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SLOWLY CHANGING FUNCTION ORIENTED

GROWTH MEASUREMENT OF DIFFERENTIAL

POLYNOMIAL AND DIFFERENTIAL MONOMIAL

Tanmay Biswas

Abstract. In the paper we establish some new results depend-
ing on the comparative growth properties of composite entire and
meromorphic functions using relative pL

∗-order, relative pL
∗-lower

order and differential monomials, differential polynomials generated
by one of the factors.

1. Introduction, Definitions and Notations

Let us consider that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna theory of meromorphic
functions which are available in [9, 11, 19, 20]. We also use the standard
notations and definitions of the theory of entire functions which are
available in [16] and therefore we do not explain those in details. For

x ∈ [0,∞) and k ∈ N, we define exp[k] x = exp
(
exp[k−1] x

)
and log[k] x =

log
(

log[k−1] x
)

where N be the set of all positive integers.

Let f be an entire function defined in the open complex plane C.
The maximum modulus function Mf (r) corresponding to f is defined
on |z| = r as Mf (r) = max

|z|=r |f (z)|. In this connection the following

definition is relevant:
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Definition 1. [6] A non-constant entire function f is said to have the
Property (A) if for any σ > 1 and for all sufficiently large r, [Mf (r)]2 ≤
Mf (rσ) holds.

For examples of functions with or without the Property (A), one may
see [6].

When f is meromorphic, one may introduce another function Tf (r)
known as Nevanlinna’s characteristic function of f, playing the same role
as Mf (r) . Now we just recall the following properties of meromorphic
functions which will be needed in the sequel.

Let n0j,n1j,...nkj(k ≥ 1) be non-negative integers such that for each

j,
k∑
i=0

nij ≥ 1. For a non-constant meromorphic function f , we call

Mj [f ] = Aj (f)n0j
(
f (1)
)n1j ...

(
f (k)
)nkj where T (r, Aj) = S (r, f) to be

a differential monomial generated by f. The numbers γMj =
k∑
i=0

nij

and ΓMj =
k∑
i=0

(i + 1)nij are called respectively the degree and weight

of Mj [f ] ( [7], [15]) . The expression P [f ] =
s∑
j=1

Mj [f ] is called a differ-

ential polynomial generated by f . The numbers γP = max
1≤ j≤ s

γMj and

ΓP = max
1≤ j≤ s

ΓMj are called respectively the degree and weight of P [f ]

( [7], [15]) . Also we call the numbers γP
−

= min
1≤ j≤ s

γMj and k (the or-

der of the highest derivative of f ) the lower degree and the order of
P [f ] respectively. If γp

−
= γP , P [f ] is called a homogeneous differential

polynomial. Throughout the paper, we consider only the non-constant
differential polynomials and we denote by P0 [f ] a differential polynomial
not containing f , i.e., for which n0j = 0 for j = 1, 2, ...s. We consider only
those P [f ] , P0 [f ] singularities of whose individual terms do not cancel
each other. We also denote by M [f ] a differential monomial generated
by a transcendental meromorphic function f.

However, the Nevanlinna’s Characteristic function of a meromorphic
function f is define as

Tf (r) = Nf (r) +mf (r) ,
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wherever the function Nf (r, a)
(
N f (r, a)

)
known as counting function

of a-points (distinct a-points) of meromorphic f is defined as follows:

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+ nf (0, a) log r

N f (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+ nf (0, a) log r

 ,

in addition we represent by nf (r, a) (nf (r, a)) the number of a-points
(distinct a-points) of f in |z| ≤ r and an ∞ -point is a pole of f . In
many occasions Nf (r,∞) and N f (r,∞) are symbolized by Nf (r) and
N f (r) respectively.

On the other hand, the function mf (r,∞) alternatively indicated by
mf (r) known as the proximity function of f is defined as:

mf (r) =
1

2π

2π∫
0

log+
∣∣f (reiθ)∣∣ dθ, where

log+ x = max (log x, 0) for all x > 0.

Also we may employ m
(
r, 1

f−a

)
by mf (r, a).

If f is entire, then the Nevanlinna’s Characteristic function Tf (r) of
f is defined as

Tf (r) = mf (r) .

Moreover for any non-constant entire function f , Tf (r) is strictly in-
creasing and continuous functions of r. Also its inverse T−1f : (|Tf (0)| ,∞)→
(0,∞) is exists where lim

s→∞
T−1f (s) =∞.

In this connection we immediately remind the following definitions
which are relevant:

Definition 2. Let ‘a’ be a complex number, finite or infinite. The
Nevanlinna’s deficiency and the Valiron deficiency of ‘a’ with respect to
a meromorphic function f are defined as

δ(a; f) = 1− lim
r→∞

Nf (r, a)

Tf (r)
= lim

r→∞

mf (r, a)

Tf (r)
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and

∆(a; f) = 1− lim
r→∞

Nf (r, a)

Tf (r)
= lim

r→∞

mf (r, a)

Tf (r)
.

Definition 3. The quantity Θ(a; f) of a meromorphic function f is
defined as follows

Θ(a; f) = 1− lim
r→∞

N f (r, a)

Tf (r)
.

Definition 4. [18] For a ∈ C ∪ {∞}, we denote by nf |=1(r, a), the
number of simple zeros of f −a in |z| ≤ r. Nf |=1(r, a) is defined in terms
of nf |=1(r, a) in the usual way. We put

δ1(a; f) = 1− lim
r→∞

Nf |=1(r, a)

Tf (r)
,

the deficiency of ‘a’ corresponding to the simple a-points of f i.e., simple
zeros of f − a.

Yang [17] proved that there exists at most a denumerable number of

complex numbers a ∈ C∪{∞} for which δ1(a; f) > 0 and
∑

a∈C∪{∞}

δ1(a; f) ≤ 4.

Definition 5. [10] For a ε C∪{∞} , let np(r, a; f) denotes the number
of zeros of f − a in |z| ≤ r, where a zero of multiplicity < p is counted
according to its multiplicity and a zero of multiplicity ≥ p is counted
exactly p times and Np(r, a; f) is defined in terms of np(r, a; f) in the
usual way. We define

δp(a; f) = 1− lim
r→∞

Np(r, a; f)

Tf (r)
.

