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POSITION VECTOR OF A DEVELOPABLE q-SLANT

RULED SURFACE

Onur Kaya† and Mehmet Önder

Abstract. In this paper, we study the position vector of a devel-
opable q-slant ruled surface in the Euclidean 3-space E3 in means
of the Frenet frame of a q-slant ruled surface. First, we determinate
the natural representations for the striction curve and ruling of a
q-slant ruled surface. Then we obtain general parameterization of
a developable q-slant ruled surface with respect to the conical cur-
vature of the surface. Finally, we introduce some examples for the
obtained result.

1. Introduction

One of the most important and fascinating subject of differential ge-
ometry is special curves or special surfaces. Generally, special curves
are such curves whose curvatures satisfy some special conditions. The
well-known of special curves is general helix in the Euclidean 3-space E3.
A general helix is a regular curve whose tangent line makes a constant
angle with a fixed straight line called the axis of the general helix. There-
fore, a general helix can be equivalently defined as one whose tangent
indicatrix is a circle or an arc of a circle on the unit sphere. Moreover,
a general helix is characterized by the property that the function κ/τ
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is constant where κ and τ are curvature and torsion of the curve, re-
spectively [6]. Of course, there exist some other special curves in the
space. Recently, Izumiya and Takeuchi have introduced another special
curve by a similar way of the definition of a helix. They have defined
this new curve as slant helix which is a curve whose principal normal
lines make a constant angle with a fixed direction and they have given
a characterization of slant helix in the Euclidean 3-space E3 [8]. Since
the definitions of helix and slant helix are similar, we conclude that the
principal normal indicatrix of a slant helix is a circle or an arc of a circle
on the unit sphere. Slant helices have been studied by some mathemati-
cians and new types of these curves have been introduced. Kula and
Yaylı have studied the tangent indicatrix and the binormal indicatrix of
a slant helix and obtained that the spherical images of a slant helix are
helices lying on unit sphere [13]. Later, Kula and et al have introduced
some new results characterizing slant helices in E3 [14]. Moreover, Önder
and et al have defined a new type of slant helix called B2-slant helix in
Euclidean 4-space E4 and given the characterizations of this curve [18].

In the case of surfaces, ruled surface is a type of special surfaces
which is generated by a continuous movement of a line along a curve.
Önder has generalized the theory of general helix and slant helix to ruled
surfaces and called slant ruled surfaces in E3 [16]. He has defined the
slant ruled surfaces by the property that the vectors of the Frenet frame
of a ruled surface make constant angles with fixed directions and he has
given characterizations for a ruled surface to be a slant ruled surface.
Also, he has obtained that the striction curves of developable slant ruled
surfaces are helices or slant helices. Later, Önder and Kaya have defined
Darboux slant ruled surfaces in E3 such as the Darboux vector of the
ruled surface makes a constant angle with a fixed direction and they
have given characterizations for a ruled surface to be a Darboux slant
ruled surface [15].

Another different problem of the differential geometry is to determine
a curve or a surface. The determination of parametric representation of
the position vector of an arbitrary space curve or an arbitrary surface is
still an open problem in the Euclidean space E3 and in the Minkowski
space E3

1 . It is not easy to solve this problem in general case. However,
this problem has been solved in some special cases only for curves such
as the curve lies on a special plane, or as the curve is a helix i.e., both the
curvature κ and the torsion τ of the curve are non-vanishing constants or
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the curve is a general helix, i.e., the function κ/τ is constant [1–5,7,9,10].
Of course, the determination of a parametric representation of a surface
is more complicated and difficult since the surface has two parameters.
Moreover, similar to the curves, this determination can be given only
in some special cases. Kaya and Önder investigated the determination
problem for h-slant ruled surfaces which are defined in [16] and gave
parametric representations for developable h-slant ruled surfaces [12].

The aim of this paper is to determine the parametric representation
of a q-slant ruled surface in the Euclidean 3-space E3. For this purpose,
first we give a brief summary of ruled surfaces and slant ruled surfaces in
Section 2. The Section 3 contains the determination of position vector
of a q-slant ruled surface in E3. In the last section, Section 4, some
examples for the obtained results are given.

