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APPLICATIONS OF LINKING INEQUALITIES TO AN

ASYMMETRIC BEAM EQUATION

Q-Heung Choi and Tacksun Jung∗

Abstract. We prove that an asymmetric beam equation has at
least two solutions, one of which is a positive solution. To prove the
existence of the other solution, we use linking inequalities.

1. Introduction

We investigate the existence of multiple solutions of the nonlinear
beam equation in an interval (−π

2
, π
2
),

utt + uxxxx + bu+ − |u−|p−1 = f(x, t) in (−π

2
,
π

2
)×R,(1)

u(±π

2
, t) = uxx(±

π

2
, t) = 0,(2)

u is π − periodic in t and even in x and t,(3)

where the nonlinearity −(bu+) crosses eigenvalues and u+ = max{u, 0},
u− = max{−u, 0}. Here we suppose that p > 2 and f = sϕ00 +
αh(x, t)(s > 0), h is bounded. This equation represents a bending beam
supported by cables under a load f. The nonlinearity u+ models the fact
that cables resist expansion but do not resist compression.

Let L be the differential operator, Lu = utt + uxxxx. Then the eigen-
value problem for u(x, t)

Lu = λu in (−π

2
,
π

2
)×R

with (2) and (3), has infinitely many eigenvalues

λmn = (2n+ 1)4 − 4m2 (m,n = 0, 1, 2, · · · )
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and corresponding eigenfunctions ϕmn(m,n ≥ 0) given by

ϕmn = cos 2mt cos(2n+ 1)x

We note that all eigenvalues in the interval (−19, 45) are given by

λ20 = −15 < λ10 = −3 < λ00 = 1 < λ41 = 17

Let Ω be the square [−π
2
, π
2
]× [−π

2
, π
2
] and H the Hilbert space defined

by

H = {u ∈ L2(Ω) : u is even in x and t}.
Then the set of eigenfunctions {ϕmn} is an orthonormal base in H. Hence
equation (1) with (2) and (3) is equivalent to

Lu+ bu+ = f in H.(4)

In [6], the authors showed by degree theory that equation (4) with
constant load 1 + ϵh ( h is bounded ) has at least two solutions. In [1],
the authors showed by a variational reduction method that equation (4)
with constant load 1 + ϵh ( h is bounded ) has at least three solutions
when condition (3) is replaced by

u is π − periodic in t and even in x.(5)

In [5], the author showed by linking method and category theory that the
following asymmetric beam equation has multiple nontrivial solutions

Lu+ bu+ = |u+|p−1 − |u−|q−1 in H.(6)

McKenna and Walter [7] proved that if 3 < b < 15 then at least two π-
periodic solutions exist, one of which is large in amplitude. The existence
of at least three solutions was later proved by Choi, Jung and McKenna
[2] using a variational reduction method. Humphreys [4] proved that
there exists an ε > 0 such that when 15 < b < 15 + ε at least four
periodic solutions exist. Choi and Jung [1] suppose that 3 < b < 15 and
f is generated by eigenfunctions. Since Micheletti and Saccon [8] applied
the limit relative category to studying multiple nontrivial solutions for
a floating beam.

The main result of this paper is the following.

Theorem 1.1. Let Λ−
i < −b(b > 0) and f = se+1 (s > 0). Let up be

the positive solution of (1). Then problem (1) has at least two solutions,
one of which is a positive solution.
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In this paper, we use a variational approach and look for critical points
of a suitable functional I on a Hilbert space H. In Section 2, we find a
suitable functional I on a Hilbert space H and prove the suitable version
of the Palais-Smale condition for the topological method. In Section 3,
we study the geometry of the sub-levels of I and find two linking type
inequalities, relative to two different decompositions of the space H.

2. The Palais Smale condition

To begin with, we consider the associated eigenvalue problem

Lu = λu in (−π
2
, π
2
)×R

u(±π
2
, t) = uxx(±π

2
, t) = 0(7)

u(x, t) = u(−x, t) = u(x,−t) = u(x, t+ π).

A simple computation shows that equation (3) has infinitely many eigen-
values λmn and the corresponding eigenfunctions ϕmn given by

λmn = (2n+ 1)4 − 4m2,

ϕmn(x, t) = cos 2mt cos(2n+ 1)x (m,n = 0, 1, 2, · · · ).
Let Ω be the square [−π

2
, π
2
] × [−π

2
, π
2
] and H the Hilbert space defined

by

(8) H = {u ∈ L2(Ω)|u is even in x and t}.
Then the set {ϕmn|m,n = 0, 1, 2, · · · } is an orthogonal base of H and H
consists of the functions

(9) u(x, t) =
∞∑

m,n=0

amnϕmn(x, t)

with the norm given by

(10) ∥u∥2 =
∞∑

m,n=0

a2mn.

We denote by (Λ−
i )i≥1 the sequence of the negative eigenvalues of

equation (3), by (Λ+
i )i≥1 the sequence of the positive ones, so that

· · · < Λ−
1 = −3 < Λ+

1 = 1 < Λ+
2 = 17 < · · · .

We consider an orthonormal system of eigenfunctions {e−i , e+i , i ≥ 1}
associated with the eigenvalues {Λ−

i ,Λ
+
i , i ≥ 1}.
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The following theorem is the uniqueness result.

Proposition 2.1. Let b < −Λ−
1 and p > 2. Then the equation

Lu+ bu+ − |u−|p−1 = 0 in H(11)

has only the trivial solution.

Proof. We rewrite the above equation as

Lu− Λ+
1 u = −Λ+

1 u− bu+ + |u−|p−1

= −Λ+
1 u

+ − bu+ + |u−|p−1 + Λ1u
− + |u−|p−1.

Multiplying across by e+1 and integrating over Ω,

0 = < [L− Λ+
1 ]u, e

+
1 >

=

∫
Ω

(−Λ+
1 u

+ − bu+ + |u−|p−1 + Λ1u
− + |u−|p−1)e+1 dxdt ≥ 0,

since the condition b < −Λ−
1 imply that −Λ+

1 u
+−bu++|u−|p−1+Λ1u

−+
|u−|p−1 ≥ 0 for all real valued functions u and e+1 (x) > 0 for all x ∈ Ω.
Therefore the only possibility to hold (1) is that u ≡ 0.

Theorem 2.2. Let b < −Λ−
1 , s > 0 and ||h|| = 1. Then there exists

α0 > 0 such that for α < α0 the equation

Lu+ bu+ + |u−|p−1 = se+1 + αh(x, t) in H(12)

has a positive solution.

Proof. Since b < −Λ−
1 < −Λ+

1 , b+ Λ+
1 > 0 Thus the equation

Lu+ bu+ = se+1 in H

has a positive solution up = s
b+Λ+

1

e+1 , which is a positive solution of the

equation

Lu+ bu+ + |u−|p−1 = se+1 in H.

Therefore there exists α0 > 0 such that for α < α0 equation (1) has a
positive solution.

We set

H+ = closure of span{eigenfunctions with eigenvalue ≥ 0},

H− = closure of span{eigenfunctions with eigenvalue ≤ 0}.
We define the linear projections P− : H → H−, P+ : H → H+.
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We also introduce two linear operators R : H → H+, S : H → H− by

S(u) =
∞∑
i=1

a−i e
−
i√

−Λ−
i

, R(u) =
∞∑
i=1

a+i e
+
i√

Λ+
i

if

u =
∞∑
i=1

a−i e
−
i +

∞∑
i=1

a+i e
+
i .

It is clear that S and R are compact and self adjoint on H.

Definition 2.3. Let Ib : H → R be defined by

Ib(u) =
1

2
∥P+u∥2 − 1

2
∥P−u∥2 + b

2
∥[Au]+∥2 −

∫
Ω

G(Au)dxdt

where A = R + S and G(s) =
∫ s

0
g(x, t, τ)dτ , g(x, t, τ) = se+1 − |τ−|p−1.

It is straightforward that

∇Ib(u) = P+u− P−u+ bA(Au)+ − Ag(Au).

Following the idea of Hofer (see [3]) one can show that

Proposition 2.4. Ib ∈ C1,1(H,R). Moreover ∇Ib(u) = 0 if and only
if w = (R + S)(u) is a weak solution of (P), that is,∫

Ω

(w(vtt + vxxxx) + b[w]+v)dxdt =

∫
Ω

g(w)vdxdt

for all smooth v ∈ H.

In this section, we suppose b > 0. Under this assumption, we have a
concern with multiplicity of solutions of equation (1). Here we suppose
that f is defined by equation (2).

In the following, we consider the following sequence of subspaces of
L2(RN) :

Hn = (⊕n
i=1HΛ−

i
)⊕ (⊕n

i=1HΛ+
i
)

where HΛ is the eigenspace associated to Λ.

Lemma 2.5. The functional Ib satisfies (P.S.)
∗
γ condition, with respect

to (Hn), for all γ.

For the proof we refer [2], [5].
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3. Linking theory and main result

Fixed Λ−
i and Λ−

i < −b < Λ−
i−1. We prove the Theorem via a linking

argument.
First of all, we introduce a suitable splitting of the space H. Let

Z1 = ⊕∞
j=i+1HΛ−

j
, Z2 = HΛ−

i
, Z3 = ⊕i−1

j=1HΛ−
j
⊕H+

Lemma 3.1. There exists R such that supv∈Z1⊕Z2,∥v∥=R Ib(v) ≤ 0.

Proof. If v ∈ Z1 ⊕ Z2 then

Ib(v) = −1

2
∥v∥2 + b

2
∥[Sv]+∥2 −

∫
Ω

G(Sv)dxdt.

Since

b

2
∥[Sv]+∥2 −

∫
Ω

G(Sv)dx =

∫
Ω

b

2
([Sv]+)2 − 1

p
([Sv]−)pdxdt,

there exists R such that −1
4
∥v∥2 + b

2
∥[Sv]+∥2 −

∫
Ω
G(Sv)dx ≤ 0 for all

∥v∥ = R. Hence

Ib(v) ≤ −1

4
∥v∥2 ≤ 0

Lemma 3.2. There exists ρ such that infu∈Z2⊕Z3,∥u∥=ρ Ib(u) > 0.

For the proof we refer [5].

Definition 3.3. Let H be an Hilbert space, Y ⊂ H, ρ > 0 and
e ∈ H \ Y , e ̸= 0. Set:

Bρ(Y ) = {x ∈ Y | ∥x∥ ≤ ρ},
Sρ(Y ) = {x ∈ Y | ∥x∥ = ρ},

△ρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ∥σe+ v∥ ≤ ρ},
Σρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ∥σe+ v∥ = ρ} ∪ {v | v ∈ Y, ∥v∥ ≤ ρ}.

Theorem 3.4. Let Λ−
i < −b(b > 0) and f = se+1 (s > 0). Let up be

the positive solution of (1). Then problem (1) has at least two solutions,
one of which is a positive solution.
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Proof. Let e ∈ Z2. By Lemma 3.1 and Lemma 3.2, for a suitable large
R and a suitable small ρ, we have the linking inequality

sup Ib(ΣR(e, Z1)) < inf Ib(Sρ(Z2 ⊕ Z3)).(13)

Moreover (P.S.)∗γ holds. By standard linking arguments, it follows that
there exists a critical point u for Ib with α ≤ Ib(u) ≤ β, where α =
inf Ib(Sρ(Z2⊕Z3)) and β = sup Ib(∆R(e, Z1)). Since α > 0 and Ib(up) =
0, u ̸= up. Therefore then problem (1) has at least two solutions, one of
which is a positive solution.
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