A NOTE ON NONLINEAR SKEW LIE TRIPLE DERIVATION BETWEEN PRIME *-ALGEBRAS

Ali Taghavi, Mojtaba Nouri, and Vahid Darvish

Abstract

Recently, Li et al proved that Φ which satisfies the following condition on factor von Neumann algebras $\Phi\left(\left[[A, B]_{*}, C\right]_{*}\right)=\left[[\Phi(A), B]_{*}, C\right]_{*}+\left[[A, \Phi(B)]_{*}, C\right]_{*}+\left[[A, B]_{*}, \Phi(C)\right]_{*}$ where $[A, B]_{*}=A B-B A^{*}$ for all $A, B \in \mathcal{A}$, is additive $*$-derivation. In this short note we show the additivity of Φ which satisfies the above condition on prime $*$-algebras.

1. Introduction

Let \mathcal{R} be a $*$-ring. For $A, B \in \mathcal{R}$, denoted by $A \diamond B=A B+B A^{*}$ and $[A, B]_{*}=A B-B A^{*}$, which are $*$-Jordan product and $*$-Lie product, respectively. These products are found playing a more and more important role in some research topics, and its study has recently attracted many author's attention (for example, see $[2,4,6,7]$).

Let define λ-Jordan $*$-product by $A \diamond_{\lambda} B=A B+\lambda B A^{*}$. We say the map Φ with property of $\Phi\left(A \diamond_{\lambda} B\right)=\Phi(A) \diamond_{\lambda} B+A \diamond_{\lambda} \Phi(B)$ is a λ-Jordan $*$-derivation map. It is clear that for $\lambda=-1$ and $\lambda=1$, the λ-Jordan $*$-derivation map is a $*$-Lie derivation and $*$-Jordan derivation, respectively [1]. We should mention here whenever we say Φ preserves derivation, it means $\Phi(A B)=\Phi(A) B+A \Phi(B)$.

Received May 06, 2018. Revised July 15, 2018. Accepted July 17, 2018.
2010 Mathematics Subject Classification: 46J10, 47B48, 46L10.
Key words and phrases: Lie triple derivation, prime $*$-algebra, additive map.
(c) The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Recently, Yu and Zhang in [9] proved that every non-linear *-Lie derivation from a factor von Neumann algebra into itself is an additive *derivation. Also, Li, Lu and Fang in [3] have investigated a non-linear λ-Jordan $*$-derivation. They showed that if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is a von Neumann algebra without central abelian projections and λ is a non-zero scalar, then $\Phi: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{H})$ is a non-linear λ-Jordan $*$-derivation if and only if Φ is an additive $*$-derivation.

In [8] we showed that $*$-Jordan derivation map (i.e., $\phi\left(A \diamond_{1} B\right)=$ $\left.\phi(A) \diamond_{1} B+A \diamond_{1} \phi(B)\right)$ on every factor von Neumann algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is additive $*$-derivation.

The authors of [5] introduced the concept of Lie triple derivations. A $\operatorname{map} \Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear skew Lie triple derivations if

$$
\begin{equation*}
\Phi\left(\left[[A, B]_{*}, C\right]_{*}\right)=\left[[\Phi(A), B]_{*}, C\right]_{*}+\left[[A, \Phi(B)]_{*}, C\right]_{*}+\left[[A, B]_{*}, \Phi(C)\right]_{*} \tag{1.1}
\end{equation*}
$$

for all $A, B, C \in \mathcal{A}$ such that $[A, B]_{*}=A B-B A^{*}$. They showed that if Φ preserves the above characterizations on factor von Neumann algebras then Φ is additive $*$-derivation.

In this paper, we prove that if \mathcal{A} is a prime $*$-algebra then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ which holds in (1.1) is additive.

We say that \mathcal{A} is prime, that is, for $A, B \in \mathcal{A}$ if $A \mathcal{A} B=\{0\}$ then $A=0$ or $B=0$.