2. Ruled Surfaces in the Euclidean 3-space

In this section, we give a brief summary of the geometry of ruled
surfaces and q-slant ruled surfaces in E3.

A ruled surface S is a special surface generated by a continuous mov-

ing of a line along a curve ~k(u) and has the parametrization

(1) ~r(u, v) = ~k(u) + v~q(u)

where the curve ~k = ~k(u) is called base curve or generating curve of the
surface and ~q = ~q(u) is a unit direction vector of an oriented line in E3

whose various positions are called rulings. The distribution parameter
of S is the function d = d(u) which is defined by

(2) d =

∣

∣

∣

~̇k, ~q, ~̇q
∣

∣

∣

〈~̇q, ~̇q〉

where ~̇k = d~k
du
, ~̇q = d~q

du
. If

∣

∣

∣

~̇k, ~q, ~̇q
∣

∣

∣
= 0, then the normal vectors do not

change along a ruling, i.e., the tangent planes are identical at all points

of the same ruling. Such a ruling is called a torsal ruling. If
∣

∣

∣

~̇k, ~q, ~̇q
∣

∣

∣
6= 0,

then the tangent planes of the surface S are distinct at all points of same
ruling. Such rulings are called non-torsal [11].
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Definition 2.1. [11] A ruled surface whose all rulings are torsal
is called a developable ruled surface. The remaining ruled surfaces are
called skew ruled surfaces.

From (2), it is clear that a ruled surface is developable if and only if
at all its points the distribution parameter is zero.

Let ~m be unit normal vector of a ruled surface S given by the parametriza-
tion (1). Then we have

(3) ~m =
~ru × ~rv
‖~ru × ~rv‖

=

(

~̇k + v~̇q
)

× ~q
√

〈

~̇k + v~̇q, ~̇k + v~̇q
〉

−
〈

~̇k, ~q
〉2

If v infinitely decreases, then along a ruling u = u1, the unit normal ~m
approaches a limiting direction. This direction is called the asymptotic
normal (or central tangent) direction and from (3) defined by

~a = lim
v→±∞

~m (u1, v) =
~q × ~̇q
∥

∥

∥
~̇q
∥

∥

∥

.

The point at which the unit normal of S is perpendicular to ~a is called
the striction point (or central point) C and the set of striction points of
all rulings is called striction curve of the surface.

The vector ~h defined by ~h = ~a × ~q is called central normal vector.

Then the orthonormal system
{

C; ~q,~h,~a
}

is called Frenet frame of the

ruled surface S where C is the central point and ~q,~h,~a are the unit vec-
tors of ruling, the central normal vector and the central tangent vector,
respectively.

The set of all bound vectors ~q(u) at the origin O constitutes a cone
which is called directing cone of the ruled surface S. The end points of

unit vectors ~q(u) trace a spherical curve ~k1 on the unit sphere S2 and
this curve is called spherical image of ruled surface S, whose arc length
is denoted by s1. A ruled surface and its directing cone have the same

Frenet frame
{

~q,~h,~a
}

and the derivative formulae of this frame with

respect to the arc length s1 are given as follows

(4)





d~q/ds1
d~h/ds1
d~a/ds1



 =





0 1 0
−1 0 κ
0 −κ 0









~q
~h
~a




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where κ(s1) = ‖d~a/ds1‖ is called the conical curvature of the directing
cone (For details [11]).

Let now chose the base curve as the striction curve. Then the parametriza-
tion of ruled surface S is given by

(5) ~r(s, v) = ~c(s) + v~q(s), ‖~q(s)‖ = 1,

where s is the arc length parameter of striction curve. If S is a devel-
opable ruled surface then the tangent vectors of striction curve coincide
with the rulings, i.e., d~c

ds
= ~q. Then, for the tangent vector of the striction

curve we have

(6)
d~c

ds1
= f(s1)~q(s1)

where d~c
ds

= ~q and f(s1) =
ds
ds1

[11].

