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SOME WEIGHTED APPROXIMATION PROPERTIES OF

NONLINEAR DOUBLE INTEGRAL OPERATORS

Gümrah Uysal, Vishnu Narayan Mishra∗, and
Sevilay Kirci Serenbay

Abstract. In this paper, we present some recent results on weighted
pointwise convergence and the rate of pointwise convergence for the
family of nonlinear double singular integral operators in the follow-
ing form:

Tη (f ;x, y) =

∫∫
R2

Kη (t− x, s− y, f (t, s)) dsdt, (x, y) ∈ R2, η ∈ Λ,

where the function f : R2 → R is Lebesgue measurable on R2 and
Λ is a non-empty set of indices. Further, we provide an example to
support these theoretical results.

1. Introduction

Approximation by integral operators or the functions having good
properties has broad applications in miscellaneous areas of mathemat-
ics including Fourier theory, convergence of orthogonal series, theory of
differential equations and harmonic analysis theory. Therefore, integral
operators have various applications in many academic disciplines such
as physics, engineering and medicine. The following integral operator is
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a well-known one:

(1.1) Ln (f ; y) =

π∫
−π

f (s)Kn (s, y) ds, y ∈ [−π, π] , n ∈ N,

where Kn : R× R → R+
0 denotes a 2π−periodic kernel as a function of

s satisfying some conditions similar to well-known approximate identi-
ties. In fact, magnetic resonance imaging, face recognition and computer
aided geometric design are some of the application areas in which the
integral operators are used. There are famous integral operators which
are named after their constructers, such as Gauss-Weierstrass, Riesz-
Bessel, Jackson-Stechkin, Fejer, Picard and Calderon-Zygmund singular
integral operators.

In [17], Taberski, who mentioned the importance of singular integrals
in Fourier analysis in his works, handled the pointwise approximation of
2π−periodic functions which are integrable on 〈−π, π〉 , where 〈−π, π〉 is
an arbitrary closed, semi-closed or open interval. The mentioned study
used a two-parameter family of convolution-type singular integral oper-
ators in the following form:

(1.2) Lλ (f ; y) =

π∫
−π

f (s)Kλ (s− y) ds, y ∈ 〈−π, π〉 , λ ∈ Λ,

where Kλ : R → R+
0 denotes a 2π−periodic kernel function satisfying

suitable conditions and Λ is a non-empty set of numbers with accumu-
lation point λ0.

Taberski [18] advanced his previous analysis by using the double sin-
gular integral operators of the form:

(1.3) Lλ (f ;x, y) =

∫∫
Q

f (t, s)Kλ (t− x, s− y) dsdt, (x, y) ∈ Q,

where Q = 〈−π, π〉 × 〈−π, π〉 is an arbitrary closed, semi-closed or
open rectangular region, Kλ : R2 → R+

0 stands for a kernel function
comprising appropriate features and λ ∈ Λ, Λ is a non-empty set of
numbers with accumulation point λ0. Those results were later used by
Siudut [14] presenting considerable theorems. It should be noted that,
Rydzewska [13] also improved her previous analysis [12] by using the
results of [18] and obtained the rate of convergence of the operators of
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type (1.3) at µ−generalized d−point of integrable functions which are
2π−periodic with respect to each variables, separately.

Later on, Musielak [10] used the Lipschitz condition for Kλ : G ×
R → R for the first time to prove some theorems for nonlinear integral
operators of the form:

(1.4) Tλ(f ; s) =

∫
G

Kλ(t− s, f(t))dt, s ∈ G, λ ∈ Λ,

where G is a locally compact Abelian group equipped with Haar measure
and Λ is a non-empty index set with a topology. Therefore, well-known
solution technics are used in nonlinear problems by the aid of indicated
Lipschitz condition. Afterwards, Swiderski and Wachnicki [16] investi-
gated the pointwise convergence of two-parameter setting of integrals of
type (1.4) to the functions which are integrable on some locally compact
Abelian groups with Haar measure.