Definition 6. [1] P [f ] is said to be admissible if

(i) P [f ] is homogeneous, or
(ii) P [f ] is non homogeneous and mf (r) = Sf (r).
However in case of any two meromorphic functions f and g, the ratio

Tf (r)

Tg(r)
as r → ∞ is called as the growth of f with respect to g in terms

of their Nevanlinna’s Characteristic functions. Further the concept of
the growth measuring tools such as order and lower order which are
conventional in complex analysis and the growth of entire or meromor-
phic functions can be studied in terms of their orders and lower orders
are normally defined in terms of their growth with respect to the exp
function which are shown in the following definition:
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Definition 7. The order ρ (f) ( the lower order λ (f) ) of a mero-
morphic function f is defined as

ρ (f) = lim
r→∞

log Tf (r)

log Texp z (r)
= lim

r→∞

log Tf (r)

log
(
r
π

) = lim
r→∞

log Tf (r)

log (r) +O(1)(
λ (f) = lim

r→∞

log Tf (r)

log Texp z (r)
= lim

r→∞

log Tf (r)

log
(
r
π

) = lim
r→∞

log Tf (r)

log (r) +O(1)

)
.

If f is entire, then

ρ (f) = lim
r→∞

log logMf (r)

log logMexp z (r)
= lim

r→∞

log[2]Mf (r)

log r(
λ (f) = lim

r→∞

log logMf (r)

log logMexp z (r)
= lim

r→∞

log[2]Mf (r)

log r

)
.

Somasundaram and Thamizharasi [14] introduced the notions of L-
order and L-lower order for entire functions where L ≡ L (r) is a positive
continuous function increasing slowly, i.e., L (ar) ∼ L (r) as r → ∞ for
every positive constant “a”. The more generalized concept of L-order
and L-lower order of meromorphic functions are L∗-order and L∗-lower
order respectively which are as follows:

Definition 8. [14] The L∗-order ρL
∗

(f) and the L∗-lower order
λL

∗
(f) of a meromorphic function f are defined by

ρL
∗

(f) = lim
r→∞

log T (r, f)

log [reL(r)]
and λL

∗
(f) = lim

r→∞

log T (r, f)

log [reL(r)]
.

If f is entire, then

ρL
∗

(f) = lim
r→∞

log[2]Mf (r)

log [reL(r)]
and λL

∗
(f) = lim

r→∞

log[2]Mf (r)

log [reL(r)]
.

Extending the notion of Somasundaram and Thamizharasi [14], one
may introduce concept of pL

∗-order and pL
∗-lower order of a meromor-

phic function f which are as follows:

Definition 9. For any positive integer p, the pL
∗-order ρL

∗
p (f) and

the pL
∗-lower order λL

∗
p (f) of a meromorphic function f are defined by

ρL
∗

p (f) = lim
r→∞

log Tf (r)

log [r exp[p] L (r)]
and λL

∗

p (f) = lim
r→∞

log Tf (r)

log [r exp[p] L (r)]
.
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If f is entire, then

ρL
∗

p (f) = lim
r→∞

log[2]Mf (r)

log [r exp[p] L (r)]
and λL

∗

p (f) = lim
r→∞

log[2]Mf (r)

log [r exp[p] L (r)]
.

Lahiri and Banerjee [12] introduced the definition of relative order of
a meromorphic function with respect to an entire function which is as
follows:

Definition 10. [12] Let f be meromorphic and g be entire. The
relative order of f with respect to g denoted by ρg (f) is defined as

ρ (f, g) = inf {µ > 0 : Tf (r) < Tg (rµ) for all sufficiently large r}

= lim
r→∞

log T−1g (Tf (r))

log r
.

The definition coincides with the classical one [12] if g (z) = exp z.

Similarly one can define the relative lower order of a meromorphic
function f with respect to an entire g denoted by λg (f) in the following
manner :

λ (f, g) = lim
r→∞

log T−1g (Tf (r))

log r
.

In order to make some progress in the study of relative order, one
may introduce the definitions of relative pL

∗-order and relative pL
∗-lower

order of a meromorphic function f with respect to an entire g which are
as follows:

Definition 11. [3] The relative pL
∗-order denoted as ρL

∗
p (f, g) and

relative pL
∗-lower order denoted as λL

∗
p (f, g) of a meromorphic function

f with respect to an entire g are defined as

ρL
∗

p (f, g) = lim
r→∞

log T−1g (Tf (r))

log [r exp[p] L (r)]
and λL

∗

p (f, g) = lim
r→∞

log T−1g (Tf (r))

log [r exp[p] L (r)]
,

where p is any positive integers.

In the paper we establish some new results depending on the compar-
ative growth properties of composite entire and meromorphic functions
using relative pL

∗-order (respectively, relative pL
∗-lower order) and dif-

ferential monomials, differential polynomials generated by one of the
factors. Indeed some works on relative pL

∗-order (respectively, relative

pL
∗-lower order) related to the growth of composite entire and meromor-

phic functions have also been explored in [2–4].
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2. Preliminaries

In this section we present some lemmas which will be needed in the
sequel.

Lemma 1. [5] If f is meromorphic and g is entire then for all suffi-
ciently large values of r,

Tf◦g (r) ≤ {1 + o (1)} Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2. [13] Let f and g be any two entire functions. Then for all
r > 0,

Tf◦g (r) ≥ 1

3
logMf

{
1

8
Mg

(r
4

)
+ o (1)

}
.

Lemma 3. [8] Let f be an entire function which satisfies the Property
(A), β > 0, δ > 1 and α > 2. Then

βTf (r) < Tf
(
αrδ
)
.

Lemma 4. [3] Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and g be an entire function with regular

growth having nonzero finite order and Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or

δ (∞; g) =
∑
a6=∞

δ (a; g) = 1. Then for any positive integer p, the relative

pL
∗-order and relative pL

∗-lower order of P0 [f ] with respect to P0 [g] are
same as those of f with respect to g for homogeneous P0 [f ] and P0 [g],
i.e.,

ρL
∗

p (P0 [f ] , P0 [g]) = ρL
∗

p (f, g) and λL
∗

p (P0 [f ] , P0 [g]) = λL
∗

p (f, g) .