Definition 2.2. [16] Let S be a ruled surface in E3 given by the
parametrization

~r(s, v) = ~c(s) + v~q(s), ‖~q(s)‖ = 1,

where ~c(s) is striction curve of S and s is arc length parameter of ~c(s).

Let the Frenet frame of S be
{

~q,~h,~a
}

. Then S is called a q-slant ruled

surface if the ruling makes a constant angle θ with a fixed non-zero unit
direction ~u in the space E3, i.e.,

(7) 〈~q, ~u〉 = cos θ = constant; θ 6= π

2
.

Theorem 2.1. [17] Let S be a regular ruled surface in E3 with Frenet

frame
{

~q,~h,~a
}

and conical curvature κ 6= 0. Then S is a q-slant ruled

surface if and only if the function κ is constant.

3. Position Vectors of Developable q-Slant Ruled Surfaces

In this section, we give characterizations for the position vectors of
slant ruled surfaces. First, we give the following theorem:

Theorem 3.1. Let S be a developable q-slant ruled surface,
{

~q,~h,~a
}

and κ 6= 0 be the Frenet frame and the conical curvature of the surface
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S, respectively. Then, the position vector of the striction curve of S with
respect to the arc length parameter s1 is given by:

~c(s1) =

(

κz(s1) +
z′′(s1)

κ

)

~q(s1)−
z′(s1)

κ
~h(s1) + z(s1)~a(s1)

where

z(s1) = c1 cos
(√

1 + κ2s1

)

+ c2 sin
(√

1 + κ2s1

)

+
κ√

1 + κ2

[(
∫

cos
(√

1 + κ2s1

)

(
∫

f(s1)ds1

)

ds1

)

sin
(√

1 + κ2s1

)

−
(
∫

sin
(√

1 + κ2s1

)

(
∫

f(s1)ds1

)

ds1

)

cos
(√

1 + κ2s1

)

]

(8)

and c1, c2 are arbitrary constants, f(s1) =
ds
ds1

.

Proof. Since the Frenet frame
{

~q,~h,~a
}

is linearly independent, the

position vector of striction curve can be given by

(9) ~c(s1) = x(s1)~q(s1) + y(s1)~h(s1) + z(s1)~a(s1)

where x(s1), y(s1) and z(s1) are differentiable functions of s1. Since S
is a developable ruled surface, from (6) we have

(10) ~c′(s1) = f(s1)~q(s1)

where ~c′(s1) = d~c/ds1. By differentiating (9) with respect to s1 and
using equality (10), we obtain the following system,

(11)











x′ − y − f = 0,

x+ y′ − zκ = 0,

yκ+ z′ = 0.

From the third equation of the system (11), we get

(12) y′ = −z′

κ
.

By taking the derivative of (12) and substituting the obtained result in
the second equation of the system (11) it follows

(13) x = zκ +

(

z′

κ

)′

.
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If we write the equations (12) and (13) in the first equation of the system
(11), we obtain the following differential equation

(14)

(

zκ +

(

z′

κ

)′)′

+
z′

κ
= f.

Since S is a q-slant ruled surface, we have that κ = constant. Therefore,
equation (14) becomes

(15) z′′′ +
(

1 + κ2
)

z′ = κf

and by integrating (3) we obtain

(16) z′′ +
(

1 + κ2
)

z =

∫

fds1.

The general solution of (16) is

z(s1) = c1 cos
(√

1 + κ2s1

)

+ c2 sin
(√

1 + κ2s1

)

+
κ√

1 + κ2

[(
∫

cos
(√

1 + κ2s1

)

(
∫

f(s1)ds1

)

ds1

)

sin
(√

1 + κ2s1

)

−
(
∫

sin
(√

1 + κ2s1

)

(
∫

f(s1)ds1

)

ds1

)

cos
(√

1 + κ2s1

)

]

On the other hand, if we substitute (12) and (13) in (9) we get

(17) ~c(s1) =

(

κz(s1) +
z′′(s1)

κ

)

~q(s1)−
z′(s1)

κ
~h(s1) + z(s1)~a(s1)

which is desired.