2. Main Results

Our main theorem is as follows:
Theorem 2.1. Let \mathcal{A} be a prime *-algebra with a non-trivial projection. Then the map $\Phi: A \rightarrow A$ satisfies in the following condition

$$
\begin{equation*}
\Phi\left(\left[[A, B]_{*}, C\right]_{*}\right)=\left[[\Phi(A), B]_{*}, C\right]_{*}+\left[[A, \Phi(B)]_{*}, C\right]_{*}+\left[[A, B]_{*}, \Phi(C)\right]_{*} \tag{2.1}
\end{equation*}
$$

where $[A, B]_{*}=A B-\lambda B A^{*}$ for all $A, B, C \in \mathcal{A}$ is additive.
Proof. Let P_{1} be a nontrivial projection in \mathcal{A} and $P_{2}=I_{\mathcal{A}}-P_{1}$. Denote $\mathcal{A}_{i j}=P_{i} \mathcal{A} P_{j}, i, j=1,2$, then $\mathcal{A}=\sum_{i, j=1}^{2} \mathcal{A}_{i j}$. For every $A \in \mathcal{A}$ we may write $A=A_{11}+A_{12}+A_{21}+A_{22}$. In all that follow, when we write $A_{i j}$, it indicates that $A_{i j} \in \mathcal{A}_{i j}$. For showing additivity of Φ on \mathcal{A}, we use above partition of \mathcal{A} and give some claims that prove Φ is additive on each $\mathcal{A}_{i j}, i, j=1,2$.

We prove the above theorem by several claims.

Claim 1. We show that $\Phi(0)=0$.
This claim is easy to prove.
Claim 2. For each $A_{11} \in \mathcal{A}_{11}$ and $A_{22} \in \mathcal{A}_{22}$ we have

$$
\Phi\left(A_{11}+A_{22}\right)=\Phi\left(A_{11}\right)+\Phi\left(A_{22}\right) .
$$

We show that

$$
T=\Phi\left(A_{11}+A_{22}\right)-\Phi\left(A_{11}\right)-\Phi\left(A_{22}\right)=0
$$

For $i \in \mathbb{C}$, we can write that

$$
\begin{aligned}
& {\left[\left[\Phi(i I), P_{1}\right]_{*}, A_{11}+A_{22}\right]_{*}+\left[\left[i I, \Phi\left(P_{1}\right)\right]_{*}, A_{11}+A_{22}\right]_{*}} \\
& +\left[\left[i I, P_{1}\right]_{*}, \Phi\left(A_{11}+A_{22}\right)\right]_{*}=\Phi\left(\left[\left[i I, P_{1}\right]_{*}, A_{11}+A_{22}\right]_{*}\right) \\
& =\Phi\left(\left[\left[i I, P_{1}\right]_{*}, A_{11}\right)+\Phi\left(\left[\left[i I, P_{1}\right]_{*}, A_{22}\right]_{*}\right)\right. \\
& =\Phi\left(\left[\left[i I, P_{1}\right]_{*}, A_{11}+A_{22}\right]_{*}\right)+\left[\left[i I, \Phi\left(P_{1}\right)\right]_{*}, A_{11}+A_{22}\right]_{*} \\
& +\left[\left[i I, P_{1}\right]_{*}, \Phi\left(A_{11}\right)+\Phi\left(A_{22}\right)\right]_{*} .
\end{aligned}
$$

It follows that

$$
\left[\left[i I, P_{1}\right]_{*}, T\right]_{*}=0 .
$$

So,

$$
T_{11}=T_{12}=T_{21}=0
$$

Similarly, by applying the same proof for P_{2} we have $T_{22}=0$.
Claim 3. For each $A_{11} \in \mathcal{A}_{11}, A_{12} \in \mathcal{A}_{12}, A_{21} \in \mathcal{A}_{21}, A_{22} \in \mathcal{A}_{22}$ we have

$$
\Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right)=\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right) .
$$

We show that for T in \mathcal{A} the following holds
$T=\Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right)-\Phi\left(A_{11}\right)-\Phi\left(A_{12}\right)-\Phi\left(A_{21}\right)-\Phi\left(A_{22}\right)=0$.