Lemma 5. [3] Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and g be

a transcendental entire function with regular growth and nonzero finite
order. Also let

∑
a∈C∪{∞}

δ1(a; g) = 4. Then for any positive integer p, the

relative pL
∗-order and relative pL

∗-lower order of M [f ] with respect to
M [g] are same as those of f with respect to g, i.e.,

ρL
∗

p (M [f ] ,M [g]) = ρL
∗

p (f, g) and λL
∗

p (M [f ] ,M [g]) = λL
∗

p (f, g) .
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3. Main results

In this section we present the main results of the paper. It is need-
less to mention that in the paper, the admissibility and homogeneity of
P0 [f ] for meromorphic f will be needed as per the requirements of the
theorems.

Theorem 1. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g, k be any two entire functions,

ρL
∗

p (g) < ρL
∗

p (f, h) < ∞ and ρL
∗

p (g, k) < ∞ where p is any positive
integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
·K (r, g;L)

= 0 , where

K (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < ρL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Proof. Let us consider that α > 2 and δ → 1+ in Lemma 3. Since
T−1h (r) is an increasing function of r, it follows from Lemma 1, Lemma
3 and the inequality Tg(r) ≤ logMg(r) {cf. [9] } for all sufficiently large
values of r that

T−1h (Tf◦g (r)) 6 T−1h ({1 + o(1)}Tf (Mg (r)))

i.e., T−1h (Tf◦g (r)) 6 α
(
T−1h Tf (Mg (r))

)
i.e., log T−1h (Tf◦g (r)) 6 log T−1h (Tf (Mg (r))) +O(1)

(1)
log T−1h (Tf◦g (r)) 6

(
ρL

∗

p (f, h) + ε
) [

logMg (r) + exp[p−1] L (Mg (r))
]

+O(1).

Now from the definition of ρL
∗

p (g) , we obtain for all sufficiently large
positive numbers of r that

(2) log[2]Mg (r) ≤
(
ρL

∗

p (g) + ε
) [

log r + exp[p−1] L (r)
]
.
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Also from the definition of ρL
∗

p (g, k) , we get for all sufficiently large
positive numbers of r that

(3) log T−1k (Tg (r)) ≤
(
ρL

∗

p (g, k) + ε
)

log
[
r exp[p] L (r)

]
.

Therefore from (1) and in view of (2) , we get for all sufficiently large
positive numbers of r that

(4) log T−1h (Tf◦g (r))

≤ O(1)+
(
ρL

∗

p (f, h) + ε
)
·
[[
r exp[p] L (r)

](ρL∗
p (g)+ε)

+ exp[p−1] L (Mg (r))

]
.

Now from (3) and (4) , it follows for all sufficiently large positive numbers
of r that

(5) log T−1h (Tf◦g (r))+log T−1k (Tg (r)) ≤

(
ρL

∗

p (f, h) + ε
)
·
[[
r exp[p] L (r)

](ρL∗
p (g)+ε)

+ exp[p−1] L (Mg (r))

]
O(1) +

(
ρL

∗

p (g, k) + ε
)

log
[
r exp[p] L (r)

]
.

Also from the definition of ρL
∗

p (P0 [f ] , P0 [h]) and in view of Lemma 4,
we obtain for a sequence of positive numbers of r tending to infinity that

log T−1P0[h]

(
TP0[f ] (r)

)
≥
(
ρL

∗

p (P0 [f ] , P0 [h])− ε
)

log
[
r exp[p] L (r)

]
i.e., log T−1P0[h]

(
TP0[f ] (r)

)
≥
(
ρL

∗

p (f, h)− ε
)

log
[
r exp[p] L (r)

]
(6) i.e., T−1P0[h]

(
TP0[f ] (r)

)
≥
[
r exp[p] L (r)

](ρL∗
p (f,h)−ε)

.

Now from (5) and (6) , we get for a sequence of positive numbers of r
tending to infinity that

(7)
log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

) ≤

O(1) +
(
ρL

∗
p (g, k) + ε

)
log
[
r exp[p] L (r)

]
T−1P0[h]

(
TP0[f ] (r)

) +

(
ρL

∗
p (f, h) + ε

)
·
[[
r exp[p] L (r)

](ρL∗
p (g)+ε)

+ exp[p−1] L (Mg (r))

]
[r exp[p] L (r)](

ρL∗
p (f,h)−ε)

.
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Since ρL
∗

p (g) < ρL
∗

p (f, h), we can choose ε (> 0) in such a way that

(8) ρL
∗

p (g) + ε < ρL
∗

p (f, h)− ε.

Case I. Let exp[p−1] L (Mg (r)) = o
{[
r exp[p] L (r)

]β}
as r →∞ and for

some β < ρL
∗

p (f, h) .

As β < ρL
∗

p (f, h) , we can choose ε (> 0) in such a way that

(9) β < ρL
∗

p (f, h)− ε.

Since exp[p−1] L (Mg (r)) = o
{[
r exp[p] L (r)

]β}
as r → ∞ we get on

using (9) that

exp[p−1] L (Mg (r))

[r exp[p] L (r)]
β
→ 0 as r →∞

i.e.,
exp[p−1] L (Mg (r))

[r exp[p] L (r)](
ρL∗
p (f,h)−ε)

→ 0 as r →∞.(10)

Now in view of (7), (8) and (10) we get that

(11) lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

) = 0 .

Case II. If exp[p−1] L (Mg (r)) 6= o
{[
r exp[p] L (r)

]β}
as r → ∞ and

for some β < ρL
∗

p (f, h) then we get from (7) for a sequence of positive
numbers of r tending to infinity that

(12)
log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
· exp[p−1] L (Mg (r))

≤

O(1) +
(
ρL

∗
p (g, k) + ε

)
log
[
r exp[p] L (r)

]
[r exp[p] L (r)](

ρL∗
p (f,h)−ε) · exp[p−1] L (Mg (r))

+

(
ρL

∗
p (f, h) + ε

)
·
[[
r exp[p] L (r)

](ρL∗
p (g)+ε)

+ exp[p−1] L (Mg (r))

]
[r exp[p] L (r)](

ρL∗
p (f,h)−ε) · exp[p−1] L (Mg (r))

.

Now using (8), it follows from (12) that

(13) lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
· exp[p−1] L (Mg (r))

= 0 .
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Combining (11) and (13) we obtain that

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
·K (r, g;L)

= 0,

whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < ρL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Thus the theorem is established.