Nowadays, the usage of nonlinear integral operators in sampling the-
ory is very common. On the other hand, signal and image processing are
two main research fields around sampling theory. We recommend the
reader to see the book by Bardaro et al. [3] for further studies regard-
ing the convergence of nonlinear integral operators and sampling type
operators considered in some function spaces. As concerns the study of
integral operators in various settings, the reader may see also [1–6, 8–10,
12–21].

One may also consider the pointwise approximation by singular inte-
gral operators in weighted Lebesgue spaces like in usual Lebesgue spaces.
Therefore, we shall mention the papers [1], [9] and [19] which are impor-
tant works on weighted approximation by singular integral operators.
Those contain detailed information regarding the characterization of the
weight functions with examples.

As a continuation of [20,21], the aim of this paper is to investigate the
pointwise convergence and the rate of pointwise convergence of nonlinear
double singular integral operators in the following form:
(1.5)

Tη (f ;x, y) =

∫∫
R2

Kη (t− x, s− y, f (t, s)) dsdt, (x, y) ∈ R2, η ∈ Λ,
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where Λ is a non-empty set of indices with a topology and Kη : R2 ×
R → R is a kernel function. Also, f ∈ Lp,ϕ(R2), where the sym-
bol Lp,ϕ(R2) denotes the space of all measurable functions f for which∣∣∣ f(t,s)
ϕ(t,s)

∣∣∣p (1 ≤ p <∞) is integrable and ϕ : R2 → R+ is a locally bounded

weight (positive and measurable) function. The norm formula for the
space Lp,ϕ(R2) (see, e.g., [9, 15]) is given by

‖f‖Lp,ϕ(R2) =

∫∫
R2

∣∣∣∣f (t, s)

ϕ (t, s)

∣∣∣∣p dsdt
 1

p

, 1 ≤ p <∞.

The paper is organized as follows: In Section 2, we give some preliminary
concepts. In Section 3, the existence of the operators of type (1.5) is
explored. In Section 4, main result is presented. In Section 5, the rate
of pointwise convergence of the operators of type (1.5) is established. In
Section 6, we summarize the results of this paper.

2. Preliminaries

Now, we give main definitions used in the manuscript.

Definition 2.1. Let δ1 be a fixed positive real number such that 0 <
h, k < δ1. A p−µ−generalized Lebesgue point of a locally p−integrable
function g : R2 → R is a point (x0, y0) ∈ R2 satisfying
(2.1)

lim
(h,k)→(0,0)

 1

µ(h, k)

h∫
0

k∫
0

|g(x0 ± t, y0 ± s)− g (x0, y0)|p dsdt


1
p

= 0, 1 ≤ p <∞,

where µ : R2 → R is absolutely continuous in two-dimensional sense
on [0, δ1] × [0, δ1] (see [13]), increasing with respect to each variables
separately on [0, δ1] and µ(t, s) = 0 whenever ts = 0.

Remark 2.2. The given definition is an updated version of the µ−
generalized d− point definition given in [13] depending on the require-
ments of the new problem (see also [6]).

Definition 2.3. (Class Aϕ) Let Λ ⊂ R+
0 be a non-empty set of

indices. We allow the symbol η0 to be either accumulation point of Λ or
∞. Let ϕ > 0 be a locally bounded weight function defined on R2, that
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is to say ϕ is bounded on arbitrary bounded subsets of R2, such that the
following inequality:

(2.2) ϕ(t+ x, s+ y) ≤ ϕ(t, s)ϕ(x, y)

holds for every (t, s) ∈ R2 and (x, y) ∈ R2.

A family (Kη)η∈Λ consisting of the functions Kη : R2 × R → R is
called Class Aϕ, if the following conditions hold:

(a) Kη (t, s, 0) = 0 for every (t, s) ∈ R2 and for each η ∈ Λ, and
Kη (., ., u) ∈ L1 (R2) for all values of u ∈ R and for any η ∈ Λ.

