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ABSOLUTE CONTINUITY OF THE MAGNETIC

SCHRÖDINGER OPERATOR WITH PERIODIC

POTENTIAL

Rachid Assel

Abstract. We consider the magnetic Schrödinger operator coupled
with two different potentials. One of them is a harmonic oscillator
and the other is a periodic potential. We give some periodic poten-
tial classes for which the operator has purely absolutely continuous
spectrum. We also prove that for strong magnetic field or large cou-
pling constant, there are open gaps in the spectrum and we give a
lower bound on their number.

1. Introduction

The Hamiltonian of an electron confined to the two dimensional space
R2 under the action of a magnetic field coupled to a harmonic oscillator
is given by the following Schrödinger operator P0 acting on L2(R2) by
(1)
P0ϕ =

(
(Dx − A1(x, y))2 + (Dy − A2(x, y))2

)
ϕ+ λx2ϕ, ∀ϕ ∈ L2(R2).

The constant λ is positive and (Dx, Dy) =

(
−i ∂
∂x
,−i ∂

∂y

)
. The mag-

netic field is a associated to the magnetic potential
→
A= (A1, A2). We as-

sume that the magnetic field has a constant intensity B > 0 and we make
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a Landau gauge such that A2(x, y) = −Bx et A1(x, y) = 0,∀(x, y) ∈ R2.
In this work, we are interested in the nature of the spectrum of some
periodic perturbations of P0. For ε > 0, we let Pε = P0 + εV where V is
a periodic function on R2. More precisely, let a = (a1, a2) ∈ R2 and Γ =
(Za1,Za2) = {(k1a1, k2a2), (k1, k2) ∈ Z2} the periodicity lattice of V. The
spectrum of the unperturbed operator P0 is σ(P0) = [

√
B2 + λ,+∞[. It

is purely absolutely continuous for all B > 0. Our aim is to study the
stability of the absolute continuity of the spectrum when we add the pe-
riodic potential. The existence of an absolutely continuous component
in the spectrum of a given operator is important in the scattering theory
and the propagation phenomena for the evolution problem related to
it. The absence of singular continuous spectrum for such operators was
considered, for example, in [8]. The question of stability of the contin-
uous spectrum was considered in different contexts. In [3], the authors
studied the case of a straight waveguide of width L identified to the strip
[−L

2
, L
2
] × R and periodic in the unbounded transverse direction. They

proved that for L large enough, the absolute continuity of the spectrum
is not conserved and that some localized states are created near the Lan-
dau levels. These correspond to eigenvalues of finite multiplicities. The
coupling between the magnetic field and the potential is made through
the parameter L. In [1], the paper deals with a constant magnetic field
B and a bounded periodic potential. It was proved that if the abso-
lutely continuous spectrum has a gap for some value B0 of B then this
gap remains open for |B −B0| small enough. In [4] and [5] the absolute
continuity of the spectrum was proved for the magnetic Schrödinger op-
erator with a periodic potential that satisfies some symmetry condition.

In this paper we deal with a magnetic field coupled with two poten-
tials. One potential is periodic and the other is a harmonic oscillator
that acts as a confining in a prescribed direction in the space R2. We
study the cases when the periodic potential is weak and when it does
not depend on one of variables x and y, so it is confining in the direction
of the harmonic oscillator or parallel to it. In all the cases, we prove
that at least one component of the spectrum is absolutely continuous.
We also give a result on the existence of open gaps in the spectrum and
on their number and stability when the magnetic field is varying. Our
results may be considered as a generalization of those in [1] and [5] to
some different configurations. In [1], the magnetic field is coupled to a
bounded potential, while in our context the potential is λx2 + εV (x, y)
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which does not belong to L∞(R2) when λ 6= 0. Moreover, our results on
the stability of the absolute continuity of the spectrum can be useful in
the study of the scattering. Namely, this means that the scattering is
possible in periodic structures that interact with a unbounded potential
having a parabolic confining property.

The paper is organized as follows. In section 2, we introduce the
Floquet reduction method and we make an explicit computation of the
spectrum of fibre operators. In section 3, we study two types of the
periodic perturbations V . We prove that if the potential is independent
of the variable transverse to the harmonic oscillator then, for all µ ∈ R,
the part of the spectrum in ]−∞, µ] is absolutely continuous whenever
‖V ‖∞ is small enough.

