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SLOWLY CHANGING FUNCTION ORIENTED
GROWTH MEASUREMENT OF DIFFERENTIAL
POLYNOMIAL AND DIFFERENTIAL MONOMIAL

TANMAY BISwAS

ABSTRACT. In the paper we establish some new results depend-
ing on the comparative growth properties of composite entire and
meromorphic functions using relative ,L*-order, relative ,L*-lower
order and differential monomials, differential polynomials generated
by one of the factors.

1. Introduction, Definitions and Notations

Let us consider that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna theory of meromorphic
functions which are available in [9,11,19,20]. We also use the standard
notations and definitions of the theory of entire functions which are
available in [16] and therefore we do not explain those in details. For
z € [0,00) and k € N, we define exp* 2 = exp (exp[k*” x) and 1og[k] r=

log (log[k_l} x) where N be the set of all positive integers.

Let f be an entire function defined in the open complex plane C.
The maximum modulus function M; (r) corresponding to f is defined
on |z| = r as My(r) = E}i’; |f (2)]. In this connection the following
definition is relevant:
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DEFINITION 1. [6] A non-constant entire function f is said to have the

Property (A) if for any ¢ > 1 and for all sufficiently large r, [M; (r)]* <
My (r7) holds.

For examples of functions with or without the Property (A), one may
see [6].

When f is meromorphic, one may introduce another function 7% ()
known as Nevanlinna’s characteristic function of f, playing the same role
as My (r). Now we just recall the following properties of meromorphic
functions which will be needed in the sequel.

Let ngjnij...ng;(k > 1) be non-negative integers such that for each

k
J, >_n;; > 1. For a non-constant meromorphic function f , we call
i=0

M;[f] = A; (H)™ (FO)™ L (f®)™ where T'(r, A;) = S(r, f) to be

k
a differential monomial generated by f. The numbers vy; = > nyj
i=0
k
and I'y;; = D> (i + 1)n;; are called respectively the degree and weight
i=0

of M; [f] ([7], [15]). The expression P [f] = iMj [f] is called a differ-
j=1

ential polynomial generated by f. The numbers vp = ax Y and
<j<s
I'p = max 'y, are called respectively the degree and weight of P [f]
<j<s
([7], [15]) . Also we call the numbers ~p = 11<nlr<1 vu; and k (the or-
— SIS s

der of the highest derivative of f ) the lower degree and the order of
P [f] respectively. If v, = vp, P[f] is called a homogeneous differential

polynomial. Throughout the paper, we consider only the non-constant
differential polynomials and we denote by Py [f] a differential polynomial
not containing f, i.e., for which ng; = 0 for j = 1,2, ...s. We consider only
those P [f], Py [f] singularities of whose individual terms do not cancel
each other. We also denote by M [f] a differential monomial generated
by a transcendental meromorphic function f.

However, the Nevanlinna’s Characteristic function of a meromorphic
function f is define as

Ty (r) = Ny (r) +myg(r),
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wherever the function Ny (r,a) (N (r,a)) known as counting function
of a-points (distinct a-points) of meromorphic f is defined as follows:

r

t —
Ny (r,a) = /nf( @) tnf (0’a>dt+nf (0,a)logr

0
Ny (r,a) = /nf (t’a);nf 09 4y 47, 0, a)10gr |,

0

in addition we represent by ny (r,a) (7s (r,a)) the number of a-points
(distinct a-points) of f in |z| < r and an oo -point is a pole of f. In
many occasions Ny (r,00) and N (r,00) are symbolized by N (r) and
N (r) respectively.

On the other hand, the function my (r, 0o) alternatively indicated by
my () known as the proximity function of f is defined as:

27
1 )
my (r) = 2—/logJr |f (reze) ‘ df, where
7r
0
log* x = max (log z,0) for all z > 0.

Also we may employ m <T, ﬁ) by my (r,a).

If f is entire, then the Nevanlinna’s Characteristic function Ty (r) of
f is defined as

Ty (r) =my (r).

Moreover for any non-constant entire function f, 7% (r) is strictly in-
creasing and continuous functions of 7. Also its inverse T’ L (1T (0)], 00) —

(0, 00) is exists where Sllrilonl (s) = 0.

In this connection we immediately remind the following definitions
which are relevant:

DEFINITION 2. Let ‘a’ be a complex number, finite or infinite. The
Nevanlinna’s deficiency and the Valiron deficiency of ‘a’ with respect to
a meromorphic function f are defined as

Ti Nf (Tu CL)

, . my(r,a)
da; f)=1— lim ————~= = lim —————
( PRI s 10
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and

N -
A(a7f):1_ h_m f(r’n?a) — hm mf (T7a)'
ST T )
DEFINITION 3. The quantity ©(a; f) of a meromorphic function f is
defined as follows

T Nf (T, a)
Oa; f) =1— lim ————"——
(a; f) A =
DEFINITION 4. [18] For a € CU {00}, we denote by nys—y(r,a), the
number of simple zeros of f —a in |z| < r. Ny—1(r, a) is defined in terms
of ny—1(r, a) in the usual way. We put
51(a; f) = 1 — Tim =11 0)
l<a7 f) TLIEO Tf (T’) )
the deficiency of ‘a’ corresponding to the simple a-points of f i.e., simple
zeros of f —a.

Yang [17] proved that there exists at most a denumerable number of
complex numbers a € CU{oo} for which 4 (a; f) > 0 and Z 01(a; f) < 4.

ac€CU{oo0}

DEFINITION 5. [10] For a e CU{o0}, let n,(r, a; f) denotes the number
of zeros of f —a in |z| < r, where a zero of multiplicity < p is counted
according to its multiplicity and a zero of multiplicity > p is counted
exactly p times and N,(r,a; f) is defined in terms of n,(r,a; f) in the
usual way. We define

Ny(r,a; f)

Spla; f) =1 — lim —2-—222
p(aﬂf) 1 00 Tf(T’)

DEFINITION 6. [1] P[f] is said to be admissible if

(1) P[f] is homogeneous, or

(¢7) P[f] is non homogeneous and my(r) = S¢(r).

However in case of any two meromorphic functions f and g, the ratio
Te(r
7
of their Nevanlinna’s Characteristic functions. Further the concept of
the growth measuring tools such as order and lower order which are
conventional in complex analysis and the growth of entire or meromor-
phic functions can be studied in terms of their orders and lower orders
are normally defined in terms of their growth with respect to the exp

function which are shown in the following definition:

as r — oo is called as the growth of f with respect to ¢ in terms
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DEFINITION 7. The order p (f) ( the lower order A(f) ) of a mero-
morphic function f is defined as

— logT —logT —  logT
o(f) = T —8Tr () prloeTy () e logTy(r)
r=o010g Texp- (1) rvo log (£) r=oolog () + O(1)

M(f) = lim log T’ (r) _ li_mlong (r) ~ lim log T (r) .
7—00 log Texpz (T) r—00 log (%) r—)oolog (T) + O(l)

If f is entire, then

— loglog My (r) — logm My (r)

P /) rggologlog Mexp » (1) o logr

(2]
Mf) = Jim log log My () _ h_mlog My (1) .
r—oologlog Moy (1) ree logr

Somasundaram and Thamizharasi [14] introduced the notions of L-
order and L-lower order for entire functions where L = L (r) is a positive
continuous function increasing slowly, i.e., L (ar) ~ L (r) as r — oo for
every positive constant “a”. The more generalized concept of L-order
and L-lower order of meromorphic functions are L*-order and L*-lower

order respectively which are as follows:

DEFINITION 8. [14] The L*-order pl” (f) and the L*-lower order
AL (f) of a meromorphic function f are defined by
—logT'(r, f)

L* — i
)= i ero]

