Korean J. Math. 27 (2019), No. 1, pp. 131–140 <https://doi.org/10.11568/kjm.2019.27.1.131>

PSEUDO-METRIC ON KU-ALGEBRAS

Ali N.A. Koam, Azeem Haider, and Moin A. Ansari[∗]

ABSTRACT. In this paper we have introduced the concept of pseudometric which we induced from a pseudo-valuation on KU-algebras and investigated the relationship between pseudo-valuations and ideals of KU-algebras. Conditions for a real-valued function to be a pseudovaluation on KU-algebras are provided.

1. Introduction

Pseudo-metric induce by pseudo-valuations on Hilbert algebras was initially introduced by Busneag $[2]$. Further Busneag $[3]$ proved many results on extensions of pseudo-valuations. Pseudo-valuations in residuated lattices was introduced by Busneag $[4]$ where many theorems based on pseudo-valuations in lattice terms and their extension for residuated lattices to pseudo-valuation from valuations has been shown using the model of Hilbert algebras [\[3\]](#page-8-1).

Logical algebras have become the keen interest for researchers in recent years and intensively studied under the influence of different mathematical concepts. Doh and Kang [\[5\]](#page-8-3) introduced the concept of pseudovaluation on BCK/BCI algebras and studied results based on them. Ghorbani [\[6\]](#page-8-4) defined congruence relations and gave quotient structure

Received November 8, 2018. Revised February 19, 2019. Accepted February 24, 2019.

²⁰¹⁰ Mathematics Subject Classification: 03G25, 03C05.

Key words and phrases: KU-algebra, KU-ideal, pseudo-valuations, pseudo-metric. ∗ Corresponding author.

c The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

of BCI-algebras based on pseudo-valuation. Zhan and Jun [\[12\]](#page-8-5) studied pseudo valuation on R_0 -algebras. Based on the concept of pseudovaluation in R_0 -algebras, Yang and Xin [\[10\]](#page-8-6) characterized pseudo prevaluations on EQ-algebras.

KU-algebras were introduced by Prabpayak and Leerawat [\[8\]](#page-8-7) in 2009. Further Prabpayak and Leerawat [\[9\]](#page-8-8) studied homomorphisms and related properties with KU-algebras. Naveed et. al [\[11\]](#page-8-9) introduced the concept of cubic KU-ideals of KU-algebras. Recently Ansari and Koam [\[1\]](#page-8-10) gave the concept of roughness in KU-Algebras.

We define a pseudo-valuations on KU-algebras using the model of Busneag and introduce a pseudo-metric on KU-algebras. We also prove that the binary operation defined on KU-algebras is uniformly continuous under the induced pseudo-metric.

2. Preliminaries

In this section, we shall consider concepts based on KU-algebras, KUideals and other important terminologies with examples and some related results.

DEFINITION 1. [\[8\]](#page-8-7) By a KU-algebra we mean an algebra $(X, \circ, 1)$ of type $(2,0)$ with a single binary operation \circ that satisfies the following identities: for any $x, y, z \in X$,

(ku1) $(x \circ y) \circ [(y \circ z) \circ (x \circ z)] = 1$, $(ku2)$ $x \circ 1 = 1$, $(ku3) 1 \circ x = x,$ (ku4) $x \circ y = y \circ x = 1$ implies $x = y$.

In what follows, let $(X, \circ, 1)$ denote a KU-algebra unless otherwise specified. For brevity we also call X a KU-algebra. In X we can define a binary relation \leq by : $x \leq y$ if and only if $x \circ y = 1$.

LEMMA 1. [\[8\]](#page-8-7) $(X, \circ, 1)$ is a KU-algebra if and only if it satisfies: $(ku5)$ $x \circ y \leq (y \circ z) \circ (x \circ z),$ (ku6) $x < 1$, (ku7) $x \leq y, y \leq x$ implies $x = y$, LEMMA 2. In a KU-algebra, the following identities are true $[7]$:

 (1) $z \circ z = 1$, (2) $z \circ (x \circ z) = 1$,

- (3) $x \leq y$ imply $y \circ z \leq x \circ z$,
- (4) $z \circ (y \circ x) = y \circ (z \circ x),$
- (5) $y \circ [(y \circ x) \circ x] = 1$, for all $x, y, z \in X$,

EXAMPLE 1. [\[7\]](#page-8-11) Let $X = \{1, 2, 3, 4, 5\}$ in which \circ is defined by the following table

It is easy to see that X is a KU-algebra.

DEFINITION 2. [\[8\]](#page-8-7) A non-empty subset A of a KU-algebra X is called a KU-ideal of X if it satisfies the following conditions:

- (1) 1 \in A,
- (2) $x \circ (y \circ z) \in A$, $y \in A$ imply $x \circ z \in A$, for all $x, y, z \in X$.

EXAMPLE 2. [\[1\]](#page-8-10) Let $X = \{1, 2, 3, 4, 5, 6\}$ in which \circ is defined by the following table:

O		$\overline{2}$	3	4	5	6
		$\overline{2}$	3	4	$\overline{5}$	6
$\overline{2}$	1	1	3	3	5	6
3	1			$\overline{2}$	5	6
4	1	1	1	1	5	6
5	1	1		$\overline{2}$		6
6			$\overline{2}$			

Clearly $(X, \circ, 1)$ is a KU-algebra. It is easy to show that $A = \{1, 2\}$ and $B = \{1, 2, 3, 4, 5\}$ are KU-ideals of X.

3. Pseudo-valuations on KU-algebras

DEFINITION 3. A real-valued function ζ on a KU-algebra X is called a pseudo-valuation on X if it satisfies the following two conditions:

(1) $\zeta(1) = 0$

(2) $\zeta(x \circ z) \leq \zeta(x \circ (y \circ z)) + \zeta(y) \; \forall x, y, z \in X$

A pseudo-valuation ζ on a KU-algebra X satisfying the following condition:

 $\zeta(x) = 0 \Rightarrow x = 1 \; \forall x \in X$ is called a valuation on X.

EXAMPLE 3. Let $X = \{1, 2, 3, 4\}$ be a set with operation \circ . A table for such X is defined by following table

Here X is a KU-algebra. We find that a real valued function defined on X_{by}

 $\zeta(1) = 0, \, \zeta(2) = 1, \, \zeta(3) = \zeta(4) = 3$, is a pseudo-valuation on X.

PROPOSITION 1. Let ζ be a pseudo-valuation on a KU-algebra X. Then we have

(1) $x \leq y \Rightarrow \zeta(y) \leq \zeta(x)$. (2) $\zeta(x \circ y) \leq \zeta(y) \ \forall x, y \in X$. (3) $\zeta((x \circ (y \circ z)) \circ z) \leq \zeta(x) + \zeta(y) \; \forall x, y, z \in X.$

Proof. (1) Let $x, y \in X$ be such that $x \leq y$. Now choosing $x = 1$, $y = x, z = y$, in Definition [3\(](#page-2-0)1), (2) and using (ku3) we get

 $\zeta(y) = \zeta(1 \circ y) \leq \zeta(1 \circ (x \circ y)) + \zeta(x) = \zeta(1 \circ 1) + \zeta(x) = \zeta(1) + \zeta(x) =$ $\zeta(x)$.

(2) If we choose $z = y$ in Definition [3\(](#page-2-0)2), then we get $\zeta(x \circ y) \leq$ $\zeta(x \circ (y \circ y)) + \zeta(y) = \zeta(x \circ 1) + \zeta(y) = \zeta(1) + \zeta(y) = \zeta(y) \,\forall x, y \in X.$

(3) If we choose $x = x \circ (y \circ z)$ in Definition [3\(](#page-2-0)2) then we get

$$
(3.1) \qquad \zeta((x \circ (y \circ z)) \circ z) \le \zeta((x \circ (y \circ z)) \circ (y \circ z)) + \zeta(y)
$$

Now using the relation \leq and Lemma [2](#page-1-0) (5), we get $x \leq (x \circ (y \circ z)) \circ (y \circ z)$. By Proposition [1,](#page-3-0) it follows that $\zeta((x \circ (y \circ z)) \circ (y \circ z)) \leq \zeta(x)$ using this relation in Equation [3.1,](#page-3-1) we get $\zeta((x \circ (y \circ z)) \circ z) \leq \zeta(x) + \zeta(y) \,\forall x, y, z \in$ X. \Box

COROLLARY 1. Every pseudo-valuation ζ on a KU-algebra X satisfies the following inequality $\zeta(x) > 0 \ \forall x \in X$.

PROPOSITION 2. If ζ is a pseudo-valuation on a KU-algebra X, then we have

 $\zeta((x \circ y) \circ y) \leq \zeta(x) \; \forall x, y \in X.$

Proof. Choosing $y = 1$ and $z = y$ in Proposition [1,](#page-3-0) using (ku3) and Definition $3(1)$ we get that

 $\zeta((x \circ y) \circ y) = \zeta((x \circ (1 \circ y)) \circ y) \leq \zeta(x) + \zeta(1) = \zeta(x) \ \forall x, y \in X. \quad \Box$

The following theorem provides conditions for a real valued function on a KU-algebra X to be a pseudo-valuation on X.

THEOREM 1. Let ζ be a real valued function on a KU-algebra X satisfying the following conditions.

(1) If $\zeta(a) \leq \zeta(x)$ $\forall x \in X$, then $\zeta(a) = 1$. (2) $\zeta(x \circ y) \leq \zeta(y) \; \forall x, y \in X$. (3) $\zeta((x \circ (y \circ z)) \circ z) \leq \zeta(x) + \zeta(y).$ Then ζ is a pseudo-valuation on X

Proof. From Lemma [2](#page-1-0) (1) and given condition (2), we have $\zeta(1) =$ $\zeta(x \circ x) \leq \zeta(x) \,\forall x \in X$ and hence $\zeta(1) = 0$, using given condition (1). Now, from (ku3), Lemma [2](#page-1-0) (1) and given condition (3), we get $\zeta(y)$ = $\zeta(1 \circ y) = \zeta(((x \circ y) \circ (x \circ y)) \circ y) \leq \zeta(x \circ y) + \zeta(x) \,\forall x, y \in X$. It follows from Lemma [2](#page-1-0) (4) that $\zeta(x \circ z) \leq \zeta(y \circ (x \circ z)) + \zeta(y) = \zeta(x \circ (y \circ z)) + \zeta(y)$ $\forall x, y, z \in X$. Therefore ζ is a pseudo-valuation on X. \Box

COROLLARY 2. Let ζ be a real-valued function on a KU-algebra X satisfying the following conditions:

(1) $\zeta(1) = 0$

(2) $\zeta(x \circ y) \leq \zeta(y)$, $\forall x, y \in X$).

(3) $\zeta((x \circ (y \circ z) \circ z) \leq \zeta(x) + \zeta(y))$, $\forall x, y, z \in X$. Then ζ is a pseudo-valuation on X.

THEOREM 2. If ζ is a pseudo-valuation on a KU-algebra X, then $\zeta(y) \leq \zeta(x \circ y) + \zeta(x)$, $\forall x, y \in X$.

Proof. Let $m = (x \circ y) \circ y$ for any $x, y \in X$, and $n = x \circ y$.

Then $y = 1 \circ y = (((x \circ y) \circ y) \circ ((x \circ y) \circ y)) \circ y = (m \circ (n \circ y)) \circ y$. It follows from Theorem [2,](#page-4-0) Propositions [1](#page-3-0) and Propositions [2](#page-3-2) that $\zeta(y)$ = $\zeta((m \circ (n \circ y)) \circ y) \leq \zeta(m) + \zeta(n) = \zeta((x \circ y) \circ y) + \zeta(x \circ y) \leq \zeta(x) + \zeta(x \circ y).$ This completes the proof. \Box

THEOREM 3. Let ζ be a real-valued function on a KU-algebra X satisfying the following conditions.

(1) $\zeta(1) = 0$

(2) $\zeta(y) \leq \zeta(x \circ y) + \zeta(x), \forall x, y \in X.$

Then ζ is a pseudo-valuation on X.

Proof. By Lemma [2](#page-1-0) (4), Lemma 2 (5) and given condition (2) , we have

 $\zeta[(b \circ (a \circ x) \circ x)] \leq \zeta[b \circ ((b \circ (a \circ x)) \circ x] + \zeta(b))$ (by given condition (2))

 $\leq \zeta$ [(b \circ (a \circ x)) \circ (b \circ x)] + ζ (b) (by Lemma [2](#page-1-0) (4)) $=\zeta[(a\circ(b\circ x))\circ(b\circ x)]+\zeta(b)$ (by Lemma [2](#page-1-0) (4)). = $\zeta[a \circ [(a \circ (b \circ x)) \circ (b \circ x)]] + \zeta(a) + \zeta(b)$ (by given condition (2)) $=\zeta(1) + \zeta(a) + \zeta(b)$ (by Lemma [2\(](#page-1-0)5)) $= \zeta(a) + \zeta(b).$

Also $\zeta(x \circ y) \leq \zeta(y)$ by Lemma [2\(](#page-1-0)2) and Proposition [1\(](#page-3-0)1). Using Corollary [2](#page-4-1) we get that ζ is a pseudo-valuation on X. \Box

PROPOSITION 3. If ζ is a pseudo-valuation on a KU-algebra X, then (3.2) $a < b \circ x \Rightarrow \zeta(x) < \zeta(a) + \zeta(b) \forall a, b, x \in X.$

Proof. Suppose that $a, b, x \in X$ such that $a \leq b \circ x$. Then by Proposition [1](#page-3-0) (3) and Theorem [2,](#page-4-0) we have that

$$
\begin{aligned} \zeta(x) &\le \zeta((a \circ (b \circ x)) \circ x) + \zeta(a \circ (b \circ x)) = \zeta((a \circ (b \circ x)) \circ x) + \zeta(1) = \\ \zeta((a \circ (b \circ x)) \circ x) &< \zeta(a) + \zeta(b). \end{aligned}
$$

THEOREM 4. Let ζ be a real-valued function on a KU-algebra X. If ζ satisfies $\zeta(1) = 0$ and condition [\(3.2\)](#page-5-0), then ζ is a pseudo-valuation on X.

Proof. From Lemma [2](#page-1-0) (5), we have $a \circ ((a \circ x) \circ x) = 1$, which implies from $x \leq y \iff x \circ y = 1$ that $a \leq (a \circ x) \circ x, \forall a, x \in X$. Thus it follows from Proposition [3](#page-5-1) that $\zeta(x) \leq \zeta(a \circ x) + \zeta(a), \forall a, x \in X$. Hence from Theorem [3,](#page-4-2) we conclude that ζ is a pseudo-valuation on X. \Box

PROPOSITION 4. Suppose that X is a KU-algebra. Then every pseudovaluation ζ on X satisfies the following inequality:

 $\zeta(x \circ z) \leq \zeta(x \circ y) + \zeta(y \circ z), \forall x, y, z \in X.$

Proof. It follows from (ku1) and Theorem [4.](#page-5-2)

THEOREM 5. If ζ is a pseudo-valuation on a KU-algebra X, then the set $I := \{x \in X | \zeta(x) = 0\}$ is an ideal of X.

 \Box

Proof. We have $\zeta(1) = 0$ and hence $1 \in I$. Next $x, y, z \in X$ be such that $y \in I$ and $x \circ (y \circ z) \in I$. Then $\zeta(y) = 0$ and $\zeta(x \circ (y \circ z)) = 0$. By Definition [3\(](#page-2-0)2) we get that $\zeta(x \circ z) \leq \zeta(x \circ (y \circ z)) + \zeta(y) = 0$ so that $\zeta(x \circ z) = 0$. Hence $x \circ z \in I$, and therefore I is an ideal of X. \Box

EXAMPLE 4. Let $X = \{1, 2, 3, 4, 5, 6\}$ in which \circ is defined by the following table:

Clearly X is a KU-algebra. Now define a real-valued function ζ on X by $\zeta(1) = \zeta(2) = \zeta(3) = 0$, $\zeta(4) = 3$, $\zeta(5) = 1$ and $\zeta(6) = 2$. Then $I := \{x \in X \mid \zeta(x) = 1\} = \{2, 3, 4\}$ is the ideal of X. But ζ is not a pseudo-valuation as $\zeta(3 \circ 5) \nleq \zeta(3 \circ (5 \circ 5)) + \zeta(5)$.

4. Pseudo-metric on KU-algebras

In this section we define pseudo-metric on KU-algebras and show related results.

THEOREM 6. Let X be a KU-algebra and ζ be a pseudo-valuation on X. Then the mapping $d_{\zeta}: X \times X \to \mathbb{R}$ defined by $d_{\zeta}(x, y) =$ $\zeta(x \circ y) + \zeta(y \circ x) \ \forall (x, y) \in X \times X$ is a metric on X, called pseudo-metric induced by pseudo-valuation ζ and correspondingly (X, d_{ζ}) is called a pseudo-metric space.

Proof. Clearly, $d_{\zeta}(x, y) \geq 1$, $d_{\zeta}(x, x) = 1$ and $d_{\zeta}(x, y) = d_{\zeta}(y, x)$ $\forall x, y \in X$. For any $x, y, z \in X$ from Proposition [4](#page-5-3), we get that $d_{\zeta}(x, y)$ + $d_{\zeta}(y, z) = [\zeta(x \circ y) + \zeta(y \circ x)] + [\zeta(y \circ z) + \zeta(z \circ y)] = [\zeta(x \circ y) + \zeta(y \circ z)]$ $[z]$ + [$\zeta(z \circ y) + \zeta(y \circ x)$] $\geq \zeta(x \circ z) + \zeta(z \circ x) = d_{\zeta}(x, z)$. Hence (X, d_{ζ}) \Box is a pseudo-metric space.

PROPOSITION 5. Let X be a KU-algebra. Then every pseudo-metric d_{ζ} induced by pseudo-valuation ζ satisfies the following inequalities:

(1) $d_{\zeta}(x, y) \geq d_{\zeta}(x \circ a, y \circ a)$ (2) $d_{\mathcal{C}}(x, y) \geq d_{\mathcal{C}}(a \circ x, a \circ y),$ (3) $d_{\zeta}(x \circ y, a \circ b) \leq d_{\zeta}(x \circ y, a \circ y) + d_{\zeta}(a \circ y, a \circ b) \ \forall x, y, a, b \in X.$

Proof. Let $x, y, a \in X$. By (ku5) $x \circ y \leq (y \circ a) \circ (x \circ a)$ and $y \circ x \leq (x \circ a)$ a)∘(y∘a). It follows from Proposition 1(1) that $\zeta(x \circ y) \geq \zeta((y \circ a) \circ (x \circ a))$ and $\zeta(y \circ x) \geq \zeta((x \circ a) \circ (y \circ a))$ so that $d_{\zeta}(x, y) = \zeta(x \circ y) + \zeta(y \circ x) \geq$ $\zeta((y \circ a) \circ (x \circ a)) + \zeta((x \circ a) \circ (y \circ a)) = d_{\zeta}(x \circ a, y \circ a).$

(2) Similar and followed by proof (1).

(3) Followed by definition of pseudo-metric.

 \Box

THEOREM 7. Let ζ be a real-valued function on a KU-algebra X, if d_{ζ} is a pseudo-metric on X, then $(X \times X, d_{\zeta}^{\circ})$ is a pseudo-metric space, where $d_{\zeta}^{\circ}((x, y), (a, b)) = max\{d_{\zeta}(x, a), d_{\zeta}(y, b)\} \ \forall (x, y), (a, b) \in X \times X.$

Proof. Suppose d_{ζ} is a pseudo-metric on X. For any $(x, y), (a, b) \in$ $X \times X$, we have $d_{\zeta}^{\circ}((x, y), (x, y)) = \max \{d_{\zeta}(x, x), d_{\zeta}(y, y)\} = 0$ and $d^{\circ}_{\zeta}((x, y), (a, b)) = \max \{d_{\zeta}(x, a), d_{\zeta}(y, b)\} = \max \{d_{\zeta}(a, x), d_{\zeta}(b, y)\}$ $d^{\check{\circ}}((a, b), (x, y)).$ Now let $(x, y), (a, b), (u, v) \in X \times X$. Then we have $d_{\zeta}^{o}((x, y), (u, v))$ + $d_{\zeta}^{\circ}((u,v),(a,b)) =$ max $\{d_{\zeta}(x, u), d_{\zeta}(y, v)\}\ + \max \{d_{\zeta}(u, a), d_{\zeta}(v, b)\}\ \geq \max \{d_{\zeta}(x, u) +$ $d_{\zeta}(u, a), d_{\zeta}(y, v) + d_{\zeta}(v, b) \} \ge \max \{ d_{\zeta}(x, a), d_{\zeta}(y, b) \} = d_{\zeta}^{\circ}((x, y), (a, b)).$ Hence $(X \times X, d_{\zeta}^o)$ is a pseudo-metric space. \Box

COROLLARY 3. If $\zeta : X \to \mathbb{R}$ is a pseudo-valuation on a KU-algebra X, then $(X \times X, d_{\zeta}^o)$ is a pseudo-metric space.

THEOREM 8. Let X be a KU-algebra. Further if $\zeta : X \to \mathbb{R}$ is a valuation on X, then (X, d_{ζ}) is a metric space.

Proof. Suppose ζ is a valuation on X. Then (X, d_{ζ}) is a pseudo-metric space by Theorem 6. Further consider $x, y \in X$ be such that $d_{\mathcal{C}}(x, y) = 0$. Then $0 = d_{\zeta}(x, y) = \zeta(x \circ y) + \zeta(y \circ x)$, and hence $\zeta(x \circ y) = 0$ and $\zeta(y \circ x) = 0$ since $\zeta(x) \geq 0$ $\forall x \in X$. And, since ζ is a valuation on X, it follows that $x \circ y = 1$ and $y \circ x = 1$ so from condition in the given theorem that $x = y$. Hence (X, d_{ζ}) is a metric space. П

THEOREM 9. Let X be a KU-algebra. If $\zeta : X \to \mathbb{R}$ is a valuation on X, then $(X \times X, d_{\zeta}^o)$ is a metric space.

Proof. From Corollary 3, we have that $(X \times X, d_{\zeta}^{\circ})$ is a pseudo-metric space. Suppose that $(x, y), (a, b) \in X \times X$ be such that $d_{\zeta}^{\circ}((x, y), (a, b)) =$ 0. Then $0 = d_{\zeta}^{\circ}((x, y), (a, b)) = \max \{d_{\zeta}(x, a), d_{\zeta}(y, b)\},\$ and so $d_{\zeta}(x, a) =$ $0 = d_{\zeta}(y, b)$ since $d_{\zeta}(x, y) \geq 0 \ \forall (x, y) \in X \times X$. Hence $0 = d_{\zeta}(x, a)$ $\zeta(x \circ a) + \zeta(a \circ x)$ and $0 = d_{\zeta}(y, b) = \zeta(y \circ b) + \zeta(b \circ y)$. It follows that $\zeta(x \circ a) = 0 = \zeta(a \circ x)$ and $\zeta(y \circ b) = 0 = \zeta(b \circ y)$ so that $x \circ a = 1 = a \circ x$

and $y \circ b = 0 = b \circ y$. Now we have $a = x$ and $b = y$, and so $(x, y) = (a, b)$. Therefore $(X \times X, d_{\zeta}^{\circ})$ is a metric space. \Box

THEOREM 10. Let X be a KU-algebra. If ζ is a valuation on X, then the operation \circ in X is uniformly continuous.

Proof. Consider for any $\delta > 0$, if $d^{\circ}_{\zeta}((x, y), (a, b)) < \frac{\delta}{2}$ $\frac{\delta}{2}$ then $d_{\zeta}(x, a) < \frac{\delta}{2}$ 2 and $d_{\zeta}(y,b) < \frac{\delta}{2}$ $\frac{\delta}{2}$. This implies that $d_{\zeta}(x \circ y, a \circ b) \leq d_{\zeta}(x \circ y, a \circ y) +$ $d_{\zeta}(a \circ y, a \circ b) \leq d_{\zeta}(x, a) + d_{\zeta}(y, b) < \frac{\delta}{2} + \frac{\delta}{2} = \delta$ (from Proposition [5\)](#page-6-0). Therefore the operation $\circ: X \times X \to X$ is uniformly continuous.

References

- [1] Moin A. Ansari and Ali N. A. Koam, Rough Approximations in KU-Algebras, Italian Journal of Pure and Applied Mathematics N. 40, (2018), 679–691.
- [2] D. Busnęag, *Hilbert algebras with valuations*, Math. Japon. 44 (2), (1996), 285– 289.
- [3] D. Busneag, On extensions of pseudo-valuations on Hilbert algebras, Discrete Mathematics, **263** (1–3), (2003), 11–24.
- [4] D. Busneag, *valuations on residuated latices*, An. Univ. Craiova. Ser. Math. Inform. 34 (2007), 21–28.
- [5] M.I. Doh and M.S. Kang, $BCK/BCI\text{-}algebras$ with pseudo-valuation, Honam Mathematical J. 32 (2) (2010), 271–226.
- [6] S. Ghorbani, Quotient BCI-algebras induced by pseudo-valuations, Iranian J. of Math. Sc. and Inform. 5 (2010), 13–24.
- [7] S.M. Mostafa, M.A. Abd-Elnaby and M.M.M. Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum. 63 (6) (2011), 3139–3149.
- [8] Prabpayak and Leerawat, On ideals and congruences in KU-algebras, Scienctia Magna J. 5 (1) (2009), 54–57.
- [9] Prabpayak and Leerawat, On Isomorphisms of KU-algebras, Scientia Magna J. 5 (3) (2009), 25–31.
- [10] Y. Yang, X. Xin, EQ-algebras with pseudo pre-valuations, Italian J. of Pure and Applied Maths, 36 (2017), 29–48.
- [11] Naveed Yaqoob, Samy M. Mostafa and Moin A. Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebras, Vol. 2013, Article ID 935905, (2013), 10 pages.
- [12] J. Zhan and Y. B. Jun, *(Implicative)* pseudo-valuations on R_0 -algebras, U.P.B., Scientific Bulletin, 75 (2013), 101–112.

Ali N.A. Koam

Department of Mathematics, College of Science Post Box 2097 New Campus, Jazan University Jazan, KSA E -mail: akoum@jazanu.edu.sa

Azeem Haider

Department of Mathematics, College of Science Post Box 2097 New Campus, Jazan University Jazan, KSA $E\text{-}mail:$ aahaider@jazanu.edu.sa

Moin A. Ansari

Department of Mathematics, College of Science Post Box 2097 New Campus, Jazan University Jazan, KSA E - $mail:$ maansari@jazanu.edu.sa