THE ZEROTH-ORDER GENERAL RANDIĆ INDEX OF GRAPHS WITH A GIVEN CLIQUE NUMBER

JIANWEI DU*, YANLING SHAO, AND XIAOLING SUN[†]

ABSTRACT. The zeroth-order general Randić index ${}^{0}R_{\alpha}(G)$ of the graph G is defined as $\sum_{u \in V(G)} d(u)^{\alpha}$, where d(u) is the degree of vertex u and α is an arbitrary real number. In this paper, the maximum value of zeroth-order general Randić index on the graphs of order n with a given clique number is presented for any $\alpha \neq 0, 1$ and $\alpha \notin (2, 2n-1]$, where n = |V(G)|. The minimum value of zeroth-order general Randić index on the graphs with a given clique number is also obtained for any $\alpha \neq 0, 1$. Furthermore, the corresponding extremal graphs are characterized.

1. Introduction

In this paper, we are concerned with undirected simple connected graphs only. Let G = (V(G), E(G)) denote a graph with vertex set V(G) and edge set E(G). The degree of a vertex $u \in V(G)$ is denoted by $d_G(u)$ (d(u) for short). Denote by G-uv the graph that obtained from G by deleting the edge $uv \in E(G)$. Similarly, G + uv is the graph that obtained from G by adding an edge $uv \notin E(G)$, where $u, v \in V(G)$. A tree is a connected graph with n vertices and n-1 edges. The chromatic

Received January 29, 2019. Revised August 03, 2020. Accepted August 05, 2020. 2010 Mathematics Subject Classification: 05C07, 92E10.

Key words and phrases: zeroth-order general Randić index, chromatic number, clique number.

[†] This work was supported by the Shanxi Province Science Foundation for Youths [grant number 201901D211227].

^{*} Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

number of a graph is the minimum number of colors such that the graph can be colored with these colors in such a way that no two adjacent vertices have the same color. We use $\chi(G)$ to denote the chromatic number of a graph G. A clique of a graph G is a subset S of V such that any two vertices in G[S] (the subgraph of G induced by S) are adjacent. The number of vertices in a largest clique of G is called the clique number of G, and it is denoted by $\omega(G)$. As usual, we use P_n , S_n and K_n to denote the path, the star and the complete graph of order n, respectively.

The numerical quantities of a graph which are invariant under graph isomorphism are called topological indices [27]. The Randić (or connectivity) index of G, which is one of most popular topological indices, is defined as [23]

$$R(G) = \sum_{uv \in E(G)} (d(u)d(v))^{-\frac{1}{2}}.$$

Randić himself [23] demonstrated that this index is well correlated with a variety of physico-chemical properties of various classes of organic compounds. Eventually, two books [12,13] are devoted for this structure-descriptor.

In [3], Bollobás and Erdős generalized R(G) by replacing the exponent -1/2 with an arbitrary real number α , which is called the general Randić index and is denoted by R_{α} , i.e.,

$$R_{\alpha}(G) = \sum_{uv \in E(G)} (d(u)d(v))^{\alpha}.$$

The zeroth-order Randić index, conceived by Kier and Hall [14], is

$${}^{0}R(G) = \sum_{u \in V(G)} d(u)^{-\frac{1}{2}}.$$

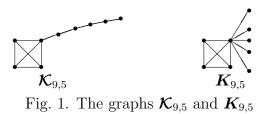
Li and Zheng [20] defined the zeroth-order general Randić index of a graph G as

$${}^{0}R_{\alpha}(G) = \sum_{u \in V(G)} d(u)^{\alpha}.$$

for any real number α .

The zeroth-order general Randić index ${}^{0}R_{2}(G)$ is the well-known first Zagreb index $M_{1}(G) = \sum_{u \in V(G)} d(u)^{2}$ which is first introduced in [8],

where Gutman and Trinajstić examined the dependence of total π electron energy on molecular structure.