From Theorem 3.1, we have the following corollaries:

Corollary 3.2. Let S be a developable q-slant ruled surface with

Frenet frame
{

~q,~h,~a
}

and conical curvature κ 6= 0. Then the parametriza-

tion of the surface S is given by

(18) ~r(s1, v) =

(

κz(s1) +
z′′(s1)

κ
+ v

)

~q(s1)−
z′(s1)

κ
~h(s1) + z(s1)~a(s1)

where z(s1) is defined by (8).

Corollary 3.3. If z(s1) = constant, then the position vector of the
surface lies on the plane spanned by the vectors ~q and ~a.
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Proof. From Theorem 3.1 we have

(19) ~c(s1) =

(

κz(s1) +
z′′(s1)

κ

)

~q(s1)−
z′(s1)

κ
~h(s1) + z(s1)~a(s1)

Let z(s1) be constant. Then, by taking z = m = constant, (19) becomes

~c(s1) = m (κ~q(s1) + ~a(s1)) .

Therefore, the parametrization of the surface becomes

~r(s1, v) = (mκ + v) ~q(s1) +m~a(s1)

which means that the position vector of the surface S lies on the plane
spanned by the vectors ~q and ~a.

Lemma 3.4. Let S be a regular ruled surface with Frenet frame
{

~q,~h,~a
}

and conical curvature function κ 6= 0. Then, the ruling of

S satisfies the following third order differential equation:

(20) κ~q′′′ − κ′~q′′ + κ
(

1 + κ2
)

~q′ − κ′~q = 0.

Proof. From the Frenet formulae (4) we have ~q′ = ~h. By differentiat-
ing the last equation and using the Frenet formulae we obtain

(21) ~a =
1

κ
(~q′′ + ~q)

By taking the derivative of (21) and using the Frenet formulae again we
get

κ~q′′′ − κ′~q′′ + κ
(

1 + κ2
)

~q′ − κ′~q = 0.

which is desired.

Corollary 3.5. Let S be a developable ruled surface with Frenet

frame
{

~q,~h,~a
}

and conical curvature κ 6= 0. Then, the striction curve

of S satisfies the following fourth order differential equation:

κ

(

~c′(s1)

f(s1)

)′′′

− κ′
(

~c′(s1)

f(s1)

)′′

+ κ
(

1 + κ2
)

(

~c′(s1)

f(s1)

)′

− κ′
(

~c′(s1)

f(s1)

)

= 0.

Proof. From Lemma 3.4 we have that for a regular ruled surface

(22) κ~q′′′ − κ′~q′′ + κ
(

1 + κ2
)

~q′ − κ′~q = 0.

is satisfied. On the other hand, since S is a developable ruled surface
from (10) we have

(23) ~c′(s1) = f(s1)~q(s1).
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By substituting (23) in (22) we obtain

κ

(

~c′(s1)

f(s1)

)′′′

− κ′
(

~c′(s1)

f(s1)

)′′

+ κ
(

1 + κ2
)

(

~c′(s1)

f(s1)

)′

− κ′
(

~c′(s1)

f(s1)

)

= 0.

Theorem 3.6. Let S be a developable q-slant ruled surface with

Frenet frame
{

~q,~h,~a
}

and conical curvature κ 6= 0. Then, the position

vector of the striction curve of S is given by:

~c(s1) =
1√

1 + κ2

(
∫

cos
(√

1 + κ2s1

)

f(s1)ds1,

∫

sin
(√

1 + κ2s1

)

f(s1)ds1, κ

∫

f(s1)ds1

)(24)

Proof. Since S is a developable q-slant ruled surface, from (6) and
Theorem 2.1 we have~c′(s1) = f(s1)~q(s1) and κ = constant, respectively.
Then, the equation (20) becomes

(25) ~q′′′ +
(

1 + κ2
)

~q′ = 0.