If f is entire, then

. —log® M; (r) . log®? M; (r)
Pf) = im0l and A (f) = lim L2
= 0 g frete] )= tm [ret)]

. . logT (r, f)
d AF = lim ——2=2~.
an (f) ririlo log [T’GL(T)]

Extending the notion of Somasundaram and Thamizharasi [14], one
may introduce concept of ,L*-order and ,L*-lower order of a meromor-
phic function f which are as follows:

DEFINITION 9. For any positive integer p, the ,L*-order pl” (f) and
the ,L*-lower order /\ZE* (f) of a meromorphic function f are defined by

_ log T’ (r) and )\5* (f) = lim log T’ (r)

L* = i .
Py () o log [r explP! L ()] r—oclog [rexpll L (1)]
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If f is entire, then

o 10g[2] My (T)

L* -1
oy (J) rggolog [rexplP! L (1)]

. , log®? M; (1)
L =1 f )
and )‘p (f) r%olog [T exp[P] I (7”)]

Lahiri and Banerjee [12] introduced the definition of relative order of

a meromorphic function with respect to an entire function which is as
follows:

DEFINITION 10. [12] Let f be meromorphic and g be entire. The
relative order of f with respect to g denoted by p, (f) is defined as

p(f,g) = inf{u>0:T(r) <T,(r") for all sufficiently large r}
o log T, (T (r))
lim .

r—00 log r

The definition coincides with the classical one [12] if g (z) = exp z.

Similarly one can define the relative lower order of a meromorphic
function f with respect to an entire g denoted by A, (f) in the following

manner : low T=1 (T
o) — BT )
r—o00 logr
In order to make some progress in the study of relative order, one
may introduce the definitions of relative , L*-order and relative ,L*-lower
order of a meromorphic function f with respect to an entire g which are
as follows:

DEFINITION 11. [3] The relative ,L*-order denoted as pﬁ* (f,9) and
relative ,L*-lower order denoted as A." (f, g) of a meromorphic function
f with respect to an entire g are defined as

— log T (Ty ()

L _ T
Py (f:9) = rlggolog [rexplel L (1)]

)

. log T (T (1))
d AL = li g
an D (fv g) T’%olog [T eXp[p} L (T)]
where p is any positive integers.

In the paper we establish some new results depending on the compar-
ative growth properties of composite entire and meromorphic functions
using relative ,L*-order (respectively, relative ,L*-lower order) and dif-
ferential monomials, differential polynomials generated by one of the
factors. Indeed some works on relative ,L*-order (respectively, relative
yL*-lower order) related to the growth of composite entire and meromor-
phic functions have also been explored in [2-4].
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2. Preliminaries

In this section we present some lemmas which will be needed in the
sequel.

LeEMMA 1. [5] If f is meromorphic and g is entire then for all suffi-
ciently large values of r,

o (1) < {1+ 0 (D} 80T (0, (1)

LEMMA 2. [13] Let f and g be any two entire functions. Then for all
r >0,

1 1 r
Tfog (7“) Z glOng {gMg (Z) + 0(1)} .
LEMMA 3. [8] Let f be an entire function which satisfies the Property
(A), 3>0,6>1and o> 2. Then
BTy (r) < Ty (ar?) .

LEMMA 4. [3] Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (oo; f) = > 0,(a;f) = 1 or

aF#00
d(o0;f) = Y. 0(a;f) = 1 and g be an entire function with regular
a#0o
growth having nonzero finite order and © (c0;g) = > 6,(a;g) =1 or
a#oo
d(00;9) = > d(a;g) = 1. Then for any positive integer p, the relative
a#oo

pL*-order and relative ,L*-lower order of Fy [f] with respect to Py [g] are
same as those of f with respect to g for homogeneous P, [f]| and Py g,
ie.,

pp (Polfl Polgl) = py (f.g) and X" (Po[f], Polgl) = Ay (f.9)

LEMMA 5. [3] Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and >,  6i(a; f) =4 and g be
a€eCU{oo}
a transcendental entire function with regular growth and nonzero finite

order. Alsolet Y 61(a;g) = 4. Then for any positive integer p, the
ac€CU{oo}

relative ,L*-order and relative ,L*-lower order of M|f]| with respect to

M]g] are same as those of f with respect to g, i.e.,

py (M [f], Mg]) = py (f.g) and X" (M [f], M [g]) = A" (f.9) .
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3. Main results

In this section we present the main results of the paper. It is need-
less to mention that in the paper, the admissibility and homogeneity of
Py [f] for meromorphic f will be needed as per the requirements of the
theorems.

THEOREM 1. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (oo; f) = > 0,(a;f) = 1 or

a#00
d(c0;f) = >.d(a; f) = 1 and h be an entire function having regular
a#0oo
growth and nonzero finite order with © (oco;h) = > 60,(a;h) = 1 or
a#£oo
d(co;h) = > d(a;h) = 1. Also let g, k be any two entire functions,
a#oo

ph (9) < pp" (f.h) < oo and pL (g, k) < oo where p is any positive
integer. If h satisfies the Property (A), then
lim log T ! (Tyoq (r)) +log T, ' (T, (1))
r—00 ngol[h} (T (1)) - K (r,g; L)

1 if expP~U L (M, (r)) = o { [rexpl? L (r)}ﬁ} as r — 0o

K(r,g;L) = and for some [ < ,05 (f,h)
explP~U L (M, (r)) otherwise.

=0, where

Proof. Let us consider that & > 2 and 6 — 17 in Lemma 3. Since
T, (r) is an increasing function of r, it follows from Lemma 1, Lemma
3 and the inequality T,(r) < log M,(r) {cf. [9] } for all sufficiently large
values of r that

T, (Treg (1) < Ty ({14 0(1)} T (M (7))
i, Ty (Thog (r)) < o (T, Ty (My (1))
e 108 Ty (Tpog () < 1o T, (Ty (M, (r))) + O(1)
W 1 L* 1
log Ty, ' (Tyeg () < (pf" (f, 1) + €) [log My (r) + exp?~ L (M, (r))]
+0(1).
Now from the definition of pzf* (g9), we obtain for all sufficiently large
positive numbers of r that

(2) logm M, (r) < (,05* (9) + 5) [logr +explP~U L (T)} )
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Also from the definition of p}" (g, k), we get for all sufficiently large
positive numbers of r that

(3) log Tk_1 (T, (r)) < (plf* (9,k) + 5) log [7" exp” L (7“)] )

Therefore from (1) and in view of (2), we get for all sufficiently large
positive numbers of r that

(4) log Ty " (Toq ()
< O(l)+(p£* (f,h)+ 8)- {[T exp? L (r)] (03" 0)) + explP~U L (M, (7"))} )

Now from (3) and (4) , it follows for all sufficiently large positive numbers
of r that

(5) log Ty, " (Tyoq (r))+log Ty (T (1)) <

(plf* (f,h)+ 5) . {[r exp?” L (r)] (o7 (0)+) +expP UL (M, (r))}

O(1) + (pY" (9.k) +¢) log [rexp L (r)] .

Also from the definition of pi” (Py [f], Py [h]) and in view of Lemma 4,
we obtain for a sequence of positive numbers of r tending to infinity that

log Tk (Trgsy (1) > (o2 (P[], P [B]) — ) log [rexp L (r)]
i.e., longgol[m (Tpyip) (r)) > (,05* (f,h) —¢)log [r expl? L (r)]

) N pgl;*(f»h)fs
(6) i-eer Tpypyy (Trois () = [TeXp[p]L(T)}( ).