Let $\mathcal{K}_{n,n-k}$ and $\mathbf{K}_{n,n-k}$ be the graph obtained by identifying one vertex of K_k with a pendent vertex of path P_{n-k+1} and the graph obtained by identifying one vertex of K_k with the central vertex of star S_{n-k+1} , respectively. For example, $\mathcal{K}_{9,5}$ and $\mathcal{K}_{9,5}$ are shown as Fig. 1. A complete k-partite graph whose partition sets differ in size by at most 1 is called Turán graph, which is denoted by $\mathbf{T}_n(k)$. Let us denote by $\chi_{n,k}$ the set of the n-vertex graphs with chromatic number k, and $\mathcal{W}_{n,k}$ the set of the n-vertex graphs with clique number k, respectively. We can see [4] for other notations.

In recent years, the zeroth-order general Randić index has been studied extensively. Pavlović [22] determined the (n, m)-graph with the maximum zeroth-order Randić index. Li and Zhao [19] presented trees with the first three minimum and maximum zeroth-order general Randić index, they also presented chemical trees with the minimum, secondminimum and maximum, second-maximum zeroth-order general Randić index. Zhang et al. [30] characterized the unicyclic graphs with the first three minimum and maximum zeroth-order general Randić index. Zhang, Wang and Cheng [31] determined bicyclic graphs with the first three minimum and maximum zeroth-order general Randić index. Hu, Li, Shi and Xu [9] obtained some bounds on connected (n, m)-graphs with the minimum and maximum zeroth-order general Randić index. Hu, Li, Shi, Xu and Gutman [10] determined the (n, m)-chemical graphs with the minimum and maximum zeroth-order general Randić index.

In this paper, we present the maximum value of zeroth-order general Randić index on $\mathcal{W}_{n,k}$ for any $\alpha \neq 0, 1$ and $\alpha \notin (2, 2n - 1]$. We also obtain the minimum value of zeroth-order general Randić index on $\mathcal{W}_{n,k}$ for any $\alpha \neq 0, 1$. Furthermore, the corresponding extremal graphs are characterized.

J. Du, Y. Shao, and X. Sun

2. Preliminaries

Note that ${}^{0}R_{0}(G) = |V(G)| = n$ and ${}^{0}R_{1}(G) = 2|E(G)|$. Therefore, in the following we always assume that $\alpha \neq 0, 1$.

By the definition of zeroth-order general Randić index, these two lemmas are obvious and can be found in [28].

LEMMA 2.1. ([28]) Let G = (V, E) be a simple connected graph. If $e = uv \notin E(G), \ u, v \in V(G), \ then$ (i) ${}^{0}R_{\alpha}(G) < {}^{0}R_{\alpha}(G + e) \ for \ \alpha > 0;$ (ii) ${}^{0}R_{\alpha}(G) > {}^{0}R_{\alpha}(G + e) \ for \ \alpha < 0.$

LEMMA 2.2. ([28]) Let G = (V, E) be a simple connected graph. If $e \in E(G)$, then

(i) ${}^{0}R_{\alpha}(G) > {}^{0}R_{\alpha}(G-e)$ for $\alpha > 0$; (ii) ${}^{0}R_{\alpha}(G) < {}^{0}R_{\alpha}(G-e)$ for $\alpha < 0$.

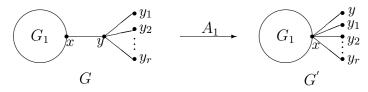


Fig. 2. Transformation A_1 .

Transformation A_1 : Let G be a graph as shown in Fig. 2, where $xy \in E(G), d_G(x) \ge 2, N_G(y)/\{x\} = \{y_1, y_2, \dots, y_r\} (y_1, y_2, \dots, y_r \text{ are pendant vertices})$. Set $G' = G - \{yy_1, yy_2, \dots, yy_r\} + \{xy_1, xy_2, \dots, xy_r\}$, as shown in Fig. 2.