(b) There exists a family (Lη)η∈Λ consisting of the (globally) integrable

functions Lη ≥ 0 defined on R2 such that the Lipschitz inequality:

|Kη (t, s, u)−Kη (t, s, v)| ≤ Lη (t, s) |u− v|

holds for every (t, s) ∈ R2, u, v ∈ R, and for any η ∈ Λ.

(c) lim
(x,y,η)→(x0,y0,η0)

∣∣∣∫∫R2 Kη

(
t− x, s− y, u

ϕ(x0,y0)
ϕ(t, s)

)
dsdt− u

∣∣∣ = 0

for every u ∈ R and for any (x0, y0) ∈ R2.
(d) limη→η0

[
supξ≤

√
t2+s2 [ϕ(t, s)Lη (t, s)]

]
= 0 for every ξ > 0.

(e) limη→η0

[∫∫
ξ≤
√
t2+s2

ϕ(t, s)Lη (t, s) dsdt
]

= 0 for every ξ > 0.

(f) ‖ϕLη‖L1(R2) ≤M <∞ for every η ∈ Λ (value of M is independent

of η).
(g) For a given positive real number δ0 satisfying δ0 ≥ δ1 > 0, Lη is

monotonically increasing on (−δ0, 0] and monotonically decreas-
ing on [0, δ0) with respect to t and similarly, Lη is monotoni-
cally increasing on (−δ0, 0] and monotonically decreasing on [0, δ0)
with respect to s, for any η ∈ Λ. Analogously, Lη is bimono-
tonically increasing with respect to (t, s) on [0, δ0) × [0, δ0) and
(−δ0, 0] × (−δ0, 0] and similarly, Lη is bimonotonically decreasing
with respect to (t, s) on [0, δ0) × (−δ0, 0] and (−δ0, 0] × [0, δ0) for
any η ∈ Λ.

Throughout this paper the kernel function Kη belongs to Class Aϕ.

Remark 2.4. For the motivation of above definition which is used
except condition (g) in also [20], we refer the reader to see [4, 9, 19].
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Remark 2.5. If the function g : R2 → R is bimonotonic on [α1, α2]×
[β1, β2] ⊂ R2 then the equality given as

V (g; [α1, α2]× [β1, β2]) =

α2∨
α1

β2∨
β1

(g(t, s))

= |g(α1, β1)− g(α1, β2)− g(α2, β1) + g(α2, β2)|

holds [7,18]. Here, V, which is given as V (g; [α1, α2]×[β1, β2]) =
α2∨
α1

β2∨
β1

(g(t, s)) ,

denotes bivariation of g on [α1, α2]× [β1, β2].

3. Existence of the Operators

This section starts with the following theorem which gives the exis-
tence of the operators of type (1.5).

Main result in this work is based on the following theorem.

Theorem 3.1. If f ∈ Lp,ϕ(R2), then Tη(f) ∈ Lp,ϕ(R2) and

‖Tηf‖Lp,ϕ(R2) ≤ ‖ϕLη‖L1(R2) ‖f‖Lp,ϕ(R2) ,

holds for every η ∈ Λ.

Proof. Let p = 1. Using the norm formula for the space L1,ϕ (R2) (see,
e.g., [19]), we have

‖Tη (f ;x, y)‖L1,ϕ(R2) =

∫∫
R2

1

ϕ (x, y)

∣∣∣∣∣∣
∫∫
R2

Kη (t− x, s− y, f(t, s)) dsdt

∣∣∣∣∣∣ dydx.
Using conditions (a) and (b), we have

‖Tη(f ;x, y)‖L1,ϕ(R2) ≤
∫∫
R2

1

ϕ(x, y)

∫∫
R2

|f(t+ x, s+ y)|Lη (t, s) dsdt

 dydx.
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Now, applying inequality (2.2) and Fubini’s theorem (see, e.g., [5]) to
the last inequality, we obtain

‖Tη(f ;x, y)‖L1,ϕ(R2)

≤
∫∫
R2

1

ϕ(x, y)

∫∫
R2

|f(t+ x, s+ y)|Lη (t, s) dsdt

 dydx

=

∫∫
R2

Lη (t, s)