Now from (5) and (6), we get for a sequence of positive numbers of r
tending to infinity that

log T) ' (Tyoq (1)) +log T, (T, (1))
7
@ Tt (Troig (1)) =

O(1) + (pL" (g9, k) + ) log [rexplP! L (r)]
Trny (Tron) (1)

(0 (f,h) +€) - | [rexp ()] 9% @) 4 explol L (M, ()

+

[rexpltl L (r)](”lg* (Fh)=<)



26 Tanmay Biswas

Since p}” (9) < p.~ (f,h), we can choose e (> 0) in such a way that

(8) py (9)+e< py (f;h)—e
Case 1. Let expP" U L (M, (r)) = o { [rexpl’! L (7’)}5} as r — oo and for
some 3 < p&” (f, h).
As B < p5” (f,h), we can choose & (> 0) in such a way that
() B< ot (fih) <.
Since explP~! L (M, (r)) = 0{[7’ expl?! L(r)]ﬁ} as r — oo we get on
using (9) that

exp? Y L (M, (r))

rew L)
exp?~! L (M, (r))
resxple) L (1)) (<)
Now in view of (7), (8) and (10) we get that
log T}, ' (Tyo log T}, (T,
By T T () £ e T (T, (1)
T—00 TPo[h] (Tpo[f] (T))
[p—1] B g

Case II. If exp? " L (M, (r)) # 0{[rexp L(r)] } as r — oo and

for some f < plf* (f,h) then we get from (7) for a sequence of positive
numbers of r tending to infinity that

log T (Tjy () + log Ty (T, (1))
T (Teyg) (1)) - expl=1 L (M, (r))
o) + (pzf* (9,k) + 6) log [T exp? L (r)]
[rexpl) I (r)] % M%) exeplo-1) I (M, (1)

—0asr— oo

(10) i.e., — 0 as r — oo.

=0.

(12)

_|_

(pg* (f,h) + 5) . [r expl?” L (7’)} (o5 (9)+¢) + explP=1 L (M, (1))

rexpll L (1) F"07) - explo=] L (M, (7))
Now using (8), it follows from (12) that
(13) lim log T, ' (Tyoq (1)) + log T, ' (T, (1))
r=oo Ty (Tryipy (7)) - expl=1 L (M, (7))
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Combining (11) and (13) we obtain that

i 128 T (Trog (1) + 108 T (T, (1))
r—roo Tgol[h] (Tpyiy) () - K (r, g; L)

1if expP~U L (M, (r)) =0 { [rexpl?l L (r)]ﬂ} as r — 0o

where K (r,g; L) = and for some § < pl” (f, h)
expP~1 L (M, (1)) otherwise.

Thus the theorem is established. O

:(:)7

THEOREM 2. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (co; f) = > 0,(a;f) =1 or

a#00
d(o0;f) = >.d(a; f) =1 and h be an entire function having regular
a#oo
growth and nonzero finite order with © (oo;h) = > 6,(a;h) = 1 or
a#oo
d(oo;h) = > d(a;h) = 1. Also let g, k be any two entire functions,
aF#oo

Py (g) < AL (f,h) < oo and p." (g9,k) < co where p is any positive
integer. If h satisfies the Property (A), then
lim log Ty, (Tyeg (1)) +log T (T, (1))
rooe To (T (1) - K (r, 9, L)
1 if explP~U L (M, (r)) = o { [rexpl’! L (r)}ﬂ} asr — 0o
where K (r, g; L) = and for some § < A" (f,h)
expP ' L (M, (r)) otherwise.

THEOREM 3. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (co; f) = > 0,(a;f) =1 or

=0,

a#00
d(o0;f) = >.d(a; f) =1 and h be an entire function having regular
a#oo
growth and nonzero finite order with © (oo;h) = > 6,(a;h) = 1 or
a#oo
d(oo;h) = Y2 d(a;h) = 1. Also let g, k be any two entire functions,
aF#oo

A (g) < M (. h) < (f,h) < oo and pl (g, k) < oo where p is any

positive integer. If h satisfies the Property (A), then
lim log Ty " (Tyog (1)) +log Ty (T, (1))
oo To (T (1) - K (r, 9, L)

=0,
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1 if explP~U L (M, (r)) =0 { [rexpl’! L (r)]ﬂ} as r — oo
where K (r,g; L) = and for some § < A" (f,h)
expP L (M, (r)) otherwise.

THEOREM 4. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (co; f) = > 0,(a;f) =1 or
aFoo

d(co;f) = >.0(a;f) =1 and h be an entire function having regular

a#oo
growth and nonzero finite order with © (co;h) = > 6,(a;h) = 1 or
a#oo
d(oo;h) = > d(a;h) = 1. Also let g, k be any two entire functions,
aF#o00

pﬁ* (9) < )\5* (f,h) < pp* (f,h) < oo and pg (g9,k) < oo where p is any
positive integer. If h satisfies the Property (A), then
im log Th_l (Tyoq (r)) + log Tk_l (Ty (r))

rooe Toy (Trpp (1) - K (r, 9, L)

=0,

1 if explr=1 L (M, (r)) = o { [r expl L (7“)]6} as T — 00
where K (r, g; L) = and for some 3 < )\5* (f,h)
expP~U L (M, (r)) otherwise.

The proofs of Theorem 2, Theorem 3 and Theorem 4 are omitted
because those can be carried out in the line of Theorem 1.

In the line of Theorem 1, Theorem 2, Theorem 3 and Theorem 4
respectively and with the help of Lemma 5, one can easily prove the
following four theorems and therefore their proofs are omitted:

THEOREM 5. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y di(a;f) = 4 and h
aceCU{o0}
be a transcendental entire function of regular growth and nonzero finite

order with >, d1(a; h) = 4. Also let g, k be any two entire functions,
acCU{oco}

p5 (9) < pk (f.h) < oo and pL (g,k) < oo where p is any positive
integer. If h satisfies the Property (A), then

i 108 T (Trey (1)) +1og T (T, (1))
roo Ty (Taag () - K (g L)

=0,
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1 if explP~U L (M, (r)) =0 { [rexpl’! L (r)]ﬂ} as r — oo
where K (r, g; L) = and for some § < pX" (f, h)
expP~1 L (M, (r)) otherwise.

THEOREM 6. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and > di(a;f) = 4 and h
a€CU{oo}
be a transcendental entire function of regular growth and nonzero finite

order with > 61(a;h) = 4. Also let g, k be any two entire functions,
acCU{oo}

ple* (9) < )\5* (f,h) < oo and pg* (9,k) < oo where p is any positive
integer. If h satisfies the Property (A), then
o T (Tyey (1) +log T (1, (1)
A1 -1
oo Ty (Taaiy () - K (7, 93 L)
1 if expP~U L (M, (r)) =0 { [rexpl?! L (r)]ﬂ} asr — 0o

where K (r,g; L) = and for some § < A" (f,h)
expP~U L (M, (r)) otherwise.

=0,

THEOREM 7. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y di(a;f) = 4 and h
a€CU{oo}
be a transcendental entire function of regular growth and nonzero finite

order with > 601(a;h) = 4. Also let g, k be any two entire functions,
aceCU{oo}

)\ZE* (9) <AL (f,h) < pzf* (f,h) < oo and p.” (g, k) < oo where p is any

positive integer. If h satisfies the Property (A), then
lim log Th_1 (Thog (r)) +log T, (T (1))
rooe Ty (Taagpy (7)) - K (1,95 L)

1 if expP~ U L (M, (r)) =0 { [rexpl?l L (r)]ﬁ} asr — 0o

where K (r, g; L) = and for some § < A" (f,h)
expP~U L (M, (r)) otherwise.

