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EXTREMAL TYPE I ADDITIVE SELF-DUAL CODES

OVER GF (4) WITH NEAR-MINIMAL SHADOW

Sunghyu Han

Abstract. In this paper, we define near-minimal shadow and study
the existence problem of extremal Type I additive self-dual codes
over GF (4) with near-minimal shadow. We prove that there is no
such codes if the code length n = 6m+1(m ≥ 0), n = 6m+5(m ≥ 1).

1. Introduction

The additive code C over GF (4) of length n is an additive subgroup of
GF (4)n. The weight of a codeword u = (u1, u2, . . . , un) in GF (4)n is the
number of non-zero uj and is denoted by wt(u). The minimum distance
of C is the smallest non-zero weight of any codeword in C. Here, C
is a k-dimensional GF (2)-subspace of GF (4)n, and, therefore, it has 2k

codewords. It is denoted as an (n, 2k) code, and, if its minimum distance
is d, the code is an (n, 2k, d) code.

The trace map, Tr : GF (4) → GF (2), is defined by Tr(x) = x + x2.
The Hermitian trace inner product of two vectors over GF (4) of length
n, u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) is given by

(1) u ∗ v =
n∑

i=1

Tr(uivi
2) =

n∑
i=1

(uivi
2 + ui

2vi) (mod 2).
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We define the dual of the code C with respect to the Hermitian trace
inner product as follows:

(2) C⊥ = {u ∈ GF (4)n : u ∗ c = 0 for all c ∈ C}.

If C ⊆ C⊥, we say C is self-orthogonal, and if C = C⊥, we say C is
self-dual. If C is self-dual, then it must be an (n, 2n) code.

We distinguish between two types of additive self-dual codes over
GF (4). A code is Type II if all codewords have even weights, otherwise
it is Type I. Bounds on the minimum distance of additive self-dual codes
over GF (4) were provided in [9].

Theorem 1.1. [9] Let C be an (n, 2n, d) additive self-dual code over
GF (4). If C is Type I, then

(3) d ≤

 2[n/6] + 1, if n ≡ 0 (mod 6);
2[n/6] + 3, if n ≡ 5 (mod 6);
2[n/6] + 2, otherwise.

If C is Type II, then

(4) d ≤ 2[n/6] + 2.

A code that meets the appropriate bound is called extremal. The
proof of Theorem 1.1 for Type I codes is formulated using a shadow
code, which is defined as follows: Let C be an additive self-dual code
over GF (4) and C0 be the subset of C consisting of all codewords whose
weights are multiples of two. Then, C0 is a subgroup of C. The shadow
code of an additive code C over GF (4) is defined by:

(5) S = C⊥0 \C.

Alternately, it can be defined as:
(6)
S = {u ∈ GF (4)n | u ∗ v = 0 for all v ∈ C0, u ∗ v = 1 for all v ∈ C\C0}.

Bautista, et al. [1] studied the minimum weight d of C and the mini-
mum weight s of S simultaneously, and they showed that 2d+s ≤ n+2,
unless n = 6m+ 5 and d = 2m+ 3, in which 2d+ s = n+ 4. If equality
holds, i.e., 2d + s = n + 2(or 2d + s = n + 4), then the codes are called
s-extremal. They also classified s-extremal codes with 1 ≤ d ≤ 4.

On the other hand, the author made a research for the smallest value
s of S [4]. The following is the definition of minimal shadow.
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Definition 1.2. [4] Let C be a Type I additive self-dual code over
GF (4) of length n = 6m+r(0 ≤ r ≤ 5). Then, C is a code with minimal
shadow if:

1. d(S) = 1 if r = 1, 3, 5; and
2. d(S) = 2 if r = 0, 2, 4,

where d(S) is the minimum weight of S.

The author proved nonexistence of extremal self-dual codes with min-
imal shadow [4]. More specific, the author proved that extremal Type
I additive self-dual codes over GF (4) of lengths n = 6m + 1, 6m + 5
with minimal shadow do not exist. The author also proved that there
are no extremal Type I additive self-dual codes over GF (4) of length n
with minimal shadow if n = 6m(m ≥ 40), n = 6m + 2(m ≥ 6), and
n = 6m+ 3(m ≥ 22).

The author studied near-extremal additive self-dual codes over GF (4)
with minimal shadow [5]. The following is the definition of near-extremal
codes.