Then we consider the potentials that depend on the transverse vari-
able only. We prove that in this case, the spectrum is absolutely con-
tinuous. In section 4, we investigate the more general situation. We
demonstrate that for ε small enough, the bottom of the spectrum is ab-
solutely continuous. We also give a result on the number of open gaps
in the spectrum of Pε when the magnetic field is strong or the coupling
with the harmonic oscillator is large.

2. Floquet theory

Let V be a real valued function defined on R2. We assume that V is
bounded and periodic with respect to the variable y and without loss of
generality, we assume that

(2) V (x, y + 1) = V (x, y) for all (x, y) ∈ R2.

For ε ≥ 0, we consider the operator Pε = P0 + εV where P0 is the
unbounded operator on L2(R2) given by

P0 = −∂2x + (−i∂y +Bx)2 + λx2, with (∂xϕ, ∂yϕ) =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
.

The magnetic field B is assumed to be constant with an intensity B > 0.
It is associated to an magnetic potential A using a Landau gauge such
that A(x, y) = (0,−Bx) ∀(x, y) ∈ R2. Using a Fourier transform in
the y−variable and a decomposition on the harmonic oscillator modes
in the variable x, the spectrum of P0 is known to be purely absolutely
continuous.
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Proposition 2.1. For B > 0 and λ > 0, the spectrum of P0 is
σ(P0) = [

√
B2 + λ,+∞[.

We are interested in the spectrum of Pε. This latter is an essentially
selfadjoint operator on, C∞0 (R2,R), the space of compactly supported
C∞−functions on R2. The periodicity of the potential V allows us to
use the Floquet-Bloch reduction. Namely, we denote by Γ∗ := 2πZ the
dual lattice of Z and we let E = [−π, π] the elementary cell of Γ∗. Thus,
we can write Pε as a direct integral over E in the following way :

Pε =

∫ ⊕
E
Pε(ξ)dξ

where for every ξ ∈ E, the fibre operator Pε(ξ) is acting on L2 (R× [0, 1])
by
(3)

Pε(ξ)ϕ(x, y) = ((−i∂y +Bx+ ξ)2 − ∂2x + λx2 + εV (x, y))ϕ(x, y)
ϕ(x, 0) = ϕ(x, 1),∀x ∈ R
∂ϕ

∂y
(x, 0) =

∂ϕ

∂y
(x, 1), ∀x ∈ R

for ϕ ∈ L2 (R× [0, 1]) . Let us remark that for every ξ ∈ E, we have
Pε = P0(ξ) + εV. Thus when ε is small one can use the perturbation
theory techniques to find the spectral properties of Pε form those of P0.
We first recall the definition of holomorphic families of operators in the
sense of Kato. We refer to ( [7], Ch. VII) for details and extended
properties.

Definition 2.2. A family (T (ξ))ξ∈U of operators defined for ξ in a
domain U of the complex plane is said to be a holomorphic family of
type (A) (or a type (A) family) if :

(i) there exists a domainD independent of ξ such thatD = D(T (ξ)),
for all ξ ∈ U.

(ii) the mapping ξ 7→ T (ξ)u is holomorphic on U for every u ∈ D.

Definition 2.3. Let U be a domain in the complex plane symmetric
with respect to the real axis. A type (A) holomorphic family (T (ξ))ξ∈U
is said to be a self-adjoint family of type (A) if T (ξ) is densely defined
and T (ξ)∗ = T (ξ̄) for every ξ ∈ U.
Let us note that when (T (ξ))ξ∈U is a selfadjoint holomorphic family of
type (A) then T (ξ) is selfadjoint for every ξ ∈ U ∩ R.
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Proposition 2.4. Let V ∈ L∞(R2). The family (Pε(ξ))ξ∈C is a self-
adjoint holomorphic family of type (A) on the domain

D = S(R)⊗
{
u ∈ L2([0, 1])| u′, u′′ ∈ L2([0, 1]), u(0) = u(1), u′(0) = u′(1)

}
.

Here S(R) is the Schwartz space.