=0,

THEOREM 8. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y di(a;f) = 4 and h
acCU{o0}

be a transcendental entire function of regular growth and nonzero finite

order with > d1(a; h) = 4. Also let g, k be any two entire functions,
acCU{oo}
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Py (g) < X (f,h) < pb (f,h) < oo and pl” (g, k) < oo where p is any

positive integer. If h satisfies the Property (A), then
lim log T ! (Tyoq (1)) +log T, * (T, (1))
rooe Ty (T (7)) - K (1,95 L)

1 if explP~U L (M, (r)) = o { [rexpl’! L (r)}ﬂ} asr — oo

where K (r,g; L) = and for some § < A" (f,h)
expP~ 1 L (M, (r)) otherwise.

=0,

THEOREM 9. Let f be an entire function either of finite order or of

nonzero lower order such that © (oco; f) = > 6, (a; f) =1 ord (co; f) =
a#oo

Y>> d(a; f) =1 and h be an entire function having regular growth and

a#00

nonzero finite order with © (oco;h) = Y. 0,(a;h) = 1 or ¢ (cojh) =

aF£oo
; d(a;h) = 1. Also let g be any entire function, 0 < )\If* (f,h) <
p]f* (f,h) < o0, 0 < )\5* (g9) < oo where p is any positive integer. If h
satisfies the Property (A), then for every constant A and for any real
number x,

10T (T ()

r—00 _ I+a
{108; Troin (Trops) (14)) }

Proof. If x is such that 1 + x < 0, then the theorem is obvious. So
we suppose that 1 + 2z > 0. Let us consider that a > 2 and § — 17 in
Lemma 3. Since 7, ' (r) is an increasing function of r, it follows from
Lemma 2, Lemma 3 and the inequality T,(r) < log M,(r) {cf. [9] } for
all sufficiently large positive numbers of r that

13 170 0 2 13 (577 (50, (5) o))

b 1 Ty 0= (5130 (15 (0 (5) 400 ) ))

i.e., log T, (Tyoq (r)) > log (éT,;le (éMg (2) + 0(1))>

(12., log T}, " (Tpeg (1)) > O (1) + log T}, ! (Tf (éMg (%) + 0(1))) .



Slowly changing function oriented growth measurement 31
* 1
ie., 1og T, " (Trog (r)) = O (1)+(A (f,h) —¢) [log <§Mg (%) +o0 (1))
_ 1 T
+expP UL (gMg (Z))]

ie., og T (Thog (1)) = O (1) + (AL (f,1) — €) [log M, (2)

FexplP UL (éMg (%))}

(15) d.e., log T, ' (Tyoq (1))

rﬁ*(w—e

>0 1)+ (AE (f,h) —¢) [[(2) exp? L (r)

+explP~U L <%Mg (%))}

where we choose 0 < e < min {A\L" (f,h), AL (g)} .
Also for all sufficiently large positive numbers of r, we get in view of
Lemma 4, that

lo8 Ty (T () < (" (Po1f]. Py 1) + <) log [ expl? £ ()]

i.e., log Tjjol[h] (Tpom (TA)) < (pg* (f,h)+ 8) log [TA exp?” L (TA)}

14z
(16) i.e., {log Tl (Tngn (7))} <

* 14z
(P (f.h) +e) " (log [r* exp® L (r*)])
Therefore from (15) and (16) it follows for all sufficiently large positive
numbers of r that

log Ty, * (Toq (7))
-1 " 14+a
{1og Tpyin) (TPo[f] (r ))}

1+

0()+ (4 (1) =2) |[()exw LY e L (20, (7)

(£ (f.h) +2) " (log [rA explel L (r4)])

Thus from above the theorem follows. O]
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THEOREM 10. Let k be an entire function either of finite order or of
nonzero lower order such that © (co; k) = > 9, (a;k) =1 or 6 (o0; k) =

a#oo
> d(a;k) = 1 and g be an entire function having regular growth and
a#oo
nonzero finite order with © (c0;9) = >, 0,(a;g) = 1 or 6 (o0;g) =

a#00

> 0(a;9) = 1. Also let f, h be any two entire functions, 0 < A" (f, h)

a#0o
< pp* (f,h) <o0,0< )\5 (9) <o00,0< p]’;j (g9,k) < oo where p is any
positive integer. If h satisfies the Property (A), then for every constant
A and for any real number x,
log T}, " (Tyo
lim og T}, (Tyoq (1)) =0
r—+00 _
{log TPol[k] (TPo (9] (TAD}

The proof of Theorem 10 is omitted as it can be carried out in the
line of Theorem 9.

In the line of Theorem 9 and Theorem 10 and with the help of Lemma
5, one can easily prove the following two theorems and therefore their
proofs are omitted:

THEOREM 11. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and Y.  01(a; f) =4 and h be
a€CU{oo}

a transcendental entire function with regular growth and nonzero finite
order. Also let > d1(a;h) = 4. Also let g be any entire function,

aeCU{oo}
0< )\If* (f h) < ,0:5* (f,h) <o00,0< )\5* (9) < oo where p is any positive
integer. If h satisfies the Property (A), then for every constant A and
for any real number x,

log T;, ' (T¥s
lim og T}, (Tyoq (1)) — =0
r—00 —
{108 Tty (Tarin ) }

THEOREM 12. Let k be a transcendental entire function of finite order
or of nonzero lower order and Y. 01(a;k) =4 and g be a transcen-
acCU{oo}
dental entire function having regular growth and nonzero finite order
with > 01(a;g) = 4. Also let f, h be any two entire functions, 0 <
ac€CU{oo}
L* L* L* L*
Ay (foh) < py (fih) <00, 0< Ay (g9) <o0,0< py (g9,k) < oo where




Slowly changing function oriented growth measurement 33

p is any positive integer. If h satisfies the Property (A), then for every
constant A and for any real number x,

hm lOg Tf;l (Tfog (T)) = 00

300 _ 14«
- {103? TM%k] (TM[Q] (TA))}

THEOREM 13. Let f be a meromorphic function either of finite or-
der or of nonzero lower order such that © (oco; f) = > 6,(a;f) =1

a#o0o
or 6 (oo;f) = > 6(a;f) =1 and h be an entire function having reg-
a#£oo
ular growth and nonzero finite order with © (co;h) = > 9, (a;h) =1
a#oo
or 0 (oo;h) = > d(a;h) = 1. Also let g be an entire function, 0 <
a#oo

pL (f,h) < oo and pL (g) is nonzero finite where p is any positive inte-
ger. If h satisfies the Property (A), then for each a € (—00, ),

lim {log T, (Tyog (7"))}
r—o0log TI;()l[h] (Tpyip) (expr))

14a

=0 where A> (1+a)-py (g).

Proof. If 1+« < 0, then the theorem is trivial. So we take 14+« > 0.
Now from (4) we obtain for all sufficiently large positive numbers of r
that

log T (Troy (r)) < [rexp? L ()] Y% %) (0" (£.1) +¢) +
O(1) + (0 (f1) + <) - exp? U L (M, (1)

(17) i.e., {logT; " (Tpoy (1))}
< |lr exp L (r)] (i (@)+<) (pﬁ* (f,h)+e)+0(1)

+ (L (f,h) + <) -expP L (M, (r)]

Again in view of Lemma 4, we have for a sequence of positive numbers
of r tending to infinity and for e(> 0),

08 T}y (T (o))
(0" (PoLf], Po[h]) — ) log [exp () exp® L (exp (r))]
1.e., log T;,()l[h] (Tpo[f] (exp TA)) >
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(plf* (f,h) — 5) log [exp (TA) exp? L (exp (TA))]
(18)
1.e., log ngol[h] (Tpo[f] (exp T’A))

> (p]f* (f,h)— 5) [TA + exp[p_” L (exp (TA)” )
Now let

(05" (fsh) +2) =k (py (f.h) +e) - expP™ U L (M, (r) + O(1) = k,

(pﬁ* (f,h)— 5) = ks and (plf* (f,h) — 5) expP~ U L (exp (TA)) = ky.
Then from (17), (18) and above we get for a sequence of positive numbers
of r tending to infinity that