The ruling can be given by:

(26) ~q = q1~e1 + q2~e2 + q3~e3

where ~e1, ~e2, ~e3 are the base vectors of R
3. Since S is a q-slant ruled sur-

face, the ruling makes a constant angle with a fixed direction. Without
loss of generality, we can take the fixed straight line as ~e3. Therefore,
we get

(27) q3 = 〈~q, ~e3〉 = cos θ = n = constant

where θ is the constant angle between the unit vectors ~q, ~e3. By using
(27) and that ~q is a unit vector, we obtain

(28) q21 + q22 = 1− n2 = sin2 θ

The general solution of (28) is given by

(29) q1 = sin θ cos (t(s1)) , q2 = sin θ sin (t(s1))

where t = t(s1) is an arbitrary function of s1. Then from (29) and (26)
we have

~q = sin θ cos (t(s1))~e1 + sin θ sin (t(s1))~e2 + cos θ~e3.
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Since s1 is the arc length parameter of the spherical curve ~k1(s1) drawn
by ~q, from last equality we have that t′ sin θ = 1, which gives us

t(s1) =
1

sin θ
s1 + c

where c is a real constant. Thanks to parameter change t → t + c, we
obtain

(30) t(s1) =
1

sin θ
s1.

On the other hand the components of the vector ~q satisfy (25). Therefore,
by considering (29) and (26) in (25), we get the following system,

{

[

t′′′ − (t′)3 + (1 + κ2) t′
]

sin t + (3t′′t′) cos t = 0,

−
[

t′′′ − (t′)3 + (1 + κ2) t′
]

cos t + (3t′′t′) sin t = 0,

which can be reduced to

(31)

{

t′′t′ = 0,

t′′′ − (t′)3 + (1 + κ2) t′ = 0.

Since t is not constant, then the general solution of the first equation of
system (31) can be given by:

(32) t(s1) = d1s1 + d2

where d1 and d2 are arbitrary constants. Thanks to parameter change
t → t+ d2, (32) becomes

(33) t(s1) = d1s1.

If we substitute (33) in the second equation of the system (31), we obtain

(34) d1 =
√
1 + κ2.

By using (33), (34) and (30) we obtain that sin θ = 1√
1+κ2

. Then the

parametrization of ruling ~q is obtained as follows

~q(s1) =
1√

1 + κ2

(

cos
(√

1 + κ2s1

)

, sin
(√

1 + κ2s1

)

, κ
)

.

Since S is developable, from (6) we have that

~c(s1) =
1√

1 + κ2

(
∫

cos
(√

1 + κ2s1

)

f(s1)ds1 ,

∫

sin
(√

1 + κ2s1

)

f(s1)ds1, κ

∫

f(s1)ds1

)
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Theorem 3.6 gives us the following corollary:

Corollary 3.7. Let S be a developable q-slant ruled surface with

Frenet frame
{

~q,~h,~a
}

and conical curvature κ 6= 0. Then, the parametriza-

tion of the surface S is given by
(35)

~r(s1, v) =
1√

1 + κ2

(
∫

fgds1 + vg,

∫

fhds1 + vh,

(
∫

fds1 + v

)

κ

)

where g(s1) = cos
(√

1 + κ2s1
)

and h(s1) = sin
(√

1 + κ2s1
)

.

Proof. Let S be a developable q-slant ruled surface. From Theorem
3.6 we have

(36)











~q(s1) =
1√

1+κ2

(

cos
(√

1 + κ2s1
)

, sin
(√

1 + κ2s1
)

, κ
)

,

~c(s1) =
1√

1+κ2

(∫

cos
(√

1 + κ2s1
)

f(s1)ds1,
∫

sin
(√

1 + κ2s1
)

f(s1)ds1, κ
∫

f(s1)ds1
)

.

Since the parameterization of the surface S is given by

(37) ~r(s1, v) = ~c(s1) + v~q(s1)

by substituting (36) in (3) we obtain

~r(s1, v) =
1√

1 + κ2

[
∫

f(s1) cos
(√

1 + κ2s1

)

ds1 + v cos
(√

1 + κ2s1

)

,

∫

f(s1) sin
(√

1 + κ2s1

)

ds1 + v sin
(√

1 + κ2s1

)

,

κ

∫

f(s1)ds1 + vκ

]

.