∫∫
R2

∣∣∣∣f(t+ x, s+ y)

ϕ(t+ x, s+ y)

∣∣∣∣ ϕ(x+ t, s+ y)

ϕ(x, y)
dydx

 dsdt

≤
∫∫
R2

Lη (t, s)

∫∫
R2

∣∣∣∣f(t+ x, s+ y)

ϕ(t+ x, s+ y)

∣∣∣∣ ϕ(x, y)ϕ(t, s)

ϕ(x, y)
dydx

 dsdt

= ‖ϕLη‖L1(R2) ‖f‖L1,ϕ(R2) .

In view of condition (f) , the assertion follows. Thus, the proof is com-
pleted for this case.

Let 1 < p <∞. Using the norm formula for the space Lp,ϕ (R2) (see,
e.g., [15]), we have

‖Tη (f ;x, y)‖Lp,ϕ(R2)

=

∫∫
R2

1

[ϕ (x, y)]p

∣∣∣∣∣∣
∫∫
R2

Kη (t− x, s− y, f(t, s)) dsdt

∣∣∣∣∣∣
p

dydx


1
p

.

Using conditions (a) and (b), we have

‖Tη(f ;x, y)‖Lp,ϕ(R2)

≤

∫∫
R2

1

[ϕ (x, y)]p

∫∫
R2

|f(t+ x, s+ y)|Lη (t, s) dsdt

p

dydx


1
p

.

Now, applying inequality (2.2), and generalized Minkowski inequality
(see, e.g., [15]) to the last inequality, we obtain the desired result, that
is

‖Tη‖Lp,ϕ(R2) ≤ ‖ϕLη‖L1(R2) ‖f‖Lp,ϕ(R2) .
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Hence, the assertion follows from condition (f) . Thus the proof is com-
pleted.

4. Convergence at Characteristic Points

Theorem 4.1. If (x0, y0) ∈ R2 is a common p−µ−generalized Lebesgue
point of functions f ∈ Lp,ϕ (R2) (1 ≤ p <∞) and ϕ, then

lim
(x,y,η)→(x0,y0,η0)

|Tη (f ;x, y)− f (x0, y0)| = 0

on any set Z on which the function ∆(x, y, η, δ) defined by

∆(x, y, η, δ) : =

x0+δ∫
x0−δ

y0+δ∫
y0−δ

Lη (t− x, s− y) |dtdsµ(|t− x0| , |s− y0|)|

+2

x0+δ∫
x0−δ

Lη (t− x, 0) |dtµ(|t− x0| , |y − y0|)|

+2

y0+δ∫
y0−δ

Lη (0, s− y) |dsµ(|x− x0| , |s− y0|)|

+4Lη (0, 0)µ(|x− x0| , |y − y0|),

where 0 < δ < δ1, is bounded as (x, y, η) tends to (x0, y0, η0).

Here, |dtdsµ(|t− x0| , |s− y0|)|, |dtµ(|t− x0| , |y − y0|)| and

|dsµ(|x− x0| , |s− y0|)| denote Lebesgue-Stieltjes measures.

Proof. The proof of theorem will be given for the case 1 < p < ∞.
The proof for the case p = 1 is similar and it is skipped.



Some weighted approximation properties 491

Now, set I(x, y, η) := |Tη (f ;x, y)− f (x0, y0)| . Using condition (c),
we obtain

I(x, y, η) =

∣∣∣∣∣∣
∫∫
R2

Kη (t− x, s− y, f(t, s)) dsdt− f(x0, y0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫∫
R2

Kη (t− x, s− y, f(t, s)) dsdt

−
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt

+

∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣ .
Using condition (b) , it is easy to see that the following inequality

holds:

I(x, y, η) ≤
∫∫
R2

∣∣∣∣f (t, s)

ϕ(t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣ϕ(t, s)Lη (t− x, s− y) dsdt

+

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣ .
Since the inequality (m + n)p ≤ 2p(mp + np) holds provided that m

and n are positive numbers (see, e.g., [11]), we have

[I(x, y, η)]p ≤ 2p

∫∫
R2

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣ϕ (t, s)Lη (t− x, s− y) dsdt

p

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

.
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Now, applying Hölder’s inequality (see, e.g., [11]), to the first integral of
the resulting inequality, we have

[I(x, y, η)]p

≤ 2pρ(x, y, η)

∫∫
R2

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

,

where

ρ(x, y, η) =

∫∫
R2

ϕ (t, s)Lη (t− x, s− y) dsdt


p
q

.

Let (x0, y0) ∈ R2 be a common p−µ−generalized Lebesgue point of the
functions f ∈ Lp,ϕ (R2) and ϕ. In view of one of the limit relations (2.1),
for every ε > 0, there exists δ > 0, we have the following inequality:

(4.1)

x0+h∫
x0

y0∫
y0−k

∣∣∣∣f (t, s)

ϕ(t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p dsdt < εpµ(h, k)

for every h and k satisfying 0 < h, k ≤ δ < δ1. Let 0 < x0 − x < δ
2

and

0 < y0 − y < δ
2
. Moreover, the following inequality holds:

[I(x, y, η)]p

≤ 2pρ(x, y, η)

∫∫
R2\Bδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2pρ(x, y, η)

∫∫
Bδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

,

where Bδ :=
{

(t, s) ∈ R2 : (t− x0)2 + (s− y0)2 < δ2
}
.
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Now, applying the inequality given by (m + n)p ≤ 2p(mp + np) once
more to the first term of the above inequality, we obtain

[I(x, y, η)]p

≤ 22pρ(x, y, η)

∣∣∣∣f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ∫∫
R2\Bδ

ϕ (t, s)Lη (t− x, s− y) dsdt

+ 22pρ(x, y, η)

∫∫
R2\Bδ

∣∣∣∣f (t, s)

ϕ (t, s)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2pρ(x, y, η)

∫∫
Bδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

.

Now, we may define the following set as follows:

Nδ =

{
(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 <

δ2

4

}
.

Making comparison between the sets Bδ and Nδ gives the relation such
that R2\Bδ ⊆ R2\Aδ, where

Aδ =

{
(t, s) ∈ Bδ : (t− x)2 + (s− y)2 <

δ2

4
, (x, y) ∈ Nδ

}
.

In view of definition of Aδ and inequality (2.2), the following inequality
holds:

[I(x, y, η)]p

≤ 22pϕ (x, y) ρ(x, y, η)

∣∣∣∣f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ∫∫
R2\Aδ

ϕ (t− x, s− y)Lη (t− x, s− y) dsdt

+ 22pϕ (x, y) ρ(x, y, η) sup
(t,s)∈R2\Aδ

[ϕ (t− x, s− y)Lη (t− x, s− y)] ‖f‖p
Lp,ϕ(R2)



494 G. Uysal, V.N. Mishra, and S.K. Serenbay

+ 2pρ(x, y, η)

∫∫
Bδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

.

Rearranging and rewriting the last inequality, we obtain

[I(x, y, η)]p

≤ 22pϕ (x, y) ρ(x, y, η)

∣∣∣∣f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ∫∫
δ
2
≤
√
u2+v2

ϕ (u, v)Lη (u, v) dvdu

+ 22pϕ (x, y) ρ(x, y, η) sup
δ
2
≤
√
u2+v2

[ϕ (u, v)Lη (u, v)] ‖f‖pLp,ϕ(R2)

+ 2pρ(x, y, η)

∫∫
Bδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

= I1 (x, y, η) + I2 (x, y, η) + ρ(x, y, η)2pI3 (x, y, η) + I4 (x, y, η) .

In view of inequality (2.2) and change of variables, the following inequal-
ity holds:

ρ(x, y, η) =

∫∫
R2

ϕ (t, s)Lη (t− x, s− y) dsdt


p
q

≤ (ϕ (x, y))
p
q

∫∫
R2

ϕ (t− x, s− y)Lη (t− x, s− y) dsdt


p
q

= (ϕ (x, y))
p
q

∫∫
R2

ϕ (u, v)Lη (u, v) dvdu


p
q

.
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Thus, boundedness of the term ϕ (x, y) ρ(x, y, η) as (x, y, η) tends to
(x0, y0, η0) follows from condition (f) and boundedness of ϕ (x, y) around
(x0, y0) . On the other hand, I4 (x, y, η)→ 0 as (x, y, η)→ (x0, y0, η0) by
condition (c) . Lastly, I1 (x, y, η) → 0 and I2 (x, y, η) → 0 as (x, y, η) →
(x0, y0, η0) by conditions (e) and (d) , respectively. Also, for similar tech-
nic showing how the terms I1 (x, y, η) and I2 (x, y, η) tend to zero as
(x, y, η)→ (x0, y0, η0) , we refer the reader to [14].

Now, we may write the following inequality for the integral I3 (x, y, η) :

I3 (x, y, η) =

∫∫
Bδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ϕ (t, s)Lη (t− x, s− y) dsdt

≤ sup
(t,s)∈Qδ

ϕ (t, s)

∫∫
Qδ

∣∣∣∣f (t, s)

ϕ (t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p Lη (t− x, s− y) dsdt

= sup
(t,s)∈Qδ

ϕ (t, s) I31 (x, y, η) ,

where Qδ = (x0 − δ, x0 + δ)× (y0 − δ, y0 + δ).
It is easy to see that the following equality holds:

I31 =


x0+δ∫
x0

y0∫
y0−δ

+

x0∫
x0−δ

y0∫
y0−δ


∣∣∣∣f (t, s)

ϕ(t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p Lη (t− x, s− y) dsdt

+


x0∫
x0−δ

y0+δ∫
y0

+

x0+δ∫
x0

y0+δ∫
y0


∣∣∣∣f (t, s)

ϕ(t, s)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p Lη (t− x, s− y) dsdt

= I311 + I312 + I313 + I314.

Now, we consider I311.
We define the new function such that

F (t, s) :=

t∫
x0

y0∫
s

∣∣∣∣f (u, v)

ϕ(u, v)
− f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p dvdu
for all t and s satisfying 0 < t − x0 ≤ δ and 0 < y0 − s ≤ δ, in view of
(4.1) one may easily observe that

(4.2) |F (t, s)| ≤ εpµ(t− x0, y0 − s).
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The Lebesgue-Stieltjes integral form of the integral I311 is as follows:

|I311| =

∣∣∣∣∣∣
x0+δ∫
x0

y0∫
y0−δ

Lη (t− x, s− y) dtds [−F (t, s)]

∣∣∣∣∣∣ .
Therefore, applying bivariate integration by parts method (see, e.g.,

[18]) to the integral I311, we have

|I311| ≤
x0+δ∫
x0

y0∫
y0−δ

|F (t, s)| |dtds [Lη (t− x, s− y)]|

+

x0+δ∫
x0

|F (t, y0 − δ)| |dt [Lη (t− x, y0 − δ − y)]|

+

y0∫
y0−δ

|F (x0 + δ, s)| |ds [Lη (x0 + δ − x, s− y)]|

+ |F (x0 + δ, y0 − δ)|Lη (x0 + δ − x, y0 − δ − y) .

In view of inequality (4.2), we obtain

|I311| ≤ εp
x0+δ∫
x0

y0∫
y0−δ

µ (t− x0, y0 − s) |dtds [Lη (t− x, s− y)]|

+εp
x0+δ∫
x0

µ (t− x0, δ) |dt [Lη (t− x, y0 − δ − y)]|

+εp
y0∫
y0−δ

µ2 (δ, y0 − s) |ds [Lη (x0 + δ − x, s− y)]|

+εpµ(δ, δ)Lη (x0 + δ − x, y0 − δ − y) .

Let us give the bivariation and single variations as follows:

A1 (t, s) :=


x0+δ−x∨

t

s∨
y0−δ−y

Lη (u, v) ,
x0 − x ≤ t < x0 + δ − x,
y0 − δ − y < s ≤ y0 − y,

0, otherwise,
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A2 (t) :=


x0+δ−x∨

t

Lη (u, y0 − δ − y) , x0 − x ≤ t < x0 + δ − x,

0, otherwise,

A3 (s) :=


s∨

y0−δ−y
Lη (x0 + δ − x, v) , y0 − δ − y < s ≤ y0 − y,

0, otherwise.

Taking above variations and Remark 2.5 into account and applying
bivariate integration by parts to last inequality for I311, we have

|I311| ≤

∣∣∣∣∣∣−εp
x0−x+δ∫
x0−x

y0−y∫
y0−y−δ

[A1 (t, s) + A2 (t) + A3 (s) +

+ Lη (x0 + δ − x, y0 − δ − y)] dtdsµ (t− x0 + x, y0 − s− y)| .
For the similar situation, the reader may see also [13,18].
Clearly, using Remark 2.5 and condition (g), the following inequality

holds for I311 :

|I311| ≤ εp
x0+δ∫
x0

y0∫
y0−δ

Lη (t− x, s− y) |dtdsµ(|t− x0| , |s− y0|)|

+2εp
x0+δ∫
x0

Lη (t− x, 0) dtµ(|t− x0| , |y − y0|).

Evaluating the integrals I312, I313, I314 with the same method and com-
bining the respective inequalities, we obtain

I31 ≤ εp∆(x, y, η, δ).

The remaining part of the proof is obvious by the hyphothesis. Hence,
I31 tends to 0 as (x, y, η) tends to (x0, y0, η0) . Note that, if we reverse
each of the assumptions what we supposed at the beginning of the proof,
such as 0 < x − x0 <

δ
2

and 0 < y0 − y < δ
2
, then we obtain the same

inequality. Thus, the proof is completed.

5. Rate of Pointwise Convergence

Theorem 5.1. Suppose that the hypotheses of Theorem 4.1 are sat-
isfied and the following conditions hold there:
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(i) ∆ (x, y, η, δ) tends to 0 as (x, y, η) tends to (x0, y0, η0) for some
δ ∈ (0, δ1) .

(ii) For every ξ > 0, we have sup
ξ≤
√
t2+s2

[ϕ(t, s)Lη (t, s)] = o (∆ (x, y, η, δ))

as (x, y, η) tends to (x0, y0, η0) .

(iii) For every u ∈ R, we have
∣∣∣∫∫R2 Kη

(
t− x, s− y, u

ϕ(x0,y0)
ϕ(t, s)

)
dsdt− u

∣∣∣p
= o (∆ (x, y, η, δ)) as (x, y, η) tends to (x0, y0, η0) .

(iv) For every ξ > 0, we have
∫∫

ξ≤
√
t2+s2

ϕ(t, s)Lη (t, s) dsdt = o (∆ (x, y, η, δ))

as (x, y, η) tends to (x0, y0, η0) .

Then, at each common p−µ−generalized Lebesgue point of the func-
tions f ∈ Lp,ϕ (R2) (1 ≤ p <∞) and ϕ, we have

|Tη (f ;x, y)− f (x0, y0)|p = o (∆ (x, y, η, δ))

as (x, y, η) tends to (x0, y0, η0).

Proof. By the hypotheses of Theorem 4.1, we may write

|Tη (f ;x, y)− f (x0, y0)|p

≤ 22pϕ (x, y) ρ(x, y, η)

∣∣∣∣f (x0, y0)

ϕ (x0, y0)

∣∣∣∣p ∫∫
δ
2
≤
√
u2+v2

ϕ (u, v)Lη (u, v) dvdu

+ 22pϕ (x, y) ρ(x, y, η) sup
δ
2
≤
√
u2+v2

[ϕ (u, v)Lη (u, v)] ‖f‖pLp,ϕ(R2)

+ 2pεpρ(x, y, η) sup
(t,s)∈Qδ

ϕ (t, s) ∆ (x, y, η, δ)

+ 2p

∣∣∣∣∣∣
∫∫
R2

Kη

(
t− x, s− y, f(x0, y0)

ϕ(x0, y0)
ϕ(t, s)

)
dsdt− f(x0, y0)

∣∣∣∣∣∣
p

.

Here, Qδ denotes the set defined in the proof of Theorem 4.1. From
(i)-(iv), and using Class Aϕ conditions, the assertion follows. Thus, the
proof is completed.

Example 5.2. Define the kernel function such that

Kη(t, s, u) =


ηu
2

+ sin ηu
2
, if (t, s) ∈

[
−1√
2η
, 1√

2η

]
×
[
−1√
2η
, 1√

2η

]
,

0, if (t, s) ∈ R2\
[
−1√
2η
, 1√

2η

]
×
[
−1√
2η
, 1√

2η

]
,

where η ∈ N and η0 =∞. Let u, v ∈ R. This kernel is the two dimensinal
analogue of the kernel given in [16].
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Observe that |Kη(t, s, u)−Kη(t, s, v)| ≤ η |u− v| for (t, s) ∈
[
−1√
2η
, 1√

2η

]
×[

−1√
2η
, 1√

2η

]
and |Kη(t, s, u)−Kη(t, s, v)| = 0 otherwise. Hence, we have

Lη(t, s) =

 η, if (t, s) ∈
[
−1√
2η
, 1√

2η

]
×
[
−1√
2η
, 1√

2η

]
,

0, if (t, s) ∈ R2\
[
−1√
2η
, 1√

2η

]
×
[
−1√
2η
, 1√

2η

]
.

It is easy to see that the conditions of class Aϕ are satisfied.
Now, let ϕ : R2 → R+ be given by ϕ(t, s) = (1 + |t|)(1 + |s|). Let us

find the rate of convergence according to hypotheses of Theorem 5.1.
For the simplicity take (x0, y0) = (1, 1), µ(t, s) = ts and p = 1. Denote

∆1(x, y, η, δ) =

x0+δ∫
x0−δ

y0+δ∫
y0−δ

Lη (t− x, s− y) |dtdsµ(|t− x0| , |s− y0|)|

=

1+δ∫
1−δ

1+δ∫
1−δ

ηdsdt.

Let lim
η→∞

4ηδ2 = 0. Consequently, if we choose δ > 0 such that δ =

o
(

1
η

)
, then lim

η→∞
∆1(x, y, η, δ) = 0. The evaluations of the remaining

terms of ∆(x, y, η, δ) yield the same conclusion. Thus, we have

|Tη (f ;x, y)− f (x0, y0)| = o(
1

η
).

6. Conclusion

In this paper, the pointwise convergence of the convolution type non-
linear double integral operators depending on three parameters is inves-
tigated. The main result is presented as Theorem 4.1. By using main
result, the rate of pointwise convergence of the indicated operators is
investigated.

Acknowledgement: The authors thank the referees for their careful
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singulières doubles, Fasc. Math. 8 (1974), 35–45.
[14] S. Siudut, On the convergence of double singular integrals, Comment. Math. 28

(1) (1988), 143–146.
[15] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,

Princeton Univ. Press, New Jersey, 1970.
[16] T. Swiderski and E. Wachnicki, Nonlinear singular integrals depending on two

parameters, Comment. Math. 40 (2000), 181–189.
[17] R. Taberski, Singular integrals depending on two parameters, Prace Mat. 7

(1962), 173–179.
[18] R. Taberski, On double integrals and Fourier series, Ann. Polon. Math. 15

(1964), 97–115.
[19] R. Taberski, On double singular integrals, Prace Mat. 19 (1976), 155–160.



Some weighted approximation properties 501

[20] G. Uysal, A new approach to nonlinear singular integral operators depending on
three parameters. Open Math. 14 (2016), 897–907.

[21] G. Uysal, M. M. Yilmaz and E. Ibikli, On pointwise convergence of bivariate
nonlinear singular integral operators, Kuwait J. Sci. 44 (2) (2017), 46–57.
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