Proof. The potential V is bounded. The multiplication by V is a
relatively bounded operator with respect to P0(ξ). Thus we need only to
prove that P0(ξ) is selfadjoint. For this we write

P0(ξ) = (i∂y +Bx)2 + 2ξ(−i∂y +Bx) + ξ2 + λx2 − ∂2x
= P0(0) + 2ξ(−i∂y +Bx) + ξ2.(4)

The operator P0(0) is selfadjoint on the domain D. We set S = 2ξ(−i∂y+
Bx) + ξ2 so that P0(ξ) = P0(0) + S. We claim that S is symmetric and
relatively bounded with respect to P0(0). Let R0(z) be the resolvent of
P0(0) defined for z ∈ C \ (σ(P0(0))) . We have:

||Sϕ||2 = ||(2ξ(−i∂y +Bx) + ξ2)ϕ||2

≤ 4|ξ|2||(−i∂y +Bx)ϕ||2 + |ξ|4||ϕ||2

≤ 4|ξ|2 〈ϕ, P0(0)ϕ〉+ |ξ|4||ϕ||2

≤ 4|ξ|2
(
||R0(z)||||P0(0)ϕ||2 + |z| 〈ϕ,R0(z̄)P0(0)ϕ〉

)
+ |ξ|4||ϕ||2

≤ C(z)||P0(0)ϕ||2 + (C(z)|z|2 + |ξ|4)||ϕ||2.

The constant C(z) satisfies C(z) = O

(
1

=(z)

)
when =(z) −→ +∞.

Taking |=(z)| large enough we can choose C(z) < 1 and then we deduce
that P0(ξ) has the same domain as P0(0). Therefore (P0(ξ))ξ∈C is a type

(A) holomorphic family on C. Using Theorem 4.3 in [7], the operator
P0(ξ) is selfadjoint on D.
Using the fact that the operator of multiplication by εV is relatively
bounded with respect to P0(ξ) we deduce that the essential spectrum of
Pε(ξ) = P0(ξ) + εV is the same as the essential spectrum of P0(ξ) for ξ
real.

In the following we compute the spectrum of P0(ξ).

Proposition 2.5. Let ξ ∈ E. The spectrum of P0(ξ) is pure point
and given by

σ (P0(ξ)) =

{
λ

λ+B2
(2πn+ ξ)2 + (2m+ 1)

√
λ+B2;n ∈ Z,m ∈ N \ {0}

}
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Proof. First we notice that the family (ϕn)n∈Z defined by ϕn(y) =
e2iπny is an orthonormal basis in L2([0, 1]) satisfying the periodic bound-

ary conditions ϕ
(k)
n (0) = ϕ

(k)
n (1), for k = 0, 1. Moreover, for all y ∈

[0, 1], ξ ∈ E, n ∈ Z we have

(−i∂y +Bx+ ξ)2ϕn(y) = (2πn+Bx+ ξ)2ϕn(y).

Next, for n ∈ Z, the operator

Tn := −∂2x + (2πn+Bx+ ξ)2 + λx2

is unitary equivalent to the shifted harmonic oscillator

−∂2s + (λ+B2)s2 +
λ(2πn+ ξ)2

λ+B2
.

Hence the spectrum of Tn is{
(2m+ 1)

√
λ+B2 +

λ(2πn+ ξ)2

λ+B2
,m ∈ N \ {0}

}
.

Finally, we identify L2 (R× [0, 1]) to L2(R)⊗L2([0, 1]) to conclude.

Remark 2.6. The eigenfunctions of the shifted harmonic oscillator

−∂2s + (λ+B2)s2 +
λ(2πn+ ξ)2

λ+B2

are independent of ξ. This implies that for ξ ∈ C, the eigenvalues of
P0(ξ) have the same expression as for ξ real and hence ∀ξ ∈ C, the
spectrum of P0(ξ) is{

λ

λ+B2
(2πn+ ξ)2 + (2m+ 1)

√
λ+B2;n ∈ Z,m ∈ N \ {0}

}
.

For ξ ∈ E, the spectrum of Pε(ξ) is pure point and is made up of a family
{λj(ξ), j ∈ N} of eigenvalues of finite multiplicities. These are called the
Floquet eigenvalues.

From [9] and [12], the λj(ξ) can be arranged so that for every j ∈ N,
the map ξ 7→ λj(ξ) is a branch of an analytic function. The Floquet
theory for operators with periodic coefficients yields

Σε := σ(Pε) =
⋃
j∈N

λj(E).

The continuity of ξ 7→ λj(ξ) implies that Σε is the union of closed bands
of the real line. Using Theorem 1 of Thomas [12], we know that for a
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non constant Floquet eigenvalue λj0(ξ) corresponds a band λj0(E) in the
absolutely continuous spectrum of Pε.

3. Absolute continuity of the spectrum

We consider in this paragraph the absolute continuity of the spectrum
of Pε for some particular families of the potential V. We shall study the
cases of confinant potentials and of transverse ones.