(38)

If we take g(s1) = cos
(√

1 + κ2s1
)

and h(s1) = sin
(√

1 + κ2s1
)

in (38),
we get

~r(s1, v) =
1√

1 + κ2

(
∫

fgds1 + vg,

∫

fhds1 + vh,

(
∫

fds1 + v

)

κ

)
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Corollary 3.8. Let S be a developable q-slant ruled surface with

Frenet frame
{

~q,~h,~a
}

and conical curvature κ 6= 0. Then, the parametriza-

tion of the surface S according to the arc length s of striction curve is
given by:

~r(s, v) =
1√

1 + κ2

(
∫

gds+ vg,

∫

hds+ vh, (s+m+ v) κ

)

where m is a constant.

Proof. Since f = ds
ds1

, from (35) we have the desired equation imme-
diately.

4. Examples

In this section we consider some special chosen of conical curvature
κ and function f(s1) and obtain some examples of developable q-slant
ruled surfaces by considering equality (35).

Example 4.1. Let consider the ruled surface S with conical curvature
κ =

√
3 and function f = 2. The parametrization of developable q-slant

ruled surface S with axis ~e3 is obtained as follows

~r(s1, v) =

(

1

2
sin (2s1) + c1 +

1

2
v cos (2s1) ,−

1

2
cos (2s1) + c2 +

1

2
v sin (2s1) ,

√
3s1 + c3 +

1

2
v
√
3

)

where c1, c2, c3 are integration constants. The shape of surface S is given
in Fig. 1.

Example 4.2. If we take κ = 2
√
2 and f = 3, the parametrization

of developable q-slant ruled surface S with axis ~e3 is obtained as follows

~r(s1, v) =

(

1

3
sin (3s1) + d1 +

1

3
v cos (3s1) ,−

1

3
cos (3s1) + d2 +

1

3
v sin (3s1) ,

2
√
2s1 + d3 +

2
√
2

3
v

)

where d1, d2, d3 are integration constants. Then the shape of obtained
surface is given in Fig. 2.



Position vector of a developable q-slant ruled surface 557

Example 4.3. If we take the conical curvature κ = 1 and function
f(s1) = s21. Then the parametrization of developable q-slant ruled sur-
face S with axis ~e3 is obtained as follows

~r(s1, v) =

(

1

2
s21 sin

(√
2s1

)

− 1

2
sin
(√

2s1

)

+
1

2

√
2s1 cos

(√
2s1

)

+m1

+
1

2
v
√
2 cos

(√
2s1

)

,

− 1

2
s21 cos

(√
2s1

)

+
1

2
cos
(√

2s1

)

+
1

2

√
2s1 sin

(√
2s1

)

+m2 +
1

2
v
√
2 sin

(√
2s1

)

,

1

6

√
2s31 +m3 +

1

2
v
√
2

)

where m1, m2, m3 are integration constants and the shape of surface is
given in Fig. 3.

Example 4.4. Let now consider the ruled surface S with conical
curvature κ = 2 and function f(s1) = es1. The parametrization of
developable q-slant ruled surface S with axis ~e3 is obtained as follows

~r(s1, v) =

(

1

30

√
5es1 cos

(√
5s1

)

+
1

6
es1 sin

(√
5s1

)

+ n1 +

√
5

5
v cos

(√
5s1

)

,

− 1

6
es1 cos

(√
5s1

)

+
1

30

√
5es1 sin

(√
2s1

)

+ n2 +

√
5

5
v sin

(√
5s1

)

,

2

5

√
5es1 + n3 +

2

5

√
5v

)

where n1, n2, n3 are integration constants and the shape of surface is
given in Fig. 4.
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Figure 1 Figure 2

Figure 3 Figure 4
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[9] K. İlarslan and O. Boyacıoğlu, Position vectors of a spacelike W-curve in

Minkowski Space E3
1 , Bull. Korean Math. Soc. 44 (3) (2007) 429–438.
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