Theorem 2. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g, k be any two entire functions,

ρL
∗

p (g) < λL
∗

p (f, h) < ∞ and ρL
∗

p (g, k) < ∞ where p is any positive
integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
·K (r, g;L)

= 0,

whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < λL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Theorem 3. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g, k be any two entire functions,

λL
∗

p (g) < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and ρL
∗

p (g, k) <∞ where p is any
positive integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
·K (r, g;L)

= 0,
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whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < λL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Theorem 4. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g, k be any two entire functions,

ρL
∗

p (g) < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and ρL
∗

p (g, k) <∞ where p is any
positive integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1P0[h]

(
TP0[f ] (r)

)
·K (r, g;L)

= 0,

whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < λL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

The proofs of Theorem 2, Theorem 3 and Theorem 4 are omitted
because those can be carried out in the line of Theorem 1.

In the line of Theorem 1, Theorem 2, Theorem 3 and Theorem 4
respectively and with the help of Lemma 5, one can easily prove the
following four theorems and therefore their proofs are omitted:

Theorem 5. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth and nonzero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g, k be any two entire functions,

ρL
∗

p (g) < ρL
∗

p (f, h) < ∞ and ρL
∗

p (g, k) < ∞ where p is any positive
integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1M [h]

(
TM [f ] (r)

)
·K (r, g;L)

= 0,
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whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < ρL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Theorem 6. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth and nonzero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g, k be any two entire functions,

ρL
∗

p (g) < λL
∗

p (f, h) < ∞ and ρL
∗

p (g, k) < ∞ where p is any positive
integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1M [h]

(
TM [f ] (r)

)
·K (r, g;L)

= 0 ,

whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < λL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Theorem 7. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth and nonzero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g, k be any two entire functions,

λL
∗

p (g) < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and ρL
∗

p (g, k) <∞ where p is any
positive integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1M [h]

(
TM [f ] (r)

)
·K (r, g;L)

= 0,

whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < λL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Theorem 8. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth and nonzero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g, k be any two entire functions,
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ρL
∗

p (g) < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and ρL
∗

p (g, k) <∞ where p is any
positive integer. If h satisfies the Property (A), then

lim
r→∞

log T−1h (Tf◦g (r)) + log T−1k (Tg (r))

T−1M [h]

(
TM [f ] (r)

)
·K (r, g;L)

= 0,

whereK (r, g;L) =


1 if exp[p−1] L (Mg (r)) = o

{[
r exp[p] L (r)

]β}
as r →∞

and for some β < λL
∗

p (f, h)
exp[p−1] L (Mg (r)) otherwise.

Theorem 9. Let f be an entire function either of finite order or of
nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular growth and

nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =∑
a6=∞

δ (a;h) = 1. Also let g be any entire function, 0 < λL
∗

p (f, h) ≤

ρL
∗

p (f, h) < ∞, 0 < λL
∗

p (g) < ∞ where p is any positive integer. If h
satisfies the Property (A), then for every constant A and for any real
number x,

lim
r→∞

log T−1h (Tf◦g (r)){
log T−1P0[h]

(
TP0[f ] (r

A)
)}1+x =∞ .

Proof. If x is such that 1 + x ≤ 0, then the theorem is obvious. So
we suppose that 1 + x > 0. Let us consider that α > 2 and δ → 1+ in
Lemma 3. Since T−1h (r) is an increasing function of r, it follows from
Lemma 2, Lemma 3 and the inequality Tg(r) ≤ logMg(r) {cf. [9] } for
all sufficiently large positive numbers of r that

T−1h (Tf◦g (r)) ≥ T−1h

(
1

3
Tf

(
1

8
Mg

(r
4

)
+ o (1)

))
i.e., T−1h (Tf◦g (r)) ≥

(
1

α
T−1h

(
Tf

(
1

8
Mg

(r
4

)
+ o (1)

)))
i.e., log T−1h (Tf◦g (r)) ≥ log

(
1

α
T−1h Tf

(
1

8
Mg

(r
4

)
+ o (1)

))
(14)

i.e., log T−1h (Tf◦g (r)) ≥ O (1) + log T−1h

(
Tf

(
1

8
Mg

(r
4

)
+ o (1)

))
.
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i.e., log T−1h (Tf◦g (r)) ≥ O (1)+
(
λL

∗

p (f, h)− ε
) [

log

(
1

8
Mg

(r
4

)
+ o (1)

)
+ exp[p−1] L

(
1

8
Mg

(r
4

))]

i.e., log T−1h (Tf◦g (r)) ≥ O (1) +
(
λL

∗

p (f, h)− ε
) [

logMg

(r
4

)
+ exp[p−1] L

(
1

8
Mg

(r
4

))]
(15) i.e., log T−1h (Tf◦g (r))

≥ O (1) +
(
λL

∗

p (f, h)− ε
) [[(r

4

)
exp[p] L (r)

]λL∗
p (g)−ε

+ exp[p−1] L

(
1

8
Mg

(r
4

))]
where we choose 0 < ε < min

{
λL

∗
p (f, h) , λL

∗
p (g)

}
.

Also for all sufficiently large positive numbers of r, we get in view of
Lemma 4, that

log T−1P0[h]

(
TP0[f ]

(
rA
))
≤
(
ρL

∗

p (P0 [f ] , P0 [h]) + ε
)

log
[
rA exp[p] L

(
rA
)]

i.e., log T−1P0[h]

(
TP0[f ]

(
rA
))
≤
(
ρL

∗

p (f, h) + ε
)

log
[
rA exp[p] L

(
rA
)]

(16) i.e.,
{

log T−1P0[h]

(
TP0[f ]

(
rA
))}1+x

≤(
ρL

∗

p (f, h) + ε
)1+x (

log
[
rA exp[p] L

(
rA
)])1+x

.

Therefore from (15) and (16) it follows for all sufficiently large positive
numbers of r that

log T−1h (Tf◦g (r)){
log T−1P0[h]

(
TP0[f ] (r

A)
)}1+x

≥
O (1) +

(
λL

∗
p (f, h)− ε

) [[(
r
4

)
exp[p] L (r)

]λL∗
p (g)−ε

+ exp[p−1] L
(
1
8
Mg

(
r
4

))]
(
ρL∗
p (f, h) + ε

)1+x
(log [rA exp[p] L (rA)])

1+x

Thus from above the theorem follows.
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Theorem 10. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f , h be any two entire functions, 0 < λL
∗

p (f, h)

≤ ρL
∗

p (f, h) < ∞, 0 < λL
∗

p (g) < ∞, 0 < ρL
∗

p (g, k) < ∞ where p is any
positive integer. If h satisfies the Property (A), then for every constant
A and for any real number x,

lim
r→∞

log T−1h (Tf◦g (r)){
log T−1P0[k]

(
TP0[g] (r

A)
)}1+x =∞.