{log T, (Tyoy (1))} g {[?" expl?! L (7)] (5 (0)2) ky + k‘z]

log T;()l[h] (T (expr?)) — kard + ky

{log ;" (Tyoq ()}

1.€., —
log Ty (Trois) (exp 7))
1+a
L* -
[7“ eXp[p]L(T)] (PF" (9)+¢)(1+a) ky + ko -
[r expl?) L(r)](pp (9)+s)

<
- kg’I“A + k4

where ki, ko,ks and k, are all finite.
Since(pL (9) +¢) (1 + @) < A, we obtain from above

_ 14+«
lim {log T, ' (Tfog (T))} —0

r—oolog Tgl[h] (Tryiy) (expr4))

0

where we choose (> 0) in such a way that

* A *
0 <e<minsp (f,h), —— — pk .
2 mm{pp (foh)sge = v (9)}
This proves the theorem. O

In the line of Theorem 13, the following theorem may be proved and
therefore its proof is omitted:
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THEOREM 14. Let f be a meromorphic function either of finite or-

der or of nonzero lower order such that © (oco; f) = > 6,(a;f) =1
a#£oo
or §(oco; f) = > d(a; f) = 1 and h be an entire function having reg-
a#oo
ular growth and nonzero finite order with © (oco;h) = Y d,(a;h) =
a#oo
1 or d(oco;h) = > d(a;h) = 1. Also let g be an entire function,
a#00

0 < M7 (f,h) < pl (f.h) < oo and p}" (g) is nonzero finite where p
is any positive integer. If h satisfies the Property (A), then for each
a € (—00,00),

1 T_l To 14+ .
lim {og h (fg(r))} :OWhereA>(1+C¥)'P£ (9)-

r—oc]og ngol[h] (Tp0 7] (exp T‘A>>

In the line of Theorem 13 and Theorem 14 and with the help of
Lemma 5, one can easily proof the following two theorems and therefore
their proofs are omitted:

THEOREM 15. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y 6&i(a;f) = 4 and h
a€CU{oo}
be a transcendental entire function of regular growth having nonzero
finite type with >  d1(a;h) = 4. Also let g be an entire function,
a€CU{oo}

0 < pL™ (f,h) < oo and p’" (g) is nonzero finite where p is any positive
integer. If h satisfies the Property (A), then for each o € (—00,00),

p 108 Tt Ty (1)}

r—o0lOg T]\_ﬁh] (s (exprd))

:0WhereA>(1—|—a)-pr*(g).

THEOREM 16. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and Y 6i(a;f) = 4 and h
a€CU{oo}
be a transcendental entire function of regular growth having nonzero
finite type with > d1(a;h) = 4. Also let g be an entire function,
ac€CU{oco}
0 < )\5* (f,h) < p}’;f (f,h) < oo and pﬁ* (g9) is nonzero finite where p
is any positive integer. If h satisfies the Property (A), then for each
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a € (—o0,00),

- {loa Ty (Tpey (1))} ™

r=o0log Ty (Targs) (expr))

:0WhereA>(1—|—a)-pr*(g).

THEOREM 17. Let k be an entire function either of finite order or of
nonzero lower order such that © (co; k) = > 9, (a;k) =1 or 6 (005 k) =
aF#o0o

Y 6 (a;k) =1 and g be an entire function having regular growth and
a#£oo

nonzero finite order with © (co;g9) = > 6,(a;g) = 1 or §(oc0;g) =

a#oo

> d(a;g) = 1. Also let f be a meromorphic function, h be any entire
a#oo

function, pL™ (f,h) < oo, pL" (g) is nonzero finite and 5" (g,k) > 0
where p is any positive integer. If h satisfies the Property (A), then for

each a € (—00,00),

p 08T Ty (1)}

m -
r—00 log TPol[k] (Tpo[g] (exp TA))

:OWhereA>(1+a)-p]’;“* (9).

THEOREM 18. Let k be an entire function either of finite order or of

nonzero lower order such that © (co;k) = > 9, (a;k) =1 or 6 (o0; k) =
aF#o00
Y>> d(a;k) =1 and g be an entire function having regular growth and
a#£oo
nonzero finite order with © (co;g9) = > 6,(a;g) = 1 or §(oc0;g) =
aFoo

> d(a;9) = 1. Also let f be a meromorphic function, h be any entire
a#oo
function, pL” (f,h) < 00, 0 < pL" (g9) < oo and pL™ (g,k) > 0 where p
is any positive integer. If h satisfies the Property (A), then for each
a € (—o0,00),

— 14+a
lim {10g T, (Tyog (7"))}
r—oolog leol[k] (Tpyjq) (exp )

:OWhereA>(1+a)-p]’;“* (9).

The proof of Theorem 17 and Theorem 18 are omitted because those
can be carried out in the line of Theorem 14 and Theorem 13 respectively.

In the line of Theorem 17 and Theorem 18 and with the help of
Lemma 5, one can easily prove the following two theorems and therefore
their proofs are omitted:
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THEOREM 19. Let k be a transcendental entire function of finite or-

der or of nonzero lower order such that Y. 01(a;k) = 4 and g be
a€CU{oo}
an entire function having regular growth and nonzero finite order with

Y>> d1(a;g) = 4. Also let f be a meromorphic function, h be any en-
a€CU{oo}

tire function, pL” (f,h) < oo, p5” (g) is nonzero finite and X" (g, k) > 0
where p is any positive integer. If h satisfies the Property (A), then for
each a € (—00,00),

_ 1+a
1 {10g 1, ! (Tfog (7‘))}
r=log Ty (Turgg) (expr?))

=0 where A > (1+a)-pL (g).

THEOREM 20. Let k be a transcendental entire function of finite or-

der or of nonzero lower order such that Y. 01(a;k) = 4 and g be
a€eCU{oo}
an entire function having regular growth and nonzero finite order with

> d1(a;g) = 4. Also let f be a meromorphic function, h be any en-
acCU{oo}

tire function, p.” (f,h) < o0, 0 < p” (g) < oo and p." (g,k) > 0 where
p Is any positive integer. If h satisfies the Property (A), then for each
a € (—00,00),

— 14+a
lim {1083 T, (Tyog (7”))}
r—o0log T]ﬁk] (Thpg) (expr))

= OQwhereA > (1+a)-pY (g).

THEOREM 21. Let k be an entire function either of finite order or of
nonzero lower order such that © (co; k) = > d,(a;k) =1 or 6 (o0; k) =
a#oo

> d(a;k) =1 and g be an entire function having regular growth and

a#oo

nonzero finite order with © (c0;9) = >, 0,(a;g) = 1 or 6 (o0;9) =
aFoo

> d(a;g) = 1. Also let f be a meromorphic function, h be any entire

a#00

function satisfying the Property (A), pL™ (f,h) < o0, 0 < pi" (g) < o0
and 0 < X" (g, k) < oo where p is any positive integer. Then

(a) if expP~ U L (M, (r)) = o {log Tlgol[,d (Tpyjq) (T))} then

— log T, ! (T (1) _ )
r=oolog Ty (Tiyjg) (1)) + explr= L (M, (1) = Ay (9, k)
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and (b) if log T, [k] (Trypg (1)) = o {expP~U L (M, (r))} then

- log® Ty (Toy (1))
r—oolog TI;o[k] (Tpo[g] (r )) + explr—1 L (Mg (r))

= 0.