We can write

$$
\begin{aligned}
& {\left[\left[\Phi\left(P_{1}\right),\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}, P_{2}\right]_{*}} \\
& \quad+\left[\left[P_{1}, \Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}, P_{2}\right]_{*} \\
& \quad+\left[\left[P_{1},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}, \Phi\left(P_{2}\right]_{*}\right. \\
& =\Phi\left(\left[\left[P_{1},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}, P_{2}\right]_{*}\right) \\
& =\Phi\left(\left[\left[P_{1}, A_{11}\right]_{*}, P_{2}\right]_{*}\right)+\Phi\left(\left[\left[P_{1}, A_{12}\right]_{*}, P_{2}\right]_{*}\right) \\
& \quad+\Phi\left(\left[\left[P_{1}, A_{21}\right]_{*}, P_{2}\right]_{*}\right)+\Phi\left(\left[\left[P_{1}, A_{22}\right]_{*}, P_{2}\right]_{*}\right) \\
& =\left[\left[\Phi\left(P_{1}\right),\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}, P_{2}\right]_{*} \\
& \quad+\left[\left[P_{1},\left(\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right)\right)\right]_{*}, P_{2}\right]_{*} \\
& \quad+\left[\left[P_{1},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}, \Phi\left(P_{2}\right)\right]_{*} .
\end{aligned}
$$

Therefore,

$$
\left[\left[P_{1}, T\right]_{*}, P_{1}\right]_{*}=0 .
$$

So, $T_{12}=0$.
Similarly, one can show that

$$
\left[\left[P_{2}, T\right]_{*}, P_{1}=0 .\right.
$$

We obtain $T_{21}=0$.
From Claim 2 we have

$$
\begin{aligned}
& {[} {\left.\left[\Phi(i)\left(P_{1}-P_{2}\right), I\right]_{*},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*} } \\
&+\left[\left[i\left(P_{1}-P_{2}\right), \Phi(I)\right]_{*},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*} \\
& \quad+\left[\left[i\left(P_{1}-P_{2}\right), I\right]_{*}, \Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*} \\
&=\Phi\left(\left[\left[i\left(P_{1}-P_{2}\right), I\right]_{*},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*}\right. \\
&=[{\left[\left(i\left(P_{1}-P_{2}\right), I\right]_{*},\left(A_{11}+A_{22}\right)\right]_{*} } \\
&+\Phi\left(\left[\left[i\left(P_{1}-P_{2}\right), I\right]_{*}, A_{12}\right]_{*}+\Phi\left(\left[\left[i\left(P_{1}-P_{2}\right), I\right]_{*}, A_{21}\right]_{*}\right.\right. \\
&\left.\left.=\Phi\left(i\left(P_{1}-P_{2}\right), I\right]_{*}, A_{11}\right]_{*}+\Phi\left(i\left(P_{1}-P_{2}\right), I\right]_{*}, A_{22}\right]_{*} \\
&+\Phi\left(i\left(P_{1}-P_{2}, I\right]_{*}, A_{21}\right]_{*}+\Phi\left(i\left(P_{1}-P_{2}, I\right]_{*}, A_{21}\right]_{*} \\
&=\Phi\left.\left(i\left(P_{1}-P_{2}\right), I\right]_{*},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*} \\
&+\left[\left[i\left(P_{1}-P_{2}\right), \Phi(I)\right]_{*},\left(A_{11}+A_{12}+A_{21}+A_{22}\right)\right]_{*} \\
& \quad+\left[\left[i\left(P_{1}-P_{2}\right), I\right]_{*},\left(\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right)\right]_{*} .\right.
\end{aligned}
$$

So, we obtain

$$
\left[\left[i\left(P_{1}-P_{2}\right), I\right]_{*}, T\right]_{*}=0
$$

So, $T_{11}=T_{22}=0$.

Claim 4. For each $A_{i j}, B_{i j} \in \mathcal{A}_{i}$ such that $i \neq j$, we have

$$
\Phi\left(A_{i j}+B_{i j}\right)=\Phi\left(A_{i j}\right)+\Phi\left(B_{i j}\right)
$$

It is easy to show that

$$
\left[\left[i \frac{I}{2},\left(P_{i}+A_{i j}\right)\right]_{*}, i\left(P_{j}+B_{i j}\right)\right]_{*}=A_{i j}-B_{i j}-A_{i j}^{*}-B_{i j} A_{i j}^{*} .
$$

From Claim 3 we have

$$
\begin{aligned}
&-\Phi\left(A_{i j}+B_{i j}\right)-\Phi\left(A_{i j}^{*}\right)-\Phi\left(B_{i j} A_{i j}^{*}\right) \\
&=\Phi\left(\left[\left[i \frac{I}{2},\left(P_{i}+A_{i j}\right)\right]_{*}, i\left(P_{j}+B_{i j}\right)\right]_{*}\right) \\
&\left.+\left[\Phi\left(i \frac{I}{2}\right),\left(P_{i}+A_{i j}\right)\right]_{*}, i\left(P_{j}+B_{i j}\right)\right]_{*} \\
&+\left[\left[\left(i \frac{I}{2}\right), \Phi\left(P_{i}+A_{i j}\right)\right]_{*}, i\left(P_{j}+B_{i j}\right]_{*}\right. \\
&= {\left[\left[\Phi\left(i \frac{I}{2}\right),\left(P_{i}+A_{i j}\right)\right]_{*},\left(P_{j}+B_{i j}\right)\right]_{*} } \\
&+\left[\left[\left(i \frac{I}{2}\right),\left(\Phi\left(P_{i}\right)+\Phi\left(A_{i j}\right)\right]_{*},\left(P_{j}+B_{i j}\right)\right]_{*}\right. \\
&+\left[\left[\left(i \frac{I}{2}\right),\left(P_{i}+A_{i j}\right)\right]_{*},\left(\Phi\left(i P_{j}\right)+\Phi\left(i B_{i j}\right)\right]_{*}\right. \\
&=\Phi\left(\left[\left[\left(i \frac{I}{2}\right), P_{i}\right]_{*}, i P_{j}\right]_{*}\right)+\Phi\left(\left[\left[\left(i \frac{I}{2}\right), P_{i}\right]_{*}, i B_{i j}\right]_{*}\right) \\
&+\Phi\left(\left[\left[\left(i \frac{I}{2}\right), A_{i j}\right]_{*}, i P_{j}\right]_{*}\right)+\Phi\left(\left[\left[\left(i \frac{I}{2}\right), A_{i j}\right]_{*}, i B_{i j}\right]_{*}\right) \\
&=- \Phi\left(B_{i j}\right)-\Phi\left(A_{i j}\right)-\Phi\left(A_{i j}^{*}\right)-\Phi\left(B_{i j} A_{i j}^{*}\right) .
\end{aligned}
$$

So,

$$
\Phi\left(A_{i j}+B_{i j}\right)=\Phi\left(A_{i j}\right)+\Phi\left(B_{i j}\right)
$$

Claim 5. For each $A_{i i}, B_{i i} \in \mathcal{A}_{i i}$ such that $1 \leq i \leq 2$, we have

$$
\Phi\left(A_{i i}+B_{i i}\right)=\Phi\left(A_{i i}\right)+\Phi\left(B_{i i}\right) .
$$

We show that

$$
T=\Phi\left(A_{i i}+B_{i i}\right)-\Phi\left(A_{i i}\right)-\Phi\left(B_{i i}\right)=0 .
$$