LEMMA 2.3. ([5]) Let G and G' be graphs in Fig. 2. Then (i) ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$; (ii) ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$ for $0 < \alpha < 1$.

Fig. 3. The graphs in Remark 2.4.

REMARK 2.4. By repeating Transformation A_1 , any tree T attached to a graph G can be changed into a star as showed in Fig. 3. Furthermore, the zeroth-order general Randić indices increase for $\alpha > 1$ or $\alpha < 0$, and the zeroth-order general Randić indices decrease for $0 < \alpha < 1$.

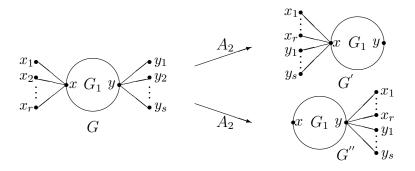


Fig. 4. Transformation A_2 .

Transformation A_2 : Let G be a graph as shown in Fig. 4, and $x, y \in V(G)$, where x_1, x_2, \dots, x_r are pendant vertices adjacent to x, and y_1, y_2, \dots, y_s are pendant vertices adjacent to y. Set $G' = G - \{yy_1, yy_2, \dots, yy_s\} + \{xy_1, xy_2, \dots, xy_s\}, G'' = G - \{xx_1, xx_2, \dots, xx_r\} + \{yx_1, yx_2, \dots, yx_r\}$, as shown in Fig. 4.

LEMMA 2.5. Let G, G' and G'' be graphs in Fig. 4. Then (i) either ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ or ${}^{0}R_{\alpha}(G'') > {}^{0}R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0;$

(ii) either
$${}^{0}R_{\alpha}(G) < {}^{0}R_{\alpha}(G)$$
 or ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$ for $0 < \alpha < 1$.

Proof. By the definition of zeroth-order general Randić index and the Lagrange mean value theorem, we have

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = (d_{G}(x) + s)^{\alpha} + (d_{G}(y) - s)^{\alpha} - (d_{G}(x)^{\alpha} + d_{G}(y)^{\alpha})$$

= $(d_{G}(x) + s)^{\alpha} - d_{G}(x)^{\alpha} - [d_{G}(y)^{\alpha} - (d_{G}(y) - s)^{\alpha}]$
= $s\alpha(\xi_{1}^{\alpha-1} - \eta_{1}^{\alpha-1}),$

where
$$d_G(x) < \xi_1 < d_G(x) + s$$
, $d_G(y) - s < \eta_1 < d_G(y)$.
 ${}^0R_{\alpha}(G'') - {}^0R_{\alpha}(G) = (d_G(x) - r)^{\alpha} + (d_G(y) + r)^{\alpha} - (d_G(x)^{\alpha} + d_G(y)^{\alpha})$
 $= (d_G(y) + r)^{\alpha} - d_G(y)^{\alpha} - [d_G(x)^{\alpha} - (d_G(x) - r)^{\alpha}]$
 $= r\alpha(\eta_2^{\alpha-1} - \xi_2^{\alpha-1}),$

where $d_G(x) - r < \xi_2 < d_G(x), \ d_G(y) < \eta_2 < d_G(y) + r.$

If $d_G(y) \leq d_G(x)$, then ${}^0R_{\alpha}(G') - {}^0R_{\alpha}(G) > 0$, i.e., ${}^0R_{\alpha}(G') > {}^0R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$; otherwise, ${}^0R_{\alpha}(G'') > {}^0R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$.

If $d_G(y) \leq d_G(x)$, then ${}^0R_{\alpha}(G') < {}^0R_{\alpha}(G)$ for $0 < \alpha < 1$; otherwise, ${}^0R_{\alpha}(G'') < {}^0R_{\alpha}(G)$ for $0 < \alpha < 1$.