Definition 1.3. Let C be an (n, 2n, d) Type I additive self-dual code
over GF (4). Then, C is near-extremal if: d = 2[n/6] if n ≡ 0 (mod 6),
d = 2[n/6] + 2 if n ≡ 5 (mod 6), and d = 2[n/6] + 1 otherwise.

The author proved that there are no near-extremal Type I additive
self-dual codes over GF (4) of length n with minimal shadow if n =
6m+ 1(m ≥ 22) [5].

In this paper, we study near-minimal shadow. In the following, we
give the definition of a code with near-minimal shadow.

Definition 1.4. Let C be a Type I additive self-dual code overGF (4)
of length n = 6m+ r(0 ≤ r ≤ 5). Then, C is a code with near-minimal
shadow if:

1. d(S) = 3 if r = 1, 3, 5; and
2. d(S) = 4 if r = 0, 2, 4,

where d(S) is the minimum weight of S.

The main result of this paper is the following theorem.

Theorem 1.5. There are no extremal Type I additive self-dual codes
over GF (4) of length n with near-minimal shadow if

1. n = 6m+ 1;
2. n = 6m+ 5 and m ≥ 1.
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Table 1. Non-existence of extremal(or near-extremal)
Type I additive self-dual codes over GF (4) with mini-
mal(or near-minimal) shadow of length n = 6m+ p

(d, s)\p 0 1 2 3 4 5
(ext, min) ≥ 40 x ≥ 6 ≥ 22 x

(n-ext, min) ≥ 22
(ext, n-min) x ≥ 1

We summarize the results so far in Table 1. In the table, we give the
results of non-existence of extremal(or near-extremal) Type I additive
self-dual codes over GF (4) with minimal(or near-minimal) shadow of
length n = 6m + p, (0 ≤ p ≤ 5). The first row of the table represent
the value p, and the first column of the table represents extremal(or
near-extremal) w.r.t. the minimum weight d of C and minimal(or near-
minimal) w.r.t. the minimum weight s of S. More specific, (ext, min)
corresponds to the case d is extremal and s is minimal, (n-ext, min)
corresponds to the case d is near-extremal and s is minimal, and (ext,
n-min) corresponds to the case d is extremal and s is near-minimal. In
the table, ‘x’ represents the non-existence of the corresponding codes.
‘≥ number’ represents the non-existence of the corresponding codes if
m ≥ number.

This paper is organized by the following. In secetion 2, we give the
proof of Theorem 1.5. In section 3, we give example codes. In section 4,
we give the summary of this paper. All the computation of this paper
were done with Maple software and Magma [2].

Remark 1.6. In [6], the author made a research for near-minimal
shadow of binary self-dual codes. In the paper, the author defined near-
minimal shadow and studied the existence problem of extremal Type I
binary self-dual codes with near-minimal shadow. The author proved
that there is no such codes if the code length n = 24m + 2(m ≥ 0),
n = 24m+4(m ≥ 9), n = 24m+6(m ≥ 21), and n = 24m+10(m ≥ 87).
The structure of this paper is similar to the one of the paper [6].
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2. Proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5. The weight enu-
merator of a code is given by

(7) WC(x, y) =
n∑

i=0

Aix
n−iyi,

where there are Ai codewords of weight i in C. The following lemma is
needed in this paper.

Lemma 2.1. [4] Let C be a Type I additive self-dual code over GF (4)
and S be the shadow code of C. If u, v ∈ S, then u+ v ∈ C.

Lemma 2.2. [4] Let C be an additive self-dual code over GF (4) of
length n and minimum weight d. Let S(y) =

∑n
r=0Bry

r be the weight
enumerator of S. Then:

1. B0 = 0;
2. Br ≤ 1 for r < d/2.

Let C be a Type I additive self-dual code over GF (4). By [9], the
weight enumerator of C, WC(x, y), and its shadow code weight enumer-
ator, WS(x, y), are given by:

(8) WC(x, y) =

[n/2]∑
i=0

ci(x+ y)n−2i{y(x− y)}i,

(9) WS(x, y) =

[n/2]∑
i=0

(−1)i2n−3iciy
n−2i(x2 − y2)i,

for suitable constants ci. We rewrite Eqn. (8) and Eqn. (9) to the fol-
lowing:

(10) WC(1, y) =
n∑

j=0

ajy
j =

[n/2]∑
i=0

ci(1 + y)n−2i{y(1− y)}i

and

(11) WS(1, y) =

[n/2]∑
j=0

bjy
2j+t =

[n/2]∑
i=0

(−1)i2n−3iciy
n−2i(1− y2)i,
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where t = 0 if n is even, and t = 1 if n is odd. Note that all aj and bj
must be nonnegative integers. One can write ci as a linear combination
of the aj for 0 ≤ j ≤ i, and one can write ci as a linear combination of
bj for 0 ≤ j ≤ [n/2] − i in the following form for suitable constants αij

and βij:

(12) ci =
i∑

j=0

αijaj =

[n/2]−i∑
j=0

βijbj.

In our computation, we need to calculate αi0 and βij. The following
formulas can be found in [9] for i > 0:

(13) αi0 = −n
i

[
coeff. of yi−1 in (1 + y)−n−1+2i(1− y)−i

]
and

(14) βij = (−1)i23i−n
(
k − j
i

)
,

where k = [n/2]. Note that a0 = c0 = α00 = 1. In the following lemma,
we give another formula for αi0.

Lemma 2.3. Let 0 ≤ i ≤ [n/2]. Then we have

αi,0 =


−n

i

n+1−3i∑
t=0,t+i is odd

(−1)t
(
n+ 1− 3i

t

)(2n−3i−t−1
2

i−t−1
2

)
, if n+ 1− 3i ≥ 0;

−n
i

∑
0≤t≤[ i−1

2
]

(
n− 2i+ t

t

)(
−n+ 4i− 3− 2t

i− 1− 2t

)
, else.

Proof. From Eqn. (13), we have

(15) αi0 = −n
i

[
coeff. of yi−1 in (1 + y)−n−1+2i(1− y)−i

]
.

And

(16) (1 + y)−n−1+2i(1− y)−i = (1− y2)−n−1+2i(1− y)n+1−3i.

Suppose that n+ 1− 3i ≥ 0. Since

(1−y2)−n−1+2i(1−y)n+1−3i = (1−y2)−n−1+2i

n+1−3i∑
t=0

(−1)t
(
n+ 1− 3i

t

)
yt,
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we have

αi0 = −n
i

n+1−3i∑
t=0

(−1)t
(
n+ 1− 3i

t

)[
coeff. of yi−1 in (1− y2)−n−1+2iyt

]
.

Note that

(17) (1− y2)−n−1+2iyt =
∑
0≤j

(
n+ 1− 2i+ j − 1

j

)
y2j+t.

In Eqn. (17), we use the following formula.

(18) (1− x)−a =
∑
0≤j

(
−a
j

)
(−1)jxj =

∑
0≤j

(
a+ j − 1

j

)
xj,

for a > 0. In Eqn. (17), let 2j + t = i− 1. Then j = i−t−1
2

. Therefore,

αi0 = −n
i

n+1−3i∑
t=0,t+i is odd

(−1)t
(
n+ 1− 3i

t

)(
n+ 1− 2i+ i−t−1

2
− 1

i−t−1
2

)
,

= −n
i

n+1−3i∑
t=0,t+i is odd

(−1)t
(
n+ 1− 3i

t

)(2n−3i−t−1
2

i−t−1
2

)
.

Suppose that n+ 1− 3i < 0. Since

(1− y2)−n−1+2i(1− y)n+1−3i(19)

=

[∑
0≤t

(
n+ 1− 2i+ t− 1

t

)
y2t
]
×
[∑

0≤j

(
−n− 1 + 3i+ j − 1

j

)
yj
]

=
∑
0≤t,j

(
n− 2i+ t

t

)(
−n− 2 + 3i+ j

j

)
y2t+j,

we have

(20) αi0 = −n
i

∑
0≤t,j and 2t+j=i−1

(
n− 2i+ t

t

)(
−n− 2 + 3i+ j

j

)
y2t+j.

Let j = i− 1− 2t in Eqn. (20). Then we have the following result.

αi0 = −n
i

∑
0≤t≤[ i−1

2
]

(
n− 2i+ t

t

)(
−n− 2 + 3i+ i− 1− 2t

i− 1− 2t

)
(21)

= −n
i

∑
0≤t≤[ i−1

2
]

(
n− 2i+ t

t

)(
−n+ 4i− 3− 2t

i− 1− 2t

)
.(22)
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This completes the proof.

Throughout this section, we assume that C be an extremal Type I
additive self-dual code over GF (4) with near-minimal shadow of length
n = 6m + r. In the following subsection, we prove the first part of
Theorem 1.5.

2.1. The case n = 6m + 1. Suppose that r = 1. Since C is extremal,
we have a0 = 1, a1 = a2 = · · · = a2m+1 = 0. By Lemma 2.2, we have
b0 = 0, b1 = 1 if m ≥ 3. Also we have b2 = b3 = · · · = bm−2 = 0.
Otherwise, S would contain a vector v of weight less than or equal to
2m − 4 + 1, and if u ∈ S is a vector of weight 3, then u + v ∈ C with
wt(u+ v) ≤ 2m, a contradiction to the minimum distance of C.

Using Eqn. (12) and the above discussion, we have the following.

(23) ci =
i∑

j=0

αijaj = αi0 (0 ≤ i ≤ 2m+ 1)

and

(24) ci =
3m−i∑
j=0

βijbj = βi1 +
3m−i∑
j=2

βijbj = βi1 (2m+ 2 ≤ i ≤ 3m− 1).

Note that c3m = 0.
From Eqn. (23) and Eqn. (24) we have

(25) c2m+1 = α2m+1,0 = β2m+1,1 + β2m+1,m−1bm−1.

Therefore, we get:

(26) bm−1 =
α2m+1,0 − β2m+1,1

β2m+1,m−1
.

From Eqn. (13) and Eqn. (14) we have

(27) α2m+1,0 = −6m+ 1

2m+ 1

(
3m

m

)
and

(28) β2m+1,1 = −4×
(

3m− 1

2m+ 1

)
, β2m+1,m−1 = −4.

Therefore, we get:

(29) bm−1 =
6m+ 1

4(2m+ 1)

(
3m

m

)
−
(

3m− 1

2m+ 1

)
.
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From Eqn. (23) and Eqn. (24) we have

(30) c2m = α2m,0 = β2m,1 + β2m,m−1bm−1 + β2m,mbm.

Therefore, we get:

(31) bm =
α2m,0 − β2m,1 − β2m,m−1bm−1

β2m,m

.

From Eqn. (13) and Eqn. (14) we have

(32) α2m,0 =
6m+ 1

m

(
3m

m− 1

)
and

(33) β2m,1 =
1

2

(
3m− 1

2m

)
, β2m,m−1 =

2m+ 1

2
, β2m,m =

1

2
.

Therefore, we get:

(34) bm = − (3m− 1)!f(m)

4(2m+ 1)!(m− 1)!
,

where

(35) f(m) = 28m2 − 108m− 13.

We can see that f(m) > 0 if m ≥ 4. Therefore, if m ≥ 4, then bm < 0.
This is a contradiction. We know that there is no extremal code if
m = 0, 1, 2, 3 [8]. This completes the first part of Theorem 1.5.

2.2. The case n = 6m + 5. In this subsection, we prove the second
part of Theorem 1.5. Suppose that r = 5. Since C is extremal, we have
a0 = 1, a1 = a2 = · · · = a2m+2 = 0. By Lemma 2.2, we have b0 = 0,
b1 = 1 if m ≥ 2. Also we have b2 = b3 = · · · = bm−1 = 0. Otherwise, S
would contain a vector v of weight less than or equal to 2m− 2 + 1, and
if u ∈ S is a vector of weight 3, then u+v ∈ C with wt(u+v) ≤ 2m+ 2,
a contradiction to the minimum distance C.

Using Eqn. (12) and the above discussion, we have the following.

(36) ci =
i∑

j=0

αijaj = αi0 (0 ≤ i ≤ 2m+ 2)

and

(37) ci =
3m+2−i∑

j=0

βijbj = βi1 +
3m+2−i∑

j=2

βijbj = βi1 (2m+ 3 ≤ i ≤ 3m+ 1).
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Note that c3m+2 = 0.
From Eqn. (36) and Eqn. (37) we have

(38) c2m+2 = α2m+2,0 = β2m+2,1 + β2m+2,mbm.

Therefore, we get:

(39) bm =
α2m+2,0 − β2m+2,1

β2m+2,m

.

From Eqn. (13) and Eqn. (14) we have

(40) α2m+2,0 = 0

and

(41) β2m+2,1 = 2×
(

3m+ 1

m− 1

)
, β2m+2,m = 2.

Therefore, we get:

(42) bm = −
(

3m+ 1

m− 1

)
.

Note that bm is negative. Therefore if m ≥ 2, then the code does not
exist. If m = 1, then C is a (11, 211, 5) extremal code. For this case, we
can easily check that the code is not near-extremal(see Example 3.2 in
Section 3). This completes the second part of Theorem 1.5.

3. Exmaples

In this section, we give two example codes. One is an extremal Type
I code with near-minimal shadow. The other is an extremal Type I code
but not near-minimal.

Example 3.1. There is unique (5, 25, 3) extremal code [7]. We can
easily find a generator matrix G for the code.

(43) G =


0 0 w w2 w2

1 0 w 1 w
w 0 w2 w w2

0 1 w w 1
0 w w2 w2 w

 .

The weight enumerator is

(44) W (1, y) = 1 + 10y3 + 15y4 + 6y5
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and the shadow weight enumerator is

(45) S(1, y) = 20y3 + 12y5.

Therefore the code is near-minimal.

Example 3.2. There is unique (11, 211, 5) extremal code [3]. The
generator matrix is QC11 [3].

(46) QC11 =



0 0 0 0 0 0 1 1 1 1 1
w2 1 w 0 0 0 w w w w2 1
1 1 1 1 1 1 0 0 0 0 0
w w w w w w 0 0 0 0 0
w2 1 w 1 w w2 0 0 0 0 1
0 0 0 w w2 1 0 0 0 w w2

1 w2 w 0 0 0 1 w2 w 0 0
w 1 w2 0 0 0 w 1 w2 0 0
0 0 0 1 w2 w w w2 1 0 0
0 0 0 w 1 w2 1 w w2 0 0
1 w w2 0 0 0 0 0 0 w2 w


.

The weight enumerator is
(47)
W (1, y) = 1 + 198y5 + 198y6 + 990y7 + 495y8 + 1650y9 + 330y10 + 234y11

and the shadow weight enumerator is

(48) S(1, y) = 132y5 + 660y7 + 1100y9 + 156y11.

Therefore QC11 is not near-minimal.

4. Summary

In this paper, we gave the definition of near-minimal shadow and
proved that there is no extremal Type I additive self-dual codes over
GF (4) with near-minimal shadow if the code length n = 6m + 1, n =
6m+ 5(m ≥ 1). We have also considered near-extremal Type I additive
self-dual codes over GF (4) with near-minimal shadow. But we could
not obtain the similar results. In the future work, it is worth while to
improve Table 1.



740 S. Han

References

[1] E.P. Bautista, P. Gaborit, J.-L. Kim, J.L. Walker, s-extremal additive codes,
Adv. Math. Commun. 1 (2007), 111–130.

[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user
language, J. Symbolic Comput. 24 (1997), 235–265.

[3] P. Gaborit, W.C. Huffman, J.-L. Kim, V. Pless, On additive GF (4) codes, in:
A. Barg, S. Litsyn (Eds.), Codes and Association Schemes, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 56, American Mathe-
matical Society, Providence, RI, 2001, 135–149.

[4] S. Han, Additive self-dual codes over GF (4) with minimal shadow, MDPI Infor-
mation 9 81 (2018), 1–11.

[5] S. Han, Near-Extremal Type I Self-Dual Codes with Minimal Shadow over GF (2)
and GF (4), MDPI Information 9 172 (2018), 1–12.

[6] S. Han, On the extremal Type I binary self-dual codes with near-minimal shadow,
submitted.

[7] G. Hhn, Self-dual codes over the Kleinian four group, Math. Ann. 327 (2003),
227–255.

[8] W.C. Huffman, On the classification and enumeration of self-dual codes, Finite
Fields Appl. 11 (2005), 451–490.

[9] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44
(1998), 134–139.

Sunghyu Han
School of Liberal Arts
KoreaTech
Cheonan 31253, Korea
E-mail : sunghyu@koreatech.ac.kr


	1. Introduction
	2. Proof of Theorem ??
	2.1. The case n = 6m+1
	2.2. The case n = 6m+5

	3. Exmaples
	4. Summary
	References

