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ON THE REPRESENTATION OF PROBABILITY

VECTOR WITH SPECIAL DIFFUSION OPERATOR

USING THE MUTATION AND GENE CONVERSION

RATE

Won Choi

Abstract. We will deal with an n locus model in which muta-
tion and gene conversion are taken into consideration. Also random
partitions of the number n determined by chromosomes with n loci
should be investigated. The diffusion process describes the time evo-
lution of distributions of the random partitions. In this paper, we
find the probability of distribution of the diffusion process with spe-
cial diffusion operator L1 and we show that the average probability
of genes at different loci on one chromosome can be described by the
rate of gene frequency of mutation and gene conversion.

1. Introduction

Consider n locus model

X = (x1, x2, · · · , xd) ∈ Rd,

so we find n genes on a chromosome. A partition X describes a state
of a chromosome and X means that there exist d kinds of alleles which
occupy x1-loci, x2-loci, · · · , xd-loci. If the partition X has αi parts equal
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to i, then X describes that there exists αi kinds of alleles occurring i loci
for each i. The set of partitions of n with k parts is denoted by Sn. Let
qij denote “mutation rate” or “gene conversion rate” from a partition
Xi to another partition Xj per generation measured on the t time scale
and pi denotes the frequency of chromosome of type Xi.

Let S be a countable set. In population genetics theory we often
encounter diffusion process on the domain

K = {p = (pi)i∈S ; pi ≥ 0,
∑
i∈S

pi = 1}

We suppose that the vector p(t) = (p1, p2, · · · ) of gene frequencies varies
with time t.

Let L be a second order differential operator on K

L =
∑
i,j∈S

aij(p)
∂2

∂pi∂pj
+
∑
i∈S

bi(p)
∂

∂pi

with domain C2(K), where {aij} is a real symmetric and non-negative
definite matrix defined on K and {bi} is an measurable function defined
on K. The coefficient {aij} comes from chance replacement of individ-
uals by new ones after random mating and {bi} is represented by the
addition of “mutation or gene conversion rate” and the effect of natural
selection. The operator L has the same form as the generator of the
diffusion describing a p(t)-allele model incorporating mutation and ran-
dom drift with single locus, but we could give a remark that the matrix
qij depends on the combinatorial structure of the partitions.

We assume that {aij} and {bi} are continuous on K. Let Ω =
C([0,∞) : K) be the space of all K-valued continuous function de-
fined on [0,∞). A probability P on (Ω,F) is called a solution of the
(K,L, p)-martingale problem if it satisfies the following conditions,

(1) P (p(0) = p) = 1.

(2) denoting Mf (t) = f(p(t)) −
∫ t
0
Lf(p(t))ds, (Mf (t),Ft) is a P -

martingale for each f ∈ C2(K).

The diffusion process describes the time evolution of distributions of
the random partitions. We will deal with an n locus model in which
mutation and gene conversion are taken into consideration. Also ran-
dom partitions of the number n determined by chromosomes with n
loci should be investigated. In this paper, we show that the probability
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of types of chromosomes can be described by the function of rates of
mutation and gene conversion.

2. Main Results

In order to consider an stochastic differential equation for p(t), we
need boundary conditions and regularity condition on the drift coeffi-
cients bi.

[Assumption for bi(p)] : {bi(p)}i∈S is the set of real functions defined
on K which satisfy the following conditions :

(i) bi(p) ≥ 0 if pi = 0,
(ii)

∑
i∈S bi(p) = 0 uniformly in p ∈ K,

(iii) there exists a matrix {cij}i,j∈S such that cij ≥ 0 for every i and j
of S, and

|bi(p)− bi(p′)| ≤
∑
j∈S

cij|pj − p′j|.

Suppose that {bi(p)}i∈S satisfies the [Assumption for bi(p)]. Then p(t)
is unique solution to stochastic differential equation

dpi(t) =
∑
k∈S

αik(p(t))dBk(t) + bi(p(t))dt, i ∈ S

where
αij(p) = (δij − pi)

√
βjpj

and Bi are independent Brownian motions. Here {βi} is non-negative
constant satisfying that supiβi < +∞

In order to construct the stochastic differential equation associated to
mean vector, we need the following definition.

Definition. A sequence {X1, X2, · · · , XK , · · · } of partitions is called
(X1, XK)-chain if Xi+1 is a consequent of Xi by mutation or gene con-
version for each i = 1, 2, · · · .

We begin with the following Lemma.

Lemma 1.

ρ =

(
q12
q21

)(
q23
q32

)
· · ·
(
qK−1 K

qK K−1

)
= 1.

Proof. See W. Choi ([2]).
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By Lemma 1, the value(
q12
q21

)(
q23
q32

)
· · ·
(
qK−1 K

qK K−1

)
· · ·

does not depend on the choice of (X1, XK)-chain.
LetX be any partition of n and let {X1, X2, · · · , Xi, · · · } be a ((n), Xi)-

chain. Put

PX =
K−1∏
j=1

(
qj j+1

qj+1 j

)
, P(n) = 1.

Let

K1 = {P = (PX)X∈Sn :
∑
X∈Sn

PX < +∞}

for the set Sn of partition and define a mapping P̄ on K1 called by
probability vector

P̄X =
PX∑
Y PY

.

Consider the solution to stochastic differential equation for PX(t)

dPX(t) =
√
βXPX(t)dBX(t) + b̃X(P (t))dt, i ∈ S (1.1)

where

b̃X(P (t)) = bX(P̄ (t)) + cP̄X(t) + P̄X(t)(βX −
∑
X∈Sn

P̄X(t)βX)

for a nonnegative constants c and βX satisfying c > (1/2)supX∈SnβX .
It was shown easily that the existence and the uniqueness of solutions

hold for the equation (1.1) when the set of drift coefficients {bX(P )}X∈Sn

satisfies the [Assumption for bX(P )], not [Assumption for b̃X(P )].( [2])

Let L1 be a second order differential operator on K1

L1 =
∑

X,Y ∈Sn

ãXY (P )
∂2

∂PX∂PY
+
∑
X∈Sn

b̃X(P )
∂

∂PX

where

ãXY =

{
(number of elements Sn)×

√
βXβY PX(t)PY (t) if Sn is finite

0 if Sn is infinite.

W. Choi showed that the uniqueness of solution for the (K1, L1, P0)-
martingale problem holds.([3])



On the representation of probability vector with special diffusion operator 5

Consider a partition to be a sequence

X = (x1, x2, · · · , xd) ∈ Rd.

If the partition X has αi parts equal to i, then we write

X = [1α1 , 2α2 , · · · , nαn ],

and let α(X) =
∑

i αi. The probability that arbitrarily chosen k objects
from n ones belong to the same kind is determined by the partition X.
Therefore the probability is a function defined on Sn and denoted by
Gnk. Assume that every mutation and gene conversion are new, and
that each rate of gene frequencies is equal to a(1/N) and b(1/N) per
generation, respectively. Here, N stands for the number of population
and 1/N equals the time of one generation in diffusion models. Let the
set {αi1, αi2, · · · , αid} be the collection of αi > 0. We suppose that firstly
mutation occurs successively {α(X)− 1} times. that is,

X1 = (n), X2 = (n− 1, 1), · · · , Xα(X) = (n− α(X) + 1, 1, 1, · · · , 1).

After that, gene conversion occurs successively {n − α(X) − (id − 1)}
times.

Then we have;

Theorem 2. The vector P̄ of stationary distribution of the diffusion
process with operator L1 can be written in the form

P̄X =
n!

θ(θ + 1)(θ + 2) · · · (θ + n− 1)

n∏
k=1

θαk

kαkαk!

where θ = a/b.

Proof. The number of genes of each allele is increasing monotonously
and the chain includes the partitions

(n− (α(X)− 1)− (id − 1), id, 1, 1, · · · , 1),

(n− (α(X)− 1)− 2(id − 1)id, id, 1, 1, · · · , 1),

· · ·
(n− (α(X)− 1)− (αid − 1)(id − 1), id, · · · , id, 1, 1, · · · , 1),

(n−(α(X)−1)−(αid−1)(id−1)−αid−1
(id−1−1), id, · · · , id, id−1, · · · , id−1, 1, 1, · · · , 1),

· · · .
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Since {X1, X2, · · · , Xi, · · · } is a ((n), Xi)-chain, the equalities

K−1∏
j=1

qj j+1 =
n!

id!(id − 1)!

n∏
i=1

((i− 1)!)αi
(α(X)− 1)!

αi
aα(X)−1bn−α(X)−id+1

and

K−1∏
j=1

qj+1 j =
(n− 1)!

id!(id − 1)!

n∏
i=2

αi!
n∏
i=1

(i!)αi(α(X)− 1)! bn−id

hold. Therefore we can see that PX is written as follows,

PX =
n∏n

i=1 αi!i
αi

(
a

b
)α(X)−1.

From the Riordan ( [5]), we see that∑
X

PX =
1

(n− 1)!
(
a

b
+ 1)(

a

b
+ 2) · · · (a

b
+ n− 1)

and

P̄X =
n!

θ(θ + 1)(θ + 2) · · · (θ + n− 1)

n∏
k=1

θαk

kαkαk!

Let a pointX1 = (x1, x2, · · · , xk, · · · ) ∈ Sn be fixed and let Y1, Y2, · · · , Yn
be i.i.d. random variables such that P (Yk = j) = xj, j = 1, 2, · · · . Let
αi(Y ) = αi(Y1, Y2, · · · , Yn) be the cardinality of

{j : i random variables ofY1, Y2, · · · , Yn are equal to j}.

The partition

[1α1(Y ), 2α2(Y ), · · · , nαn(Y )]

induces a probability distribution PX1 .

Then we meet with;

Theorem 3. The equality∑
X∈Sn

PX1Gnk(X) =
bk−1(k − 1)!

(a+ b)(a+ 2b) · · · (a+ (k − 1)b)
.

holds.
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Proof. First, we note that∑
X∈Sn

PX1Gnk(X)

is equal to probability that arbitrarily chosen k random variables Yi1 , Yi2 , · · · , Yik
from Y1, Y2, · · · , Yn take the same values. Therefore we have∑

X∈Sn

PX1Gnk(X) = P (Y1 = Y2 = · · · = Yk)

=
∑
X∈Sk

PX1Gkk(X)

= PX1((k)).

By Theorem 2, last probability is

bkk!

a(a+ b)(a+ 2b) · · · (a+ (k − 1)b)
· a/b
k

and we can see that Theorem 3 holds.

Theorem 3 can be applied to many population and evolutionary ge-
netic models. We conclude with the average probability of alleles which
occupy x1-loci, x2-loci.

Example. The genes are contained in chromosomes. The existence of
two alleles for given character, one inherited from each parent, parallels
the existence of two chromosomes of each kind, also derived one from
each parent. The two alleles for a character segregate in the formation
of the gametes.([1]) The position that a gene has in a chromosome is
known as its locus.
Letting k = 2 in Theorem 3, there exist alleles which occupy x1-loci,
x2-loci and the average probability of genes at different loci on one chro-
mosome is

b

a+ b
.

This means that the average probability of genes at different place on one
chromosome is determined by the ratio of gene frequency of mutation
and gene conversion and this probability is approximately the quotient
of ratio of gene frequency of mutation and gene conversion.

We apply this theory to Mendel’s experiment. In Mendel’s experi-
ment, Mendel studied the inheritance of seed shape by crossing plants
yielding round seeds with plants yielding wrinkled seeds. Contrasting
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traits, such as the roundness or wrinkling of peas, are determined by
gene. In this case, if a is the ratio of gene frequency of mutation and
b is the ratio of frequency of gene conversion, then the probability of
roundness or wrinkling at different place is

b

a+ b
.

If the rate of frequency of mutation approach 1, probability of genes at
different place on one chromosome is approximately 1 and it is meant
that genes at different place on one chromosome certainly occurs.
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