. expP—1 L(M,(r))+O0(1) explP~ ! L(M,(r)+0(1)
Proof. Using log (1 + 10gM§(T) < (1 +=F logMj(r) ) ’

we obtain from (1) for all sufficiently large positive numbers of r that
expP~U L (M, (r)) + O(1)
log M, (r)

log T, (Tyey (1)) < (o1 (1) + <) log M, (1) [1 ;

e., logm Th_1 (Troq (1)) < log (pp (f,h)+ 5) + 1og M, (r)
)

)
)

explP—1] L(M,(r

+0(1 )}

+ log [1 +
log M, (r

ice., log® Tt (Tyog (1)) < log (pE" (f.h) + )+ (pk (9) +¢) log [r exp! L(r)]

exp? ! L (M, (r)) + O(1 )]
log M, (1)

+ log {1%—

(19)
i.e., log® T (T, (1) < O(1) + (pi (9) +¢) [logr + explP~1! L(r)]
| log My (r) + exp N L (M, (r)) + O(1)
log M, (r) '

Again from the definition of relative ,L*-lower order and in view of
Lemma 4, we get for all sufficiently large positive numbers of r that

log Tyl (Trig) () = (AL (P[], Py [K]) — ) log [r expl” L (r)]

e., logTh} okl (Tpyjq (1)) > (/\L* (9,k) —¢)log [r exp? L (r)]
log Ty (Trolar (1))
=08 (0.0

Hence from (19) and (20), it follows for all sufficiently large positive
numbers of r that

L*
) pr (9) +e
log® 737 (e (1)) < O(1) + (%) log T (T () +
yo Y

(20) i.e., [logr+ expP~1 L (r)] <
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log M, (r) + exp? " L (M, (r)) + O(1)
log M, (r)

log? T, (Tyeq (1))
log T 4y (Trygg) (7)) + expl=1 L (M, (7))
< o)
" log Ty (Thyjgl (1)) + explr=1 L (M, (r))
< i (9) +¢ > _ log Ty (Trojg) (7))
A (g k) =) logTpyy (T ( )) + explr=1 L (M, (r))
log M, (r) + expP=1 L (M, () + O(1)

o Tty (Trug) (1)) + exple=1) L (M, ()] Tog M, (1)

1.€,

_I_

oq)
log™ T, * (Tyeg (r)) o _ eI L0L0)

log Tlgol[k] (Tpo[g] ( )) + eXp[p 17 (Mg (7“)) T logTp [k](TPO[Q]( ))

explP=1 L(Mg(r))

(21).e,
+1

L (9)+e log My (r)
i (A;Ek* (ng)—a) L+ explP—1] Lg(Mg(r))
explP— 11 L(M,g(r)) log Ty, ! (Tp [ ('r)) '
+ log Tlgol[k] (TPO[g](r)) |: + exp[P [Ii]] L( 0 9( ) log Mg (7’)

Since exp® U L (M, (1)) = 0{1log Tt (Tpyre (1)) ¢ asT — oo and e (> 0),
g Pylk] olg]

is arbitrary we obtain from (21) that

log® 71 (T L*
0 e 98T (T (1) < L 10
r=oolog Tty (Trfg) () + explP~U L (M, (1)) — A (g, k)

Again if log TI;o[k} (Tryg) (r)) = o {expP~" L (M, (r))} then from (21) we
get that

logm Ti:l (Tyog (1))

(23) lim ——— = 0.
r=oclog TPo[k] (T (1)) + explP=1 L (M, ()
Thus from (22) and (23) the theorem is established. O

In the line of Theorem 21 the following theorem may be proved and
therefore its proof is omitted:



40 Tanmay Biswas

THEOREM 22. Let k be an entire function either of finite order or of
nonzero lower order such that © (co; k) = > 9, (a;k) =1 or 6 (o0; k) =

a#oo
> d(a;k) = 1 and g be an entire function having regular growth and
a#oo
nonzero finite order with © (c0;9) = >, 0,(a;g) = 1 or 6 (o0;g) =
a#00
> 6 (a;g) = 1. Also let f be a meromorphic function, h be any entire
a#0o

function satisfying the Property (A), pL™ (f,h) < oo, pi” (g) < oo and
p5 (g, k) > 0 where p is any positive integer. Then

(a) if expP~ U L (M, (r)) = o {log TI;OI[k:} (Try ) (7’))} then
lim log™ T, ! (Tyeg () Pk (9)
r0010g T i (Tyfg) (7)) + explP= L (M, (r)) — py” (9, k)
and (b) if log Tlgol[k] (T (r)) = 0 {expP~1 L (M, (r))} then
lim log® T, * (Tyoy (1)) _
o 1 =1, (M, N
r—o0l0g T (Tryjg) (1)) + exp (Mg (r))

In the line of Theorem 21 and Theorem 22 and with the help of
Lemma 5, one can easily proof the following two theorems and therefore
their proofs are omitted:

<

THEOREM 23. Let k be a transcendental entire function of finite or-

der or of nonzero lower order such that Y. 01(a;k) = 4 and g be
a€eCU{oo}
an entire function having regular growth and nonzero finite order with

> d1(a;g) = 4. Also let f be a meromorphic function, h be any
acCU{oo}

entire function satisfying the Property (A), pé* (f,h) < o0, 0< plf* (9)
<00 and 0 < A" (g,k) < oo where p is any positive integer. Then

(a) if expP1 L (M, (r)) = o {log TJ\HH (T (r))} then

— log T, ! (T (1) _ ()
r=oolog Tyt (Targg) () + exple=1 L (M, () ~ A" (g, k)
and (b) if log T;ﬁk] (Twrg (1)) = o {expP~" L (M, (r))} then

lim log® T, (T (1)
r=log Tyl (Tug) (1)) +exp? =1 L (M, (r))

=0.
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THEOREM 24. Let k be a transcendental entire function of finite or-

der or of nonzero lower order such that Y. 01(a;k) = 4 and g be
a€CU{oo}
an entire function having regular growth and nonzero finite order with

> d1(a;g) = 4. Also let f be a meromorphic function, h be any
a€CU{oo}

entire function satisfying the Property (A), p5” (f,h) < o0, pL™ (g) < o0
and pﬁ* (g9, k) > 0 where p is any positive integer. Then

(a) if expP~ U L (M, (r)) = o {log Tﬂ_ﬁk] (T (r))} then

lim log® ;7Y (Tho, (1)) < Pk (g)
r—00l0g Tf\jl%k} (Targg) (r)) + expl=U L (M, (1)) = pk* (g, k)
and (b) if log T;ﬁk] (Tarig) (r)) = o {exp?"V L (M, (r))} then

I log® T, (Tyog (1))
im
r—o00l0g Tf\_ﬁk] (Twg (r)) + explr=1 L (M, ()

=0.

Now we state the following three theorems without their proofs as
those can be carried out in the line of Theorem 21 and Theorem 22:

THEOREM 25. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (co; f) = > 0,(a;f) =1 or
a#oo

d(c0;f) = > d(a; f) = 1 and h be an entire function having regular
growth andaiognzero finite order with © (co;h) = > d,(a;h) = 1 or
d(oo;h) = > d(a;h) = 1. Also let g be an entire fLchoZion, h satistying
the Propercgfoo(A), 0 < AL (f,h) < py (f.h) < oo and pL™ (g9) < o0
where p is any positive integer. Then

(a) if expPU L (M, (r)) = o {log TI;Ol[h} (Tpy (r))} then

— log?® T3, (Tyey (1)) A0
r=log Ty by (Tryy () + expb=T L (M, () = A} (f,h)

and (b) if log TP_ol[h] (T (1) = o {expP~Y L (M, (r))} then

fim log® Ty, (Toy (1)) _o.
r—oolog TI;()I[h] (Tryiy) (1)) + explr=1 L (M, (1))
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THEOREM 26. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (co; f) = > 0,(a;f) =1 or

aFoo
d(00;f) = >.d(a; f) = 1 and h be an entire function having regular
a#oo
growth and nonzero finite order with © (oo;h) = > 6,(a;h) = 1 or
a#oo
d(oo;h) = > d(a;h) =1. Also let g be an entire function, h satisfying
a#0o

the Property (A), 0 < pﬁ* (f,h) < oo and p;;* (9) < oo where p is any
positive integer. Then

(a) if expP1 L (M, (r)) = o {log ngol[h} (T, (r))} then

- logl® T, (T (1) A0
log Tl (Tagg (1)) + exolr UL (M, () = of (1:1)

and (b) if log TI;ol[h} (Tryiy) (1) = o {expP"Y L (M, (r))} then

i log™ T, (Tyoq (1))
im — -
r—oolog TPgl[h] (Tpo[f] (7’)) + eXp[P—l] L (Mg (T))

THEOREM 27. Let f be a meromorphic function either of finite order
or of nonzero lower order such that © (co; f) = > 0,(a;f) =1 or
aFoo

d(co;f) = >.0(a;f) =1 and h be an entire function having regular

a#oo
growth and nonzero finite order with © (oo;h) = > 6,(a;h) = 1 or
a#oo
d(oo;h) = > d(a;h) =1. Also let g be an entire function, h satisfying

a#00
the Property (A), 0 < )\5* (f,h) < ,05* (f,h) < oo and )\5* (9) < o0
where p is any positive integer. Then

(a) if exp?~ L (M, (r)) = o {1og Tphy (T (r))} then

-~ log™ T * (Tyoy (1)) N
rvo0l0g Ty (Thyiy) (1) + expP= L (Mg (r)) = AJ"(f,h)

and (b) if log TIZOI[M (Tryiy) (1) = o {expP"V L (M, (r))} then

lim logm Th_1 (Tfog (7))

=0.
roc10g Ty (Tros) (1)) + expl=1 L (M, (1))
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In the line of Theorem 25, Theorem 26 and Theorem 27 and with the
help of Lemma 5, one can easily proof the following three theorems and
therefore their proofs are omitted:

THEOREM 28. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and > di(a;f) = 4 and h
aeCU{oo}
be a transcendental entire function of regular growth having nonzero
finite type with > d1(a;h) = 4. Also let g be an entire function, h
ac€CU{o0}
satisfying the Property (A), 0 < A" (f,h) < pl” (f,h) < co and p” (g)
< oo where p is any positive integer. Then

(a) if expP~ U L (M, (r)) = o {log T;ﬁh] (T (r))} then

= log @ T (T, (1)) 79
r=oelog Ty b (Tariyy () + expl D L (M, (r)) =~ AL (f.h)

and (b) if log Tz\_ﬁh] (Twrgy (r)) = o {expP~1 L (M, (r))} then

lim log? T, (T, (1)

r—oolog T]\Hh] (Twyy) (1)) + expl=1 L (M, (1))

=0.

THEOREM 29. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and > 6i(a; f) = 4 and h
ac€CU{oo}
be a transcendental entire function of regular growth having nonzero
finite type with > d1(a;h) = 4. Also let g be an entire function, h
ac€CU{oco}
satisfying the Property (A), 0 < pL" (f,h) < oo and p. (g) < oo where
p is any positive integer. Then

(a) if exp?~ L (M, (r)) = o {1og Tyt (Torts (7’))} then

- log” T}, * (Tyoq (1)) R0
r=vo010g Tyt (Taagpy (7)) + expl~ L (M, (r)) = pE" (f. 1)

and (b) if log T&ﬁh] (Tarp) (1) = o {expP~" L (M, (r))} then

lim logm Th_1 (Tfog (7))

= 0.
rocl0g Ty (Thaiyy (1)) + explP=U L (M, (r))
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THEOREM 30. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y 6i(a;f) = 4 and h
a€CU{oo}
be a transcendental entire function of regular growth having nonzero
finite type with . d1(a;h) = 4. Also let g be an entire function, h
acCU{oco}
satisfying the Property (A), 0 < AJ" (f,h) < pL” (f,h) < oo and X" (g)
< oo where p is any positive integer. Then

(a) if exp?~ L (M, (r)) = o {1og Tyt (Torts (7’))} then

- 08 T (Tyoy (1) YRt
r—00l0g TM[h] (T (1)) + explP=U L (M, (r)) = AL (f, h)

and (b) if log TM[h] (Twrggy (r)) = o {expP~1 L (M, (r))} then

=0.

) log® T, (Tyey (1))
111
roc10g Ty (Thaiyy (1)) + exp=t L (M, (r))

THEOREM 31. Let f be an entire function either of finite order or of
nonzero lower order such that © (co; f) = > 0, (a; f) =1ord(oco; f) =
a#00

Y 6 (a; f) = 1 and h be an entire function having regular growth and
Zf)orjzero finite order with © (oco;h) = > d0,(a;h) = 1 or 6 (oo;h) =
> d(a;h) = 1. Also let g be an entire fuc;;z}on, h satisfying the Property
?ZO;, 0 < XY (f,h) < pb (f,h) < oo and pL™ (g) > 0 where p is any
positive integer. Then

- logh T3, " (Tyog (1)) . ) '
rvoolog Tp i (Trors) (1) + L (5My (5)) — 5" (£, 1)

Proof. From (14) , we have for all sufficiently large positive numbers
of r that

log Ty, (Tyoq (1) = O <><M* <)

[(:

—_
A/~
B~ =3
N—

A
ooli—‘
u>|~s

\_/

N~ —

+
o)
>
ko)
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~

/—\
0| —
=
~~
=~ 3
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N———

N~
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1.€., log Th_l (Tfog (T» > (/\Ze* (f’ h) - 8) 1Og Mg <C> .

4
log M, (%) + log (1 + 1]\(;(1()T)) +explU L (1M, (%))
8 9g\4
log M, (i)

L* B
11 20, (G (2 ) ()

AORE i
—log (exp ((W) - L (%Mg <Z>)>>

PR N N

log Mg(g)-i-exp[p*l] L(éMg(g))-i-o(l)

TF o
exp((ng (;?zt):s>.L(éMQ(g)))-logMg(g)

L* _ r

Now from above it follows for a sequence of positive numbers of r tending
to infinity that

(24)  og® T, (Tyog (1) = (" (9) —€) log E exp? L (%)]

) e (e ).

py (g
i <p5* 7

+ log
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Further in view of Lemma 4, we get for all sufficiently large positive
numbers of r that

log Ty (Trots) (1)) < (05" (Po[f], Po[R)) + ) log [rexp? L (r)]
e., log T;,()l[h] (Tpyip) (r)) < (,0:5* (f,h)+¢)log [r expl? L ()]
(25) 1.€. IOgT_l[ K] (Tpo[f] ( ))

< ( “(f.h)+e)log [4 exp? L (4)] + log 4.

Hence from (24) and (25) it follows for a sequence of positive numbers
of r tending to infinity that

(J(”—)> (k’g Ty Trots) (r) — log 4)

e., log? T (Trog (1)) > ( ;z
(9) "
A ) (o ()

(o

€., 10g® T (Tgey (1)
Py (g9) —€ 1 1 )
(W) [log Ty (Tpyp) (r)) + L (gMg (ﬁ)]
Py (9) —¢
) (W) log 4

log[Q]T (Tpoq (1)
log TPo[h] (TPo [£] )

. )
i.e.,
L (5M ( )
. — | log 4
py (9)—¢ ( ) o
oy (fh)+¢e)  logTy }(Tpo[f]( )+ L (M, (5))
Since € (> 0) is arbitrary, it follows from above that

m log? 37" (Tyog () > Py (9) .
T%oologTPo[h] (TPO[f} (7")) + L (%Mg (i)) o p}[; (f, h)

This proves the theorem. O
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In the line of Theorem 31, the following two theorems may be proved
and therefore their proofs are omitted:

THEOREM 32. Let f be an entire function either of finite order or of
nonzero lower order such that © (oco; f) = > 6, (a; f) =1 ord (oo; f) =
a#oo

Y>> d(a; f) =1 and h be an entire function having regular growth and
anﬁorjzero finite order with © (co;h) = > d,(a;h) = 1 or 6 (co;h) =
> 6 (a;h) = 1. Also let g be an entire fu(gécotj'on, h satisfying the Property
?ZO;, 0 < X (f,h) <ocoand " (g) >0 where p is any positive integer.
Then

Tm 1Og[2] Th_l (T'yoq (1)) > /\g (9) ‘
rooolog Tp by (Thy (7)) + L (3M, (5)) = AL (f.h)

THEOREM 33. Let f be an entire function either of finite order or of
nonzero lower order such that © (co; f) = > 0, (a; f) =1 ord(oco; f) =
aFoo

Y>> (a; f) =1 and h be an entire function having regular growth and
a#oo

nonzero finite order with © (co;h) = Y d,(a;h) = 1 or §(co3h) =

a#oo

> d(a;h) = 1. Also let g be an entire function, h satisfying the Property
a#00

(A), 0 <AL (f,h) < pl” (f,h) <and X" (g) > 0 where p is any positive
integer. Then

- log T (T, (1) 2 M)
r—oclog Ty (T (1) + L (5M, (5)) — 5" (£ 1)

In the line of Theorem 31, Theorem 39 and Theorem 33 and with the
help of Lemma 5, one can easily proof the following three theorems and
therefore their proofs are omitted:

THEOREM 34. Let f be a transcendental meromorphic function of
finite order or of nonzero lower order and Y 6i(a; f) = 4 and h
a€CU{oo}
be a transcendental entire function of regular growth having nonzero
finite type with . d1(a;h) = 4. Also let g be an entire function, h
ac€CU{oco}
satisfying the Property (A), 0 < X" (f,h) < pl” (f, h) < oo and pl (g)
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> 0 where p is any positive integer. Then

m log" Ty, ' (Trog (1)) > p,?* (9) '
r=oolog Ty (Tariy) (1) + L (5My (5)) — o3 (1)

THEOREM 35. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y 6i(a;f) = 4 and h
acCU{oo}
be a transcendental entire function of regular growth having nonzero

finite type with > d1(a;h) = 4. Also let g be an entire function, h
a€CU{oo}

satisfying the Property (A), 0 < AL" (f,h) < co and A" (g) > 0 where
p is any positive integer. Then

m log" Ty, ' (Tyoq (1)) > )‘:5* (9) .
rovoclog Ty (T (1) + L (§M, (5)) — MY (f: 1)

THEOREM 36. Let f be a transcendental meromorphic function of

finite order or of nonzero lower order and Y di(a;f) = 4 and h
ac€CU{oo}
be a transcendental entire function of regular growth having nonzero

finite type with Y. d1(a;h) = 4. Also let g be an entire function,
a€CU{o0}

h satisfying the Property (A), 0 < AL™(f,h) < p5" (f,h) < and X" (g)
> (0 where p is any positive integer. Then

o log™ T, (Tyog (1)) A (9)
roclog Ty (Taaiy (1)) + L (5My (5)) — o (f. 1)

Now we state the following two theorems without their proofs as those
can be carried out in the line of Theorem 31 and Theorem 33:

THEOREM 37. Let k be an entire function either of finite order or of
nonzero lower order such that © (co; k) = > d,(a;k) =1 or 6 (003 k) =
aFoo

> d(a;k) =1 and g be an entire function having regular growth and

a#oo

nonzero finite order with © (c0;9) = > 0,(a;g9) = 1 or 6 (o0;9) =
a#oo

> 6(a;g) = 1. Also let f, h be any two entire functions, X5™ (f, h) > 0,

a#00

0 < pt (9) <ooand0 < p) (g9,k) < oo where p is any positive integer.
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If h satisfies the Property (A). Then
Tm log? T, (T, (1)) > py (9) ‘
r=log Ty (T (1) + L (5My (5)) ~ oy (9:4)

THEOREM 38. Let k be an entire function either of finite order or of
nonzero lower order such that © (co; k) = > d,(a;k) =1 or 6 (c0; k) =

aF#o00
Y 6 (a;k) =1 and g be an entire function having regular growth and
a#£oo
nonzero finite order with © (co;g9) = > 6,(a;g) = 1 or §(oc0;g) =

aFoo
§(a;g) = 1. Also let f, h be any two entire functions, \2" (f,h) > 0,
P

a#oo
0 <A (9) <ooand0 < AL (g,k) < oo where p is any positive integer.
If h satisfies the Property (A). Then
= log™ T, (o (1) N 9)
rooclog T (T (1) + L (5My (5)) — AF (9, k)
THEOREM 39. Let k be an entire function either of finite order or of
nonzero lower order such that © (co;k) = > d,(a;k) =1 or 6 (o0; k) =
a#o00

Y 6 (a;k) =1 and g be an entire function having regular growth and
a#£oo
nonzero finite order with © (co;g9) = > 6,(a;g) = 1 or §(oc0;g) =

aFoo
§(a;g) = 1. Also let f, h be any two entire functions, \2" (f,h) > 0,
P

a#oo
0 <AL (9) <ooand0 < pi” (g, k) < oo where p is any positive integer.
If h satisfies the Property (A). Then

. log® Ty (Toy (1)) A (9)
lim =) 1 Y = I :
r%oolog TPO[k] (TPO[g] (T)) + L (gMg (Z)) Pp (g, k’)
In the line of Theorem 37, Theorem 38 and Theorem 39 and with the

help of Lemma 5, one can easily proof the following three theorems and
therefore their proofs are omitted:

THEOREM 40. Let k be a transcendental entire function of finite order
or of nonzero lower order and Y. 01(a;k) = 4 and g be a transcen-
acCU{oo}
dental entire function having regular growth and nonzero finite order
with >  6i1(a;g) = 4. Also let f, h be any two entire functions,
ac€CU{oo}
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AS(f,h) > 0,0 < pl" (9) <ooand0 < pl (g9,k) < oo where p is any
positive integer. If h satisfies the Property (A). Then

Im log"” Ty, ' (Tyoq (1)) > ng* (9) '
rvoolog T (Thagg (1) + L (§M, (5)) — pi" (9.F)

THEOREM 41. Let k be a transcendental entire function of finite order

or of nonzero lower order and Y. 01(a;k) =4 and g be a transcen-
ac€CU{oo}
dental entire function having regular growth and nonzero finite order

with > d1(a;g) = 4. Also let f, h be any two entire functions,
aceCU{oo}

)\5* (f,h) >0,0< )\5* (9) <ocand0 < )\5* (g9,k) < oo where p is any
positive integer. If h satisfies the Property (A). Then

m log"” Ty, (Thog (1)) AE (9) '
rovoclog Ty (Targg) (1)) + L (M () — MY (9:k)

THEOREM 42. Let k be a transcendental entire function of finite order

or of nonzero lower order and Y. 01(a;k) =4 and g be a transcen-
acCU{oo}
dental entire function having regular growth and nonzero finite order
with >  6i1(a;g) = 4. Also let f, h be any two entire functions,
aceCU{oo}
L* L* * .

Ay (fyh) >0,0< M) (9) <ooand0 < py (g,k) < oo where p is any
positive integer. If h satisfies the Property (A). Then

. log® T, (Tyeg (1) A (9)
lim — ; ~ = I )
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