Transformation A_3 : Let G be a graph as shown in Fig. 5, where $G_1 \ncong K_1$ and $y \in V(G_1)$. That is, we use G to denote the graph obtained from identifying y with the vertex x_r of a path $x_1x_2\cdots x_{r-1}x_r\cdots x_n$, 1 < r < n. Set $G' = G - x_{r-1}x_r + x_nx_{r-1}$, as shown in Fig. 5.

LEMMA 2.6. Let G and G' be graphs in Fig. 5. Then (i) ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$; (ii) ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ for $0 < \alpha < 1$.

Proof. We notice that

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = (d_{G_{1}}(y) + 1)^{\alpha} + 2^{\alpha} - (d_{G_{1}}(y) + 2)^{\alpha} - 1$$

= 2^{\alpha} - 1 - [(d_{G_{1}}(y) + 2)^{\alpha} - (d_{G_{1}}(y) + 1)^{\alpha}]
= \alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),

where $1 < \xi < 2$, $d_{G_1}(y) + 1 < \eta < d_{G_1}(y) + 2$. This finishes the proof. \Box

Fig. 6. The graphs in Remark 2.7.

REMARK 2.7. By repeating Transformation A_3 , any tree T attached to a graph G can be changed into a path as shown in Fig. 6. Furthermore, the zeroth-order general Randić indices decrease for $\alpha > 1$ or $\alpha < 0$, and the zeroth-order general Randić indices increase for $0 < \alpha < 1$.

Zeroth-Order General Randić Index and Clique Number

Fig. 7. Transformation A_4 .

Transformation A_4 : Let G be a graph as shown in Fig. 7, where $x, y \in V(G_1)$. That is, we use G to denote the graph obtained from identifying x with the vertex x_0 of a path $x_0x_1\cdots x_r$ and identifying y with the vertex y_0 of a path $y_0y_1\cdots y_s$, where $r, s \geq 1$. Set $G' = G - xx_1 + y_sx_1$, as shown in Fig. 7.

LEMMA 2.8. Let G and G' be graphs in Fig. 7. Then
(i)
$${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$$
 for $\alpha > 1$ or $\alpha < 0$;
(ii) ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ for $0 < \alpha < 1$.

Proof. The proof is similar to Lemma 2.6, omitted.

LEMMA 2.9. Let

$$f(x) = x(n-x)^{\alpha},$$

where $1 \le x \le n - 1$, $n \ge 3$. Then f''(x) < 0 for $0 < \alpha < 1$, and f''(x) > 0 for $\alpha < 0$ or $\alpha > 2n - 1$.

Proof. Note that

$$f'(x) = (n - x)^{\alpha - 1}(n - \alpha x - x),$$

$$f''(x) = -\alpha (n - x)^{\alpha - 2}[2n - (\alpha + 1)x].$$

This completes the proof.

LEMMA 2.10. Let n_i, n_j, t be positive integers and α be a real number, where $n_j - n_i \ge 2$ and $1 < \alpha \le 2$. Then

$$n_j(n_i+t)^{\alpha-1} - n_i(n_j+t)^{\alpha-1} > 0.$$

Proof. Let $g(x) = (\alpha - 1) \ln(x + t) - \ln x$, where $x \ge 1$. Then

$$g'(x) = \frac{(\alpha - 2)x - t}{x(x+t)} < 0.$$

411

So $g(n_i) > g(n_j)$. Thus we have

$$(\alpha - 1)\ln(n_i + t) - \ln n_i > (\alpha - 1)\ln(n_j + t) - \ln n_j$$

$$\implies \ln n_j + (\alpha - 1)\ln(n_i + t) > \ln n_i + (\alpha - 1)\ln(n_j + t)$$

$$\implies \ln[n_j(n_i + t)^{\alpha - 1}] > \ln[n_i(n_j + t)^{\alpha - 1}]$$

$$\implies n_j(n_i + t)^{\alpha - 1} > n_i(n_j + t)^{\alpha - 1}.$$

This completes the proof.