We can write

$$
\begin{aligned}
& {\left[\left[\Phi\left(i P_{j}\right), I\right]_{*},\left(A_{i i}+B_{i i}\right)\right]_{*}+\left[\left[i P_{j}, \Phi(I)\right]_{*},\left(A_{i i}+B_{i i}\right)\right]_{*}} \\
& \quad+\left[\left[i P_{j}, I\right]_{*}, \Phi\left(A_{i i}+B_{i i}\right)\right]_{*} \\
& =\Phi\left(\left[\left[i P_{j}, I\right]_{*}, A_{i i}+B_{i i}\right]_{*}\right)=\Phi\left(\left[\left[i P_{j}, I\right]_{*}, A_{i i}\right]_{*}\right)+\Phi\left(\left[\left[i P_{j}, I\right]_{*}, B_{i i}\right]_{*}\right) \\
& =\left[\left[\Phi\left(i P_{j}\right), I\right]_{*},\left(A_{i i}+B_{i i}\right)\right]_{*}+\left[\left[i P_{j}, \Phi(I)\right]_{*},\left(A_{i i}+B_{i i}\right)\right]_{*} \\
& \quad \quad+\left[\left[i P_{j}, I\right]_{*},\left(\Phi\left(A_{i j}\right)+\Phi\left(B_{i j}\right)\right]_{*} .\right.
\end{aligned}
$$

Hence

$$
\left[\left[i P_{j}, I\right]_{*}, T\right]_{*}=0
$$

So, $T_{i j}=T_{j i}=T_{j j}=0$. From Claim 4 for each $C_{i j} \in \mathcal{A}_{i j}$ we have

$$
\begin{aligned}
& {\left[\left[\Phi\left(i P_{i}\right),\left(A_{i i}+B_{i i}\right)\right]_{*}, C_{i j}\right]_{*}+\left[\left[i P_{i}, \Phi\left(A_{i i}+B_{i i}\right)\right]_{*}, C_{i j}\right]_{*}} \\
& \left.+\left[\left[i P_{i},\left(A_{i i}+B_{i i}\right)\right]_{*}, \Phi\left(C_{i j}\right)\right]_{*}\right]=\Phi\left(\left[\left[i P_{i},\left(A_{i i}+B_{i i}\right)\right]_{*}, C_{i j}\right]_{*}\right) \\
& =\Phi\left(\left[\left[i P_{i}, A_{i i}\right]_{*}, C_{i j}\right]_{*}\right)+\Phi\left(\left[\left[i P_{i}, B_{i i}\right]_{*}, C_{i j}\right]_{*}\right. \\
& =\left[\left[\Phi\left(i P_{i},\left(A_{i i}+B_{i i}\right)\right]_{*}, C_{i j}\right]_{*}+\left[\left[i P_{i},\left(A_{i i}+B_{i i}\right)\right]_{*}, \Phi\left(C_{i j}\right)\right]_{*}\right. \\
& +\left[\left[i P_{i},\left(\Phi\left(A_{i i}\right)+\Phi\left(B_{i j}\right)\right]_{*}, C_{i j}\right]_{*} .\right.
\end{aligned}
$$

From primeness of \mathcal{A} we have $T_{i i}=0$.
Hence, the additivity of Φ comes from the above claims.

References

[1] Z. Bai and S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 436 (2012), 2701-2708.
[2] J. Cui and C.K. Li, Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833-842.
[3] C. Li, F. Lu and X. Fang, Nonlinear ξ-Jordan *-derivations on von Neumann algebras, Linear and Multilinear Algebra. 62 (2014), 466-473.
[4] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY $+Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339-2345.
[5] C. LI, F Zhao and Q. Chen, Nonlinear Skew Lie Triple Derivations between Factors, Acta Mathematica Sinica 32 (2016), 821-830.
[6] L. Molnár, A condition for a subspace of $B(H)$ to be an ideal, Linear Algebra Appl. 235 (1996), 229-234.
[7] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $A P \pm P A^{*}$ on C^{*}-algebras, Mathematica Slovaca 67 (2017), 213-220.
[8] A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), 426-439.
[9] W. Yu and J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979-1991.

Ali Taghavi

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran. E-mail: taghavi@umz.ac.ir

Mojtaba Nouri

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran. E-mail: mojtaba.nori2010@gmail.com

Vahid Darvish

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran. E-mail: vahid.darvish@mail.com