3.1. Case of a confinant potential. We consider here a potential V
which is independant of the transverse variable y. This can be considered
as a perturbation acting in the same direction as the one of the confining
harmonic oscillator λx2. We prove in this case that the spectrum of Pε
is absolutely continuous.

Theorem 3.1. Let V : R −→ R, x 7→ V (x) a continuous and
bounded function. Then, for all B > 0 and λ > 0, there exists ε0 > 0
such that for ε ∈ [0, ε0], the spectrum of Pε is purely absolutely contin-
uous.

Proof. Since V (x, y) = V (x) for all (x, y) ∈ R2 we may use the Fourier
transform with respect to y and hence the operator Pε will have an

integral representation Pε =

∫ ⊕
R
Pε(η)dη where Pε(η) is acting on L2(R)

by

(5) Pε(η) = −∂2x + (η +Bx)2 + λx2 + εV (x), ∀η ∈ R.

For η ∈ E, the operator Pε(η) is unitary equivalent to the operator

P̃ε(η) = −∂2u + (λ+B2)u2 +
λ

λ+B2
η2 + εV

(
u− ηB

λ+B2

)
.

The spectrum of Pε(η) is a sequence (µj(η))j∈N of eigenvalues which
are analytic functions of η. When ε is small enough µj(η) approaches

the eigenvalue (2j + 1)
√
λ+B2 +

λ

λ+B2
η2 of the harmonic oscillator

−∂2u+(λ+B2)u2+ λ
λ+B2η

2. This fact implies that the functions η 7→ µj(η)
are not constant for every j and this ends the proof.
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3.2. Case of transverse potential. Here we consider a function V
independent of the variable x. This is a potential acting in the direction
transverse to the one of the harmonic oscillator λx2. We prove in this
case that when (2) is satisfied then for arbitrarily ε > 0 the spectrum
is absolutely continuous. Thus we will take ε = 1 and we put P =
P1, P (ξ) = P1(ξ).

Theorem 3.2. Let V ∈ L∞(R) such that V (y + 1) = V (y), ∀y ∈ R.
For λ > 0 and B > 0, the spectrum of the operator

Pε = −∂2x + (−i∂y +Bx)2 + λx2 + V (y)

is purely absolutely continuous.

Proof. We need to prove that none of the Floquet eigenvalues λj is
constant on E. We assume by contradiction that ξ 7→ λj0(ξ) is constant
on E for some j0 ∈ N. Let λ0 be this constant. Due to the analyticity of
λj0 , the function ξ 7→ λj0(ξ) is constant on C. Using Remark 1. we know
that λ0 is an eigenvalue of P (ξ) = P0(ξ) + V (y), for all ξ ∈ C. Hence

(6) ||(P (ξ) + 1)−1|| ≥ (λ0 + 1)−1.

Furthermore, using again Remark 1. we have, for ξ ∈ C,
(7)

||(P0(ξ) + 1)−1||2 = sup
m∈N∗

(∣∣∣∣(2m+ 1)
√
λ+B2 +

λ(2πn+ ξ)2

λ+B2
+ 1

∣∣∣∣2
)−1

.

where |Z| is the modulus of the complex number Z.
If we put r = Re(ξ) and s = Im(ξ) then for r 6= 0, s 6= 0, we see that

||(P0(ξ) + 1)−1||2 ≤
(
λ+B2

λ

)2
1

4r2s2

By taking r = 1, we obtain

(8) ||(P0(ξ) + 1)−1||2 ≤
(
λ+B2

λ

)2

.
1

s2
, ∀s ∈ R \ {0}.

The potential V is bounded, so we can find a constant C > 0 such that

||V (y)(P0(ξ) + 1)−1|| < 1, for |s| > C.

Now if we apply the resolvent identity to P0(ξ) and P (ξ) = P0(ξ)+V (y)
we get

(9) ||(P (ξ) + 1)−1|| ≤ ||(P0(ξ) + 1)−1||
1− ||V (y)(P0(ξ) + 1)−1||

.
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Using (8) and taking the limit when |s| → +∞ we end with a contra-
diction to (6).

4. Case of a general periodic potential

Let ε > 0 and V ∈ L∞(R2) areal valued function satisfying (2). We
will prove in this section that the bottom of the spectrum is absolutely
continuous for ε small. Then we will study the existence of open gaps
in the spectrum.