The proof of Theorem 10 is omitted as it can be carried out in the
line of Theorem 9.

In the line of Theorem 9 and Theorem 10 and with the help of Lemma
5, one can easily prove the following two theorems and therefore their
proofs are omitted:

Theorem 11. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h be

a transcendental entire function with regular growth and nonzero finite
order. Also let

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be any entire function,

0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞, 0 < λL
∗

p (g) <∞ where p is any positive
integer. If h satisfies the Property (A), then for every constant A and
for any real number x,

lim
r→∞

log T−1h (Tf◦g (r)){
log T−1M [h]

(
TM [f ] (rA)

)}1+x =∞.

Theorem 12. Let k be a transcendental entire function of finite order
or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be a transcen-

dental entire function having regular growth and nonzero finite order
with

∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f , h be any two entire functions, 0 <

λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞, 0 < λL
∗

p (g) <∞, 0 < ρL
∗

p (g, k) <∞ where



Slowly changing function oriented growth measurement 33

p is any positive integer. If h satisfies the Property (A), then for every
constant A and for any real number x,

lim
r→∞

log T−1h (Tf◦g (r)){
log T−1M [k]

(
TM [g] (rA)

)}1+x =∞.

Theorem 13. Let f be a meromorphic function either of finite or-
der or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1

or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having reg-

ular growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1

or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, 0 <

ρL
∗

p (f, h) <∞ and ρL
∗

p (g) is nonzero finite where p is any positive inte-
ger. If h satisfies the Property (A), then for each α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[h]

(
TP0[f ] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

Proof. If 1 +α < 0, then the theorem is trivial. So we take 1 +α > 0.
Now from (4) we obtain for all sufficiently large positive numbers of r
that

log T−1h (Tf◦g (r)) ≤
[
r exp[p] L (r)

](ρL∗
p (g)+ε) ·

(
ρL

∗

p (f, h) + ε
)

+

O(1) +
(
ρL

∗

p (f, h) + ε
)
· exp[p−1] L (Mg (r))

(17) i.e.,
{

log T−1h (Tf◦g (r))
}1+α

≤
[[
r exp[p] L (r)

](ρL∗
p (g)+ε) ·

(
ρL

∗

p (f, h) + ε
)

+O(1)

+
(
ρL

∗

p (f, h) + ε
)
· exp[p−1] L (Mg (r))

]1+α
.

Again in view of Lemma 4, we have for a sequence of positive numbers
of r tending to infinity and for ε(> 0),

log T−1P0[h]

(
TP0[f ]

(
exp rA

))
≥(

ρL
∗

p (P0 [f ] , P0 [h])− ε
)

log
[
exp

(
rA
)

exp[p] L
(
exp

(
rA
))]

i.e., log T−1P0[h]

(
TP0[f ]

(
exp rA

))
≥
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ρL

∗

p (f, h)− ε
)

log
[
exp

(
rA
)

exp[p] L
(
exp

(
rA
))]

(18)
i.e., log T−1P0[h]

(
TP0[f ]

(
exp rA

))
≥
(
ρL

∗

p (f, h)− ε
) [
rA + exp[p−1] L

(
exp

(
rA
))]

.

Now let(
ρL

∗

p (f, h) + ε
)

= k1,
(
ρL

∗

p (f, h) + ε
)
· exp[p−1] L (Mg (r)) +O(1) = k2,(

ρL
∗

p (f, h)− ε
)

= k3 and
(
ρL

∗

p (f, h)− ε
)

exp[p−1] L
(
exp

(
rA
))

= k4.

Then from (17), (18) and above we get for a sequence of positive numbers
of r tending to infinity that

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[h]

(
TP0[f ] (exp rA)

) ≤
[[
r exp[p] L (r)

](ρL∗
p (g)+ε)

k1 + k2

]1+α
k3rA + k4

i.e.,

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[h]

(
TP0[f ] (exp rA)

)

≤

[
r exp[p] L (r)

](ρL∗
p (g)+ε)(1+α)

[
k1 + k2

[r exp[p] L(r)](
ρL

∗
p (g)+ε)

]1+α
k3rA + k4

where k1, k2,k3 and k4 are all finite.
Since

(
ρL

∗
p (g) + ε

)
(1 + α) < A, we obtain from above

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[h]

(
TP0[f ] (exp rA)

) = 0

where we choose ε(> 0) in such a way that

0 < ε < min

{
ρL

∗

p (f, h) ,
A

1 + α
− ρL∗

p (g)

}
.

This proves the theorem.

In the line of Theorem 13, the following theorem may be proved and
therefore its proof is omitted:
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Theorem 14. Let f be a meromorphic function either of finite or-
der or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1

or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having reg-

ular growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) =

1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g be an entire function,

0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < ∞ and ρL
∗

p (g) is nonzero finite where p
is any positive integer. If h satisfies the Property (A), then for each
α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[h]

(
TP0[f ] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

In the line of Theorem 13 and Theorem 14 and with the help of
Lemma 5, one can easily proof the following two theorems and therefore
their proofs are omitted:

Theorem 15. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function,

0 < ρL
∗

p (f, h) < ∞ and ρL
∗

p (g) is nonzero finite where p is any positive
integer. If h satisfies the Property (A), then for each α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1M [h]

(
TM [f ] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

Theorem 16. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function,

0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < ∞ and ρL
∗

p (g) is nonzero finite where p
is any positive integer. If h satisfies the Property (A), then for each
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α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1M [h]

(
TM [f ] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

Theorem 17. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f be a meromorphic function, h be any entire

function, ρL
∗

p (f, h) < ∞, ρL
∗

p (g) is nonzero finite and λL
∗

p (g, k) > 0
where p is any positive integer. If h satisfies the Property (A), then for
each α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[k]

(
TP0[g] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

Theorem 18. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f be a meromorphic function, h be any entire

function, ρL
∗

p (f, h) < ∞, 0 < ρL
∗

p (g) < ∞ and ρL
∗

p (g, k) > 0 where p
is any positive integer. If h satisfies the Property (A), then for each
α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1P0[k]

(
TP0[g] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

The proof of Theorem 17 and Theorem 18 are omitted because those
can be carried out in the line of Theorem 14 and Theorem 13 respectively.