3. Main result

Let $G \in \mathcal{W}_{n,k}$. If $k = 1, G \cong K_1$. If $k = n, G \cong K_n$. So, next, we always assume that 1 < k < n.

THEOREM 3.1. Let $H_1 \in \mathcal{W}_{n,k}$. Then ${}^0R_{\alpha}(H_1) \ge (k-1)^{\alpha+1} + k^{\alpha} + 2^{\alpha}(n-k-1) + 1$ for $\alpha > 1$, with the equality holding if and only if $H_1 \cong \mathcal{K}_{n,n-k}$.

Proof. Choose a graph $H_1 \in \mathcal{W}_{n,k}$ such that H_1 has the minimum zeroth-order general Randić index. By the definition of the set $\mathcal{W}_{n,k}$, H_1 contains a clique K_k as a subgraph. From Lemma 2.2, H_1 must be the graph that results from K_k by attaching some trees rooted at some vertices of K_k . By Remark 2.7, we conclude that, in H_1 , all the trees attached at some vertices of K_k must be paths. Now we claim that $H_1 \cong \mathcal{K}_{n,n-k}$. Otherwise, suppose that there are two paths P_1 and P_2 attached at two vertices v_1 and v_2 of K_k , respectively. From Lemma 2.8, H_1 can be changed to H'_1 by transformation A_4 with a smaller zeroth-order general Randić index, which contradicts the choice of H_1 . Therefore $H_1 \cong \mathcal{K}_{n,n-k}$.

By the definition of zeroth-order general Randić index, we have

$${}^{0}R_{\alpha}(\mathcal{K}_{n,n-k}) = (k-1)^{\alpha+1} + k^{\alpha} + 2^{\alpha}(n-k-1) + 1.$$

The proof is completed.

THEOREM 3.2. Let $H_2 \in \mathcal{W}_{n,k}$. Then

(i) ${}^{0}R_{\alpha}(H_2) \ge (k-1)^{\alpha+1} + (n-1)^{\alpha} + n - k$ for $0 < \alpha < 1$, with the equality holding if and only if $H_2 \cong \mathbf{K}_{n,n-k}$;

(ii) ${}^{0}R_{\alpha}(H_{2}) \leq (k-1)^{\alpha+1} + (n-1)^{\alpha} + n - k$ for $\alpha < 0$, with the equality holding if and only if $H_{2} \cong \mathbf{K}_{n,n-k}$.

Proof. We discuss in two cases.

Case 1. $0 < \alpha < 1$.

Choose a graph $H_2 \in \mathcal{W}_{n,k}$ such that H_2 has the minimum zerothorder general Randić index. Similarly as the proof of Theorem 3.1, by Remark 2.4, all the trees in H_2 attached at some vertices of K_k must be stars; furthermore, if $H_2 \ncong \mathbf{K}_{n,n-k}$, from Lemma 2.5, H_2 can be changed to H'_2 or H''_2 by transformation A_2 with a smaller zeroth-order general Randić index which is a contradiction to the choice of H_2 . Therefore $H_2 \cong \mathbf{K}_{n,n-k}$.

Case 2. $\alpha < 0$.

Choose a graph $H_2 \in \mathcal{W}_{n,k}$ such that H_2 has the largest zeroth-order general Randić index. The rest of the proof is analogous to that of Case 1, omitted.

From the definition of zeroth-order general Randić index, we have

$${}^{0}R_{\alpha}(\mathbf{K}_{n,n-k}) = (k-1)^{\alpha+1} + (n-1)^{\alpha} + n - k.$$

The proof is completed.

Let K_{n_1,n_2,\dots,n_k} denote the *n*-vertex complete *k*-partite graph whose partition sets size are n_1, n_2, \dots, n_k , respectively. Then $n_1 + n_2 + \dots + n_k = n$.