4.1. The bottom of the spectrum.

Theorem 4.1. Soit V : R2 → R a bounded function. We assume
that (2) is true. Then for any µ > 0 there exists εµ > 0 such that
for 0 < ε ≤ εµ the spectrum of Pε in ] − ∞, µ] is purely absolutely
continuous.

Proof. Let µ > 0. For ξ ∈ T = E, there exists a finite number N of
eigenvalues of P0(ξ) in the interval ] −∞, µ]. We denote by Ej(ξ), j =
1, ..., N these eigenvalues.
From one side, the relation Pε(ξ) = P0(ξ) + εV, implies that |λj(ξ) −
Ej(ξ)| ≤ ε||V ||∞, for ξ ∈ E. Here we recall that λj(ξ) are the eigenvalues
of Pξ.
Indeed we have

σ(P0)∩]−∞, µ] =
N⋃
j=1

Ej(E).

Let us denote by [aj, bj] = Ej(E), j = 1, ..., N the N bands generated
by the Ej. From another side, we already know that the spectrum of P0

is absolutely continuous so none of the eigenvalues Ej is constant on E.

Thus aj < bj pour tout j = 1, ..., N. For ε||V ||∞ <
1

2
min

1≤j≤N
(bj − aj),

the eigenvalue ξ 7→ λj(ξ) is not constant. We conclude bye using the
argument of Thomas [12] that the band of the spectrum generated by
λj is an absolutely continuous part of the spectrum.

4.2. Gap opening. Since we have proved in the previous subsection
the absolute continuity of the bottom of the spectrum, an interesting
question is about the existence of possible open gaps between the bands
of the spectrum.
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Definition 4.2. An open gap in the spectrum of Pε, is an interval
[a, b] such that a < b and [a, b] ∩ σ(Pε) = ∅.

The main result in the what follows is the existence of open gaps for
Pε and to prove this we start by writing Pε as an infinite matrix in some
suitable orthonormal basis then we will compare it to its diagonal terms.

Pour ξ ∈ E, let Pε(ξ) be the operator

Pε(ξ) = −∂2x + (−i∂y +Bx)2 + λx2 + εV (x, y)

acting on L2(R× E) under the following Bloch boundary conditions:

(10)

 ϕ(x, π−) = e2iπξϕ(x,−π+)
∂ϕ

∂y
(x, π−) = e2iπξ

∂ϕ

∂y
(x,−π+);

∀x ∈ R, ϕ ∈ L2(R× E).

We already know that for µ > 0 fixed, the spectrum of Pε =

∫
E
Pε(ξ)dξ

in ]−∞, µ] is purely absolutely continuous when ε is small enough. Our
approach in proving that open gaps exist is to expand Pε with respect
to the orthonormal basis spanned by the normalized eigenfunctions of
the harmonic oscillator.

Let p ∈ N, and

up(x) =

(
1

2pp!
√
π

)1/2

e−
√
λ+B2

2
x2Hp

(√
λ+B2x

)
,∀x ∈ R

where Hp is the Hermite polynomial of order p defined by

Hp(x) = (−1)pe−x
2 dp

dxp

(
e−x

2
)
, ∀p ∈ N, x ∈ R.

Using classical formulae about special functions or the orthogonal poly-
nomilas as in [13] or [10] the following result is well known to be true.

Lemma 4.3. The family B = {up, p ∈ N} is an orthonormal basis in
L2(R).

To simplify the notations we put ρ =
√
λ+B2. Let p, q ∈ N and

ξ ∈ E. We identify L2(R×E) to L2(R)⊗L2(E) in a naturel way and we
develop the operator Pε(ξ) in the basis B.

Let u ∈ L2(R)⊗L2(E) such that u(x, y) =
+∞∑
p=0

αpup(x)⊗ v(y), where

v ∈ L2(E) satisfies the conditions (10). Then Pε(ξ) is acting on u as an
infinite matrix with coefficients mp,q = 〈Pε(ξ)upv, uqv〉L2 .
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Proposition 4.4. The operator Pε(ξ) is of the form Pε(ξ) = D(ξ) +
T (ξ) with

(i) D(ξ) = (dpq)p,q∈N is an infinite diagonal matrix with operator
valued coefficients acting on L2(E) are given by

(11) dpp = −∂2y + ε

∫
R
V (

x

ρ1/2
, y)|up(x)|2dx+ (2p+ 1)ρ, ∀p ∈ N.

(ii) T (ξ) = (tpq)p,q∈N is an infinite matrix with operator valued co-
efficients acting on L2(E) and such that tpp = 0,∀p ∈ N and

(12)


tpq = ε

∫
R
V (

x

ρ1/2
, y)up(x)uq(x)dx pour q 6∈ {p− 1, p, p+ 1},

tpp+1 = −
(

2(n+1)
ρ

)1/2
iB∂y + ε

∫
R
V (

x

ρ1/2
, y)up(x)up+1(x)dx

tq−1q =
(

2n
ρ

)1/2
iB∂y + ε

∫
R
V (

x

ρ1/2
, y)uq−1(x)uq(x)dx.

Proof. Let v ∈ L2(E) and p ∈ N. Then

Pε(ξ)up(x)v(y) =
[(
−∂2x + ρ2x2 + εV (x, y)up(x)

)
up(x)

]
v(y)

+
[
−∂2yv(y)− 2iBx∂yv(y)

]
up(x).

For q ∈ N, let us compute the scalar product with respect to x

mpq = 〈Pε(ξ)upv, uqv〉L2(R) .

If p = q, we know that (−∂2x + ρ2x2)up = (2p+ 1)ρup. The orthogonality
of B yields

hpp = (2p+ 1)ρ− ∂2yv −
(
2iB < xup, up >L2(R)

)
∂yv.

Moreover, the Hermite polynomials are known to satisfy the following
functional relation (voir [10]),

(13) xHp(x) =
√
p+ 1Hp+1(x) +

√
pHp−1(x),∀x ∈ R, p ≥ 1.

Using H0(x) = 1, we find < xup, up >L2(R)= 0,∀p ∈ N.
Now if q 6= p, then

mpq =< εV (., y)up, uq >L2(R) −
(
2iB < xup, uq >L2(R)

)
∂yv.

We use again the relation (13) and we find (11) and (12) then we con-
clude.

We let D =

∫ ⊕
E
D(ξ)dξ and T =

∫ ⊕
E
T (ξ)dξ.
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Proposition 4.5. Let ρ =
√
λ+B2. The operator family (D(ξ))ρ

converges in the strong resolvent sense to Pε(ξ) as ρ → +∞ uniformly
with respect to ξ in E.

Proof. We need to prove that r(ξ) := ‖ (Pε(ξ) + i)−1 − (D(ξ) + i)−1‖
goes to 0 when ρ→ +∞.
by the resolvent identity we have

(14) r(ξ) = ‖ (Pε(ξ) + i)−1 T (ξ)(D(ξ) + i)−1‖.
We claim that there exists C > 0 such that

‖T (ξ)(D(ξ) + i)−1‖ ≤ C

ρ

uniformly on E. For this to be justified, we remark first that

‖(D(ξ) + i)−1‖ = O

(
1

ρ

)
.

Moreover, if we put Ṽ =
⊕

p 6=q∈N
tpq then

‖Ṽ (D(ξ) + i)−1‖ = O

(
1

ρ

)
.

It remains to study the off-diagonal terms of T and those of the form
tpp+1 without the potential term. Let p ∈ N and

Vpp =

∫
R
V (

x

ρ1/2
, y)|up(x)|2dx.

Then∥∥∥(− (2(p+ 1)ρ)1/2 iB∂y) (dpp + i)−1
∥∥∥ ≤

B

ρ

∥∥(−∂2y + (2p+ 1)ρ
)

(−∂2y + εVpp + (2p+ 3)ρ+ i)−1
∥∥

≤ B

ρ

(
1 + ε

∥∥Vpp(−∂2y + εVpp + (2p+ 3)ρ+ i)−1
∥∥) = O(

1

ρ
).

The convergence in the strong resolvent sense implies the convergence of
the spectra of (D(ξ))ρ to the spectrum of P (ξ) when ρ tends to infinity.
When the potential V is not constant the operator d00(ξ) given by (11)
has open gaps in its spectrum ( [2], [11]). Hence for ρ large enough, these
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gaps remains open in the spectrum of P (ξ). We end this discussion by
the following result.

Theorem 4.6. Let V ∈ L∞(R2) satisfying (2) and non constant. Let
µ > 0 and ε0 such that σ(Pε)∩] − ∞, µ] is absolutely continuous for
0 < ε ≤ ε0. There exists M > 0 such that for max(B, λ) ≥ M, the
number of open gaps in the spectrum of Pε is non zero and is bigger
than the number of open gaps in the spectrum of d00.
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