In the line of Theorem 17 and Theorem 18 and with the help of
Lemma 5, one can easily prove the following two theorems and therefore
their proofs are omitted:
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Theorem 19. Let k be a transcendental entire function of finite or-
der or of nonzero lower order such that

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be

an entire function having regular growth and nonzero finite order with∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f be a meromorphic function, h be any en-

tire function, ρL
∗

p (f, h) <∞, ρL
∗

p (g) is nonzero finite and λL
∗

p (g, k) > 0
where p is any positive integer. If h satisfies the Property (A), then for
each α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1M [k]

(
TM [g] (exp rA)

) = 0 where A > (1 + α) · ρL∗

p (g) .

Theorem 20. Let k be a transcendental entire function of finite or-
der or of nonzero lower order such that

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be

an entire function having regular growth and nonzero finite order with∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f be a meromorphic function, h be any en-

tire function, ρL
∗

p (f, h) <∞, 0 < ρL
∗

p (g) <∞ and ρL
∗

p (g, k) > 0 where
p is any positive integer. If h satisfies the Property (A), then for each
α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h (Tf◦g (r))

}1+α
log T−1M [k]

(
TM [g] (exp rA)

) = 0whereA > (1 + α) · ρL∗

p (g) .

Theorem 21. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f be a meromorphic function, h be any entire

function satisfying the Property (A), ρL
∗

p (f, h) < ∞, 0 < ρL
∗

p (g) < ∞
and 0 < λL

∗
p (g, k) <∞ where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1P0[k]

(
TP0[g] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

≤ ρL
∗

k (g)

λL∗
p (g, k)
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and (b) if log T−1P0[k]

(
TP0[g] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

Proof. Using log
(

1 + exp[p−1] L(Mg(r))+O(1)

logMg(r)

)
<
(

1 + exp[p−1] L(Mg(r))+O(1)

logMg(r)

)
,

we obtain from (1) for all sufficiently large positive numbers of r that

log T−1h (Tf◦g (r)) 6
(
ρL

∗

p (f, h) + ε
)

logMg (r)

[
1 +

exp[p−1] L (Mg (r)) +O(1)

logMg (r)

]

i.e., log[2] T−1h (Tf◦g (r)) ≤ log
(
ρL

∗

p (f, h) + ε
)

+ log[2]Mg (r)

+ log

[
1 +

exp[p−1] L (Mg (r)) +O(1)

logMg (r)

]

i.e., log[2] T−1h (Tf◦g (r)) ≤ log
(
ρL

∗

p (f, h) + ε
)
+
(
ρL

∗

k (g) + ε
)

log
[
r exp[p] L(r)

]
+ log

[
1 +

exp[p−1] L (Mg (r)) +O(1)

logMg (r)

]
(19)

i.e., log[2] T−1h (Tf◦g (r)) ≤ O(1) +
(
ρL

∗

k (g) + ε
) [

log r + exp[p−1] L(r)
]

+
logMg (r) + exp[p−1] L (Mg (r)) +O(1)

logMg (r)
.

Again from the definition of relative pL
∗-lower order and in view of

Lemma 4, we get for all sufficiently large positive numbers of r that

log T−1P0[k]

(
TP0[g] (r)

)
≥
(
λL

∗

p (P0 [g] , P0 [k])− ε
)

log
[
r exp[p] L (r)

]
i.e., log T−1P0[k]

(
TP0[g] (r)

)
≥
(
λL

∗

p (g, k)− ε
)

log
[
r exp[p] L (r)

]
i.e.,

[
log r + exp[p−1] L (r)

]
≤

log T−1P0[k]

(
TP0[g] (r)

)(
λL∗
p (g, k)− ε

) .(20)

Hence from (19) and (20) , it follows for all sufficiently large positive
numbers of r that

log[2] T−1h (Tf◦g (r)) ≤ O(1) +

(
ρL

∗

k (g) + ε

λL∗
p (g, k)− ε

)
· log T−1P0[k]

(
TP0[g] (r)

)
+
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logMg (r) + exp[p−1] L (Mg (r)) +O(1)

logMg (r)

i.e,
log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

≤ O(1)

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

+

(
ρL

∗

k (g) + ε

λL∗
p (g, k)− ε

)
·

log T−1P0[k]

(
TP0[g] (r)

)
log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

+

logMg (r) + exp[p−1] L (Mg (r)) +O(1)[
log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

]
logMg (r)

i.e,
log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

≤
O(1)

exp[p−1] L(Mg(r))

log T−1
P0[k]

(TP0[g](r))
exp[p−1] L(Mg(r))

+ 1

(21)

+

(
ρL

∗
k (g)+ε

λL∗
p (g,k)−ε

)
1 + exp[p−1] L(Mg(r))

log T−1
P0[k]

(TP0[g](r))

+
1 + logMg(r)

exp[p−1] L(Mg(r))[
1 +

log T−1
P0[k]

(TP0[g](r))
exp[p−1] L(Mg(r))

]
logMg (r)

.

Since exp[p−1] L (Mg (r)) = o
{

log T−1P0[k]

(
TP0[g] (r)

)}
as r →∞ and ε (> 0) ,

is arbitrary we obtain from (21) that

(22) lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

≤ ρL
∗

k (g)

λL∗
p (g, k)

.

Again if log T−1P0[k]

(
TP0[g] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then from (21) we

get that

(23) lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

Thus from (22) and (23) the theorem is established.

In the line of Theorem 21 the following theorem may be proved and
therefore its proof is omitted:
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Theorem 22. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f be a meromorphic function, h be any entire

function satisfying the Property (A), ρL
∗

p (f, h) < ∞, ρL
∗

p (g) < ∞ and

ρL
∗

p (g, k) > 0 where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1P0[k]

(
TP0[g] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

≤ ρL
∗

k (g)

ρL∗
p (g, k)

and (b) if log T−1P0[k]

(
TP0[g] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

In the line of Theorem 21 and Theorem 22 and with the help of
Lemma 5, one can easily proof the following two theorems and therefore
their proofs are omitted:

Theorem 23. Let k be a transcendental entire function of finite or-
der or of nonzero lower order such that

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be

an entire function having regular growth and nonzero finite order with∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f be a meromorphic function, h be any

entire function satisfying the Property (A), ρL
∗

p (f, h) < ∞, 0 < ρL
∗

p (g)

<∞ and 0 < λL
∗

p (g, k) <∞ where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1M [k]

(
TM [g] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ exp[p−1] L (Mg (r))

≤ ρL
∗

k (g)

λL∗
p (g, k)

and (b) if log T−1M [k]

(
TM [g] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ exp[p−1] L (Mg (r))

= 0 .
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Theorem 24. Let k be a transcendental entire function of finite or-
der or of nonzero lower order such that

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be

an entire function having regular growth and nonzero finite order with∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f be a meromorphic function, h be any

entire function satisfying the Property (A), ρL
∗

p (f, h) <∞, ρL
∗

p (g) <∞
and ρL

∗
p (g, k) > 0 where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1M [k]

(
TM [g] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ exp[p−1] L (Mg (r))

≤ ρL
∗

k (g)

ρL∗
p (g, k)

and (b) if log T−1M [k]

(
TM [g] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

Now we state the following three theorems without their proofs as
those can be carried out in the line of Theorem 21 and Theorem 22:

Theorem 25. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, h satisfying

the Property (A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < ∞ and ρL
∗

p (g) < ∞
where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1P0[h]

(
TP0[f ] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ exp[p−1] L (Mg (r))

≤
ρL

∗
p (g)

λL∗
p (f, h)

and (b) if log T−1P0[h]

(
TP0[f ] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ exp[p−1] L (Mg (r))

= 0.
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Theorem 26. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, h satisfying

the Property (A), 0 < ρL
∗

p (f, h) < ∞ and ρL
∗

p (g) < ∞ where p is any
positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1P0[h]

(
TP0[f ] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ exp[p−1] L (Mg (r))

≤
ρL

∗
p (g)

ρL∗
p (f, h)

and (b) if log T−1P0[h]

(
TP0[f ] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

Theorem 27. Let f be a meromorphic function either of finite order
or of nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular

growth and nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, h satisfying

the Property (A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < ∞ and λL
∗

p (g) < ∞
where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1P0[h]

(
TP0[f ] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ exp[p−1] L (Mg (r))

≤
λL

∗
p (g)

λL∗
p (f, h)

and (b) if log T−1P0[h]

(
TP0[f ] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ exp[p−1] L (Mg (r))

= 0.
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In the line of Theorem 25, Theorem 26 and Theorem 27 and with the
help of Lemma 5, one can easily proof the following three theorems and
therefore their proofs are omitted:

Theorem 28. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function, h

satisfying the Property (A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and ρL
∗

p (g)
<∞ where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1M [h]

(
TM [f ] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ exp[p−1] L (Mg (r))

≤
ρL

∗
p (g)

λL∗
p (f, h)

and (b) if log T−1M [h]

(
TM [f ] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

Theorem 29. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function, h

satisfying the Property (A), 0 < ρL
∗

p (f, h) <∞ and ρL
∗

p (g) <∞ where
p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1M [h]

(
TM [f ] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ exp[p−1] L (Mg (r))

≤
ρL

∗
p (g)

ρL∗
p (f, h)

and (b) if log T−1M [h]

(
TM [f ] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ exp[p−1] L (Mg (r))

= 0.
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Theorem 30. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function, h

satisfying the Property (A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and λL
∗

p (g)
<∞ where p is any positive integer. Then

(a) if exp[p−1] L (Mg (r)) = o
{

log T−1M [h]

(
TM [f ] (r)

)}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ exp[p−1] L (Mg (r))

≤
λL

∗
p (g)

λL∗
p (f, h)

and (b) if log T−1M [h]

(
TM [f ] (r)

)
= o

{
exp[p−1] L (Mg (r))

}
then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ exp[p−1] L (Mg (r))

= 0.

Theorem 31. Let f be an entire function either of finite order or of
nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular growth and

nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, h satisfying the Property

(A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < ∞ and ρL
∗

p (g) > 0 where p is any
positive integer. Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ ρL
∗

p (g)

ρL∗
p (f, h)

.

Proof. From (14) , we have for all sufficiently large positive numbers
of r that

log T−1h (Tf◦g (r)) ≥ O (1) +
(
λL

∗

p (f, h)− ε
)(

log

(
1

8
Mg

(r
4

)(
1 +

o (1)
1
8
Mg

(
r
4

)))+ exp[p−1] L

(
1

8
Mg

(r
4

)))
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i.e., log T−1h (Tf◦g (r)) ≥
(
λL

∗

p (f, h)− ε
)

logMg

(r
4

)
· logMg

(
r
4

)
+ log

(
1 + o(1)

1
8
Mg( r4)

)
+ exp[p−1] L

(
1
8
Mg

(
r
4

))
logMg

(
r
4

)


i.e., log[2] T−1h (Tf◦g (r)) ≥ log[2]Mg

(r
4

)
+

log

(
logMg

(
r
4

)
+ exp[p−1] L

(
1
8
Mg

(
r
4

))
+ o(1)

logMg

(
r
4

) )

i.e., log[2] T−1h (Tf◦g (r)) ≥ log[2]Mg

(r
4

)
+

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
L

(
1

8
Mg

(r
4

))

− log

(
exp

((
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
· L
(

1

8
Mg

(r
4

))))

+ log

(
logMg( r4)+exp[p−1] L( 1

8
Mg( r4))+o(1)

logMg( r4)

)

i.e., log[2] T−1h (Tf◦g (r)) ≥ log[2]Mg

(r
4

)
+

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
L

(
1

8
Mg

(r
4

))

+ log

 logMg( r4)+exp[p−1] L( 1
8
Mg( r4))+o(1)

exp

((
ρL

∗
p (g)−ε

ρL
∗

p (f,h)+ε

)
·L( 1

8
Mg( r4))

)
·logMg( r4)


i.e., log[2] T−1h (Tf◦g (r)) ≥ log[2]Mg

(r
4

)
+

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
L

(
1

8
Mg

(r
4

))
.

Now from above it follows for a sequence of positive numbers of r tending
to infinity that

log[2] T−1h (Tf◦g (r)) ≥
(
ρL

∗

p (g)− ε
)

log
[r

4
exp[p] L

(r
4

)]
(24)

+

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
L

(
1

8
Mg

(r
4

))
.
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Further in view of Lemma 4, we get for all sufficiently large positive
numbers of r that

log T−1P0[h]

(
TP0[f ] (r)

)
≤
(
ρL

∗

p (P0 [f ] , P0 [h]) + ε
)

log
[
r exp[p] L (r)

]
i.e., log T−1P0[h]

(
TP0[f ] (r)

)
≤
(
ρL

∗

p (f, h) + ε
)

log
[
r exp[p] L (r)

]
i.e., log T−1P0[h]

(
TP0[f ] (r)

)
(25)

≤
(
ρL

∗

p (f, h) + ε
)

log
[r

4
exp[p] L

(r
4

)]
+ log 4.

Hence from (24) and (25) it follows for a sequence of positive numbers
of r tending to infinity that

i.e., log[2] T−1h (Tf◦g (r)) ≥

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)(
log T−1P0[h]

TP0[f ] (r)− log 4
)

+

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
L

(
1

8
Mg

(r
4

))

i.e., log[2] T−1h (Tf◦g (r))

≥

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)[
log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1

8
Mg

(r
4

))]

−

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
log 4

i.e.,
log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1
8
Mg

(
r
4

))
≥

(
ρL

∗
p (g)− ε

ρL∗
p (f, h) + ε

)
−

(
ρL

∗
p (g)−ε

ρL∗
p (f,h)+ε

)
log 4

log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) .
Since ε (> 0) is arbitrary, it follows from above that

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ ρL
∗

p (g)

ρL∗
p (f, h)

.

This proves the theorem.
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In the line of Theorem 31, the following two theorems may be proved
and therefore their proofs are omitted:

Theorem 32. Let f be an entire function either of finite order or of
nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular growth and

nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, h satisfying the Property

(A), 0 < λL
∗

p (f, h) <∞ and λL
∗

p (g) > 0 where p is any positive integer.
Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

λL∗
p (f, h)

.

Theorem 33. Let f be an entire function either of finite order or of
nonzero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1 and h be an entire function having regular growth and

nonzero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =∑
a6=∞

δ (a;h) = 1. Also let g be an entire function, h satisfying the Property

(A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < and λL
∗

p (g) > 0 where p is any positive
integer. Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[h]

(
TP0[f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

ρL∗
p (f, h)

.

In the line of Theorem 31, Theorem 39 and Theorem 33 and with the
help of Lemma 5, one can easily proof the following three theorems and
therefore their proofs are omitted:

Theorem 34. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function, h

satisfying the Property (A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) <∞ and ρL
∗

p (g)
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> 0 where p is any positive integer. Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ ρL
∗

p (g)

ρL∗
p (f, h)

.

Theorem 35. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function, h

satisfying the Property (A), 0 < λL
∗

p (f, h) < ∞ and λL
∗

p (g) > 0 where
p is any positive integer. Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

λL∗
p (f, h)

.

Theorem 36. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and h

be a transcendental entire function of regular growth having nonzero
finite type with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let g be an entire function,

h satisfying the Property (A), 0 < λL
∗

p (f, h) ≤ ρL
∗

p (f, h) < and λL
∗

p (g)
> 0 where p is any positive integer. Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [h]

(
TM [f ] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

ρL∗
p (f, h)

.

Now we state the following two theorems without their proofs as those
can be carried out in the line of Theorem 31 and Theorem 33:

Theorem 37. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f , h be any two entire functions, λL
∗

p (f, h) > 0,

0 < ρL
∗

p (g) <∞ and 0 < ρL
∗

p (g, k) <∞ where p is any positive integer.
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If h satisfies the Property (A). Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ ρL
∗

p (g)

ρL∗
p (g, k)

.

Theorem 38. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f , h be any two entire functions, λL
∗

p (f, h) > 0,

0 < λL
∗

p (g) <∞ and 0 < λL
∗

p (g, k) <∞ where p is any positive integer.
If h satisfies the Property (A). Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

λL∗
p (g, k)

.

Theorem 39. Let k be an entire function either of finite order or of
nonzero lower order such that Θ (∞; k) =

∑
a6=∞

δp (a; k) = 1 or δ (∞; k) =∑
a6=∞

δ (a; k) = 1 and g be an entire function having regular growth and

nonzero finite order with Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let f , h be any two entire functions, λL
∗

p (f, h) > 0,

0 < λL
∗

p (g) <∞ and 0 < ρL
∗

p (g, k) <∞ where p is any positive integer.
If h satisfies the Property (A). Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1P0[k]

(
TP0[g] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

ρL∗
p (g, k)

.

In the line of Theorem 37, Theorem 38 and Theorem 39 and with the
help of Lemma 5, one can easily proof the following three theorems and
therefore their proofs are omitted:

Theorem 40. Let k be a transcendental entire function of finite order
or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be a transcen-

dental entire function having regular growth and nonzero finite order
with

∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f , h be any two entire functions,
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λL
∗

p (f, h) > 0, 0 < ρL
∗

p (g) < ∞ and 0 < ρL
∗

p (g, k) < ∞ where p is any
positive integer. If h satisfies the Property (A). Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ ρL
∗

p (g)

ρL∗
p (g, k)

.

Theorem 41. Let k be a transcendental entire function of finite order
or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be a transcen-

dental entire function having regular growth and nonzero finite order
with

∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f , h be any two entire functions,

λL
∗

p (f, h) > 0, 0 < λL
∗

p (g) <∞ and 0 < λL
∗

p (g, k) <∞ where p is any
positive integer. If h satisfies the Property (A). Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

λL∗
p (g, k)

.

Theorem 42. Let k be a transcendental entire function of finite order
or of nonzero lower order and

∑
a∈C∪{∞}

δ1(a; k) = 4 and g be a transcen-

dental entire function having regular growth and nonzero finite order
with

∑
a∈C∪{∞}

δ1(a; g) = 4. Also let f , h be any two entire functions,

λL
∗

p (f, h) > 0, 0 < λL
∗

p (g) < ∞ and 0 < ρL
∗

p (g, k) < ∞ where p is any
positive integer. If h satisfies the Property (A). Then

lim
r→∞

log[2] T−1h (Tf◦g (r))

log T−1M [k]

(
TM [g] (r)

)
+ L

(
1
8
Mg

(
r
4

)) ≥ λL
∗

p (g)

ρL∗
p (g, k)

.
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