LEMMA 3.3. Let $G \in \chi_{n,k}$ be a graph with maximum zeroth-order general Randić index for $\alpha > 0$, and with minimum zeroth-order general Randić index for $\alpha < 0$. Then $G \cong K_{n_1,n_2,\cdots,n_k}$.

Proof. By the definition of the set $\chi_{n,k}$ and Lemma 2.1, the lemma holds obviously.

In order to get our other results, we first consider the zeroth-order general Randić indices of graphs $G \in \chi_{n,k}$. Let n = kp + q, where $0 \le q < k$, i.e., $p = \lfloor \frac{n}{k} \rfloor$.

THEOREM 3.4. Let $G \in \chi_{n,k}$. Then

 $(i) {}^{0}R_{\alpha}(G) \leq {}^{0}R_{\alpha}(\mathbf{T}_{n}(k)) = (k-q)(n-\lfloor \frac{n}{k} \rfloor)^{\alpha} + q(\lfloor \frac{n}{k} \rfloor+1)(n-\lfloor \frac{n}{k} \rfloor-1)^{\alpha}$ for $0 < \alpha < 1$ or $1 < \alpha \leq 2$, with the equality holding if and only if $G \cong \mathbf{T}_{n}(k)$;

 $(ii) {}^{0}R_{\alpha}(G) \geq {}^{0}R_{\alpha}(\boldsymbol{T}_{n}(k)) = (k-q)(n-\lfloor \frac{n}{k} \rfloor)^{\alpha} + q(\lfloor \frac{n}{k} \rfloor+1)(n-\lfloor \frac{n}{k} \rfloor-1)^{\alpha}$ for $\alpha < 0$, with the equality holding if and only if $G \cong \boldsymbol{T}_{n}(k)$.

Proof. In view of the definition of chromatic number, any graph $G \in \chi_{n,k}$ has k color classes each of which is an independent set. Let the

size of the k classes be n_1, n_2, \dots, n_k , respectively. By Lemma 3.3, the graph $G \in \chi_{n,k}$ which reaches the maximum zeroth-order general Randić indices for $0 < \alpha < 1$ or $1 < \alpha \leq 2$, and reaches the minimum zeroth-order general Randić indices for $\alpha < 0$ will be a complete k-partite graph K_{n_1,n_2,\dots,n_k} . Choose the graph $G \in \chi_{n,k}$ such that G has the maximum zeroth-order general Randić indices for $0 < \alpha < 1$ or $1 < \alpha \leq 2$, and has the minimum zeroth-order general Randić indices for $0 < \alpha < 1$ or $1 < \alpha \leq 2$, and has the minimum zeroth-order general Randić indices for $0 < \alpha < 1$ or $1 < \alpha \leq 2$, and has the minimum zeroth-order general Randić indices for $\alpha < 0$, respectively.

Now we claim that $G \in \mathbf{T}_n(k)$. Otherwise, there exist two classes of size n_i and n_j , respectively, satisfy $n_j - n_i \ge 2$, that is, $n_j - 1 \ge n_i + 1$, without loss of generality, we assume that $1 \le i < j \le k$. We will find a contradiction.

Case 1. $0 < \alpha < 1$ or $1 < \alpha \le 2$. Subcase 1.1. $1 < \alpha \le 2$. Note that

 ${}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i}+1,\cdots,n_{j}-1,\cdots,n_{k}}) - {}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i},\cdots,n_{j},\cdots,n_{k}})$ = $(n_{i}+1)(n-n_{i}-1)^{\alpha} + (n_{j}-1)(n-n_{j}+1)^{\alpha} - n_{i}(n-n_{i})^{\alpha} - n_{j}(n-n_{j})^{\alpha}$ = $n_{j}[(n-n_{j}+1)^{\alpha} - (n-n_{j})^{\alpha}] - n_{i}[(n-n_{i})^{\alpha} - (n-n_{i}-1)^{\alpha}]$ + $(n-n_{i}-1)^{\alpha} - (n-n_{j}+1)^{\alpha}$ = $\alpha(n_{j}\xi_{1}^{\alpha-1} - n_{i}\eta_{1}^{\alpha-1}) + (n-n_{i}-1)^{\alpha} - (n-n_{j}+1)^{\alpha},$ where $n-n_{j} < \xi_{1} < n-n_{j} + 1, \ n-n_{i} - 1 < \eta_{1} < n-n_{i}.$ Since

