is properly
contained in X. Let K be a nonempty closed convex subset of X and
C : K → 2Y be a multivalued mapping such that for each x ∈ K, C(x)
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is a closed convex cone with intC(x) 6= ∅, where intC(x) denotes the
interior of C(x). The partial order ≤C(x) on Y induced by C(x) is defined
by declaring y ≤C(x) z if and only if z − y ∈ C(x) for all x, y, z ∈ K.
We will write y ≤C(x) z if z − y ∈ intC(x) in the case intC(x) 6= ∅. Let
A : K ⊆ X → L(X, Y ) be a mapping where L(X, Y ) be the family of
all bounded linear mapping from X to Y and ζ : K → X be a given
operator. The vector variational inequality problems for finding x ∈ K
such that

(1.1) 〈A(x), ζ(y)− ζ(x)〉 6∈ −intC(x), ∀y ∈ K.
Special Cases:

(i) We note that ζ ≡ idK , idK : K → K, idK(x) = x. Then (1.1)
reduces to the vector variational inequality problems for finding
x ∈ K such that

(1.2) 〈A(x), y − x〉 6∈ −intC(x), ∀y ∈ K.
(ii) If C(x) = R+ for all x ∈ X, then (1.1) reduces to general variational

inequality problems for finding x ∈ K such that

(1.3) 〈A(x), ζ(y)− ζ(x)〉 ≥ 0, ∀y ∈ K.
(iii) If C(x) = R+ for all x ∈ X, then (1.2) reduces to variational

inequality problems for finding x ∈ K such that

(1.4) 〈A(x), y − x〉 ≥ 0, ∀y ∈ K
studied by Hartmann and Stampacchia [12].

Definition 1.1. Let C : K → 2Y be a multifunction such that C(x)
is a proper closed convex cone with intC(x) 6= ∅, then a mapping g :
K → X is called Cx-convex if for each x, y ∈ K and λ ∈ [0, 1],

(1− λ)g(x) + λg(y)− g((1− λ)x+ λy) ∈ C(x),

and called affine if for each x, y ∈ K and λ ∈ R,
g((1− λ)x+ λy) = λg(x) + (1− λ)g(y).

Remark 1.2. If g : K → Y is a Cx-convex vector valued function,
then

n∑
i=1

λig(yi)− g(
n∑

i=1

λi yi) ∈ C(x), ∀yi ∈ K, λi ∈ [0, 1], i = 1, 2, · · · , n

with
∑n

i=1 λi = 1.
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Definition 1.3. Suppose X and Y are two Banach spaces and T :
D ⊆ X → L(X, Y ) is said to be weak to ‖ · ‖-sequentially continuous at
x ∈ D if for every sequence {xn} ⊆ D that converges weakly to x ∈ D,
the sequence {T (xn)} ⊆ L(X, Y ) converges to T (x) ∈ L(X, Y ) in the
topology of the norm L(X, Y ). We say that T is weak to ‖·‖-sequentially
continuous on D ⊆ X and it has the property at every point x ∈ D.
The operator T : D ⊆ X → X is said to be weak to weak-sequentially
continuous at x ∈ D, if for every sequence {xn} ⊆ D that converges
weakly to x ∈ D, then the sequence {T (xn)} ⊆ X is converges weakly
to T (x) ⊆ X. We say that T is weak to weak-sequentially continuous
on D ⊆ X, then it has property at every point x ∈ D.

Proposition 1.4. [13] Let A : K ⊆ X → L(X, Y ) be a given op-
erator. If A is weak to ‖ · ‖-sequentially continuous and K is weakly
compact and convex. Then variational inequality admits a solution.

Let Z and Y be two arbitrary sets. The inverse of a mapping f : Z →
Y is defined as the set valued mapping f−1 : Y ⇒ Z,

f−1(y) = {z ∈ Z : f(z) = y}.
A single valued selection of a multivalued mapping F : Z ⇒ Y is the
single valued mapping f : Z → Y satisfying

f(z) ∈ F (z), ∀z ∈ Z.

Theorem 1.5. [7] Let Y be a topological vector space with a pointed
closed and convex cone C such that intC 6= ∅, then for all x, y, z ∈ Y , we
have

(i) x− y ∈ −intC and x 6∈ −intC ⇒ y 6∈ −intC;
(ii) x+ y ∈ −C and x+ z 6∈ −intC ⇒ z − y 6∈ −intC;
(iii) x+ z − y 6∈ −intC and −y ∈ −C ⇒ x+ z 6∈ −intC;
(iv) x+ y 6∈ −intC and y − z ∈ −C ⇒ x+ z 6∈ −intC.

2. Main Results

Theorem 2.1. Let K be a nonempty subset of X. Let A : K ⊆ X →
L(X, Y ) and ζ : K → X be the given operators. Assume that ζ(K) is
weakly compact and convex. Assume further that for every sequence
{xn} ⊆ K the following condition holds:
if the sequence {ζ(xn)} ⊆ ζ(K) converges weakly to ζ(x) ⊆ ζ(K) then
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the sequence {A(xn)} ⊆ L(X, Y ) is the norm convergent to A(x) ⊆
L(X, Y ).
Then (1.1) admits a solution.

Proof. Consider β : ζ(K)→ K is a single valued selection of ζ−1. Let
{un} ⊆ ζ(K) be a weakly convergent sequence to u ∈ X. From the weak
compactness of ζ(K), we have u ∈ ζ(K). We show that

(A ◦ β)(un)→ (A ◦ β)(u), as n→∞.
Since {un} ⊆ ζ(K), there exists a sequence {xn} ⊆ K such that un =
ζ(xn), n ∈ N.
Analogously, u = ζ(x) for some x ∈ K, then

ζ(β(un)) = un, n ∈ N and ζ(β(u)) = u.

Hence the sequence {ζ(β(un))} is converges weakly to ζ(β(u)). From the
hypothesis of the theorem

(A ◦ β)(un)→ (A ◦ β)(u), n→∞.
Hence the operator A◦ β : ζ(K)→ L(X, Y ) is weak to ‖ · ‖-sequentially
continuous. From Proposition 1.4, there exists u ∈ ζ(K) such that

〈(A ◦ β)(u), v − u〉 6∈ −intC(x),∀v ∈ ζ(K).

Since for every y ∈ K, there exists v ∈ ζ(K) such that

ζ(y) = v,

and
〈(A ◦ β)(u), ζ(y)− u〉 6∈ −intC(x),∀y ∈ K.

Since ζ(β(u)) = u. Thus

〈A(β(u)), ζ(y)− ζ(β(u))〉 6∈ −intC(x),∀y ∈ K,
or equivalently β(u) ∈ K is a solution of (1.1)

Remark 2.2. The condition {ζ(xn)} ⊆ ζ(K) is converges weakly to
ζ(x) ⊆ ζ(K), then the sequence {A(xn)} ⊆ L(X, Y ) is norm convergent
to A(x) ⊆ L(X, Y ). From Theorem 2.1 implies that

ζ−1(ζ(x)) ⊆ A−1(A(x)) for x ∈ K.
Let x ∈ K and ζ(K) be the weakly sequentially closed, there exists a
sequence {ζ(xn)} ⊆ ζ(K) converges to ζ(x) in the weak topology of
X. But the sequence {A(xn)} converges strongly to A(x). Let y ∈
ζ−1(ζ(x)), then

ζ(y) = ζ(x),
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hence {A(xn)} is converges strongly to A(y).
Therefore A(y) = A(x), hence y ∈ A−1(A(x)).

Corollary 2.3. Let K ⊆ X be a weakly compact, A : K ⊆ X →
L(X, Y ) and ζ : K → X be the given operators. Assume that ζ(K) is
convex, ζ is weak to weak-sequentially continuous. Further assume that
for every sequence {xn} ⊆ K the following condition holds:
if the sequence {ζ(xn)} ⊆ ζ(K) is converges weakly to ζ(x) ⊆ ζ(K) then
the sequence {A(xn)} ⊆ L(X, Y ) is norm convergent toA(x) ⊆ L(X, Y ).
Then (1.1) admits a solution.

Proof. We prove that ζ(K) is weakly compact and conclusion follows
from Theorem 2.1. From Eberlein Smulian Theorem [3], ζ(K) is weakly
compact if and only if, it is weakly sequentially compact. To prove that
ζ(K) is weakly sequentially compact, let {un} be an arbitrary sequence
in ζ(K). Then there exists a sequence {xn} ⊆ K such that

un = ζ(xn), n ∈ N.
We show that {ζ(xn)} has a weakly convergent subsequence in ζ(K).
Since {xn} is a sequence in the weakly compact set K and {xn} has a
weakly convergent subsequence. Let {xni

} be a subsequence of {xn},
that is weakly converges to x ∈ K. Since ζ is weak to weak sequen-
tially continuous, then {ζ(xni

)} is converges weakly to ζ(x) and proof is
completed.

Definition 2.4. [11] An operator T : D ⊆ X → L(X, Y ) is called
monotone if for all x, y ∈ D, we have

〈T (x)− T (y), y − x〉 ≥ 0.

T is monotone relative to the operator γ : D → X if for all x, y ∈ D, we
have

〈T (x)− T (y), γ(y)− γ(x)〉 ≥ 0.

We note that γ = idD, then T is called continuous on finite dimen-
sional subspaces if for every finite dimensional subspace M ⊆ X, the
restriction of T to D ∩M is weak continuous, that is for every sequence
{xn} ⊆ D ∩M converges to x ∈M , the sequence {A(xn)} ⊆ L(X, Y ) is
converges to A(x) in the weak topology of L(X, Y ), see [16].

Theorem 2.5. Let X and Y be the two reflexive Banach spaces.
Let A : K ⊆ X → L(X, Y ) be the monotone relative to ζ : K →
X, where ζ(K) is weakly compact and convex. Assume that for every
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finite dimensional subset L ⊆ ζ(K) and for every sequence {xn} ⊆ X
such that ζ(xn) ⊂ L, and if the sequence {ζ(xn)} ⊆ L is converges to
ζ(x) ⊆ ζ(K), then the sequence {A(xn)} ⊆ L(X, Y ) is weakly converges
to A(x) ⊆ L(X, Y ).
Then (1.1) admits a solution.

Proof. Suppose β : ζ(K)→ K is a single valued selection of ζ−1 and
u, v ∈ ζ(K). Then

〈(A ◦ β)(u)− (A ◦ β)(v), u− v〉 = 〈A(x)−A(y), ζ(x)− ζ(y)〉

where x = β(u), y = β(v). Since A is monotone relative to ζ, we have

〈A(x)−A(y), ζ(x)− ζ(y)〉 6∈ −intC(x).

Hence the operator A ◦ β : ζ(K) → L(X, Y ) is monotone. Let M be a
finite dimensional subspace of X and L = M ∩ ζ(K). Let {un} ⊆ L be a
sequence converges to u ∈ ζ(K). Since M is finite dimensional subspace
then it is closed. Hence from weak compactness of ζ(K), we get that
u ∈ L.
Now, we have to show that the sequence {(A ◦ β)(un)} ⊆ L(X, Y ) con-
verges to {(A ◦ β)(u)} ⊆ L(X, Y ) in the weak topology of L(X, Y ).
Since {un} ⊆ ζ(K), there exists {xn} ⊆ K such that un = ζ(xn).
Analogously u = ζ(x) for some x ∈ K, since β : ζ(K) → K is a
single valued selection of ζ−1. Observe that ζ(β(un)) = un ∈ L and
ζ(β(u)) = u ∈ L. Hence {ζ(β(un))} is converges to ζ(β(u)). From the
hypothesis of the theorem, the sequence {A(β(un))} ⊆ L(X, Y ) con-
verges weakly to A(β(u)) ⊆ L(X, Y ) as n→∞, which show that A ◦ β
is continuous on finite dimensional subspace, there exists u ∈ ζ(K) such
that

〈(A ◦ β)(u), v − u〉 6∈ −intC(x),∀v ∈ ζ(K).

Since for every y ∈ K, there exists v ∈ ζ(K) such that

ζ(y) = v,

we have

〈(A ◦ β)(u), ζ(y)− u〉 6∈ −intC(x),∀y ∈ K.
Observe that ζ(β(u)) = u. Thus

〈A(β(u)), ζ(y)− ζ(β(u))〉 6∈ −intC(x),∀v ∈ K,

or equivalently β(u) ∈ K is a solution of (1.1).
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Corollary 2.6. Let X and Y be the two reflexive Banach spaces.
Assume that K is weakly compact, ζ(K) is convex and weak to weak
sequentially continuous. Let A be a monotone relation to ζ. Further,
assume that for every finite dimensional subset L ⊆ ζ(K) and for every
sequence {xn} ⊆ K such that ζ(xn) ⊆ L, and if the sequence {ζ(xn)} ⊆
L converges to ζ(x) ⊆ ζ(K), then the sequence {A(xn)} ⊆ L(X, Y ) is
weakly converges to A(x) ⊆ L(X, Y ).
Then (1.1) admits a solution.
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