 $(n - n_i - 1) \ge (n - n_i + 1)$, we have

$${}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i}+1,\cdots,n_{j}-1,\cdots,n_{k}}) - {}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i},\cdots,n_{j},\cdots,n_{k}})$$

$$\geq \alpha(n_{j}\xi_{1}^{\alpha-1} - n_{i}\eta_{1}^{\alpha-1})$$

$$> \alpha[n_{j}(n-n_{j})^{\alpha-1} - n_{i}(n-n_{i})^{\alpha-1}].$$

If k = 2, then $n_i + n_j = n_1 + n_2 = n$, and we have ${}^0R_{\alpha}(K_{n_1+1,n_2-1}) - {}^0R_{\alpha}(K_{n_1,n_2}) > \alpha[n_2(n-n_2)^{\alpha-1} - n_1(n-n_1)^{\alpha-1}] = \alpha(n_1n_2)^{\alpha-1}(n_2^{2-\alpha} - n_1^{2-\alpha}) \ge 0$, which contradicts the choice of G.

If $k \geq 3$, let $n_i + n_j + t = n$, where $t = \sum_{\substack{r=1 \ r \neq i,j}}^k n_r \geq k - 2 \geq 1$, by Lemma 2.10, we have

$${}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i}+1,\cdots,n_{j}-1,\cdots,n_{k}}) - {}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i},\cdots,n_{j},\cdots,n_{k}})$$

> $\alpha[n_{j}(n_{i}+t)^{\alpha-1} - n_{i}(n_{j}+t)^{\alpha-1}] > 0,$

which contradicts the choice of G, again.

Subcase 1.2. $0 < \alpha < 1$.

Note that

$${}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i}+1,\cdots,n_{j}-1,\cdots,n_{k}}) - {}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i},\cdots,n_{j},\cdots,n_{k}})$$

= $(n_{i}+1)(n-n_{i}-1)^{\alpha} + (n_{j}-1)(n-n_{j}+1)^{\alpha} - n_{i}(n-n_{i})^{\alpha} - n_{j}(n-n_{j})^{\alpha}$
= $f(n_{i}+1) - f(n_{i}) - [f(n_{j}) - f(n_{j}-1)]$
= $f'(\xi_{2}) - f'(\eta_{2}),$

where $n_i < \xi_2 < n_i+1$, $n_j-1 < \eta_2 < n_j$. By Lemma 2.9, we have $f'(\xi_2) - f'(\eta_2) > 0$, i.e., ${}^0R_{\alpha}(K_{n_1,\dots,n_i+1,\dots,n_j-1,\dots,n_k}) > {}^0R_{\alpha}(K_{n_1,\dots,n_i,\dots,n_j,\dots,n_k})$, which is a contradiction to the choice of G.

Case 2. $\alpha < 0$.

Note that

$${}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i}+1,\cdots,n_{j}-1,\cdots,n_{k}}) - {}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i},\cdots,n_{j},\cdots,n_{k}})$$

= $f(n_{i}+1) - f(n_{i}) - [f(n_{j}) - f(n_{j}-1)]$
= $f'(\xi_{3}) - f'(\eta_{3}),$

where $n_i < \xi_3 < n_i+1$, $n_j-1 < \eta_3 < n_j$. By Lemma 2.9, we have $f'(\xi_3) - f'(\eta_3) < 0$, i.e., ${}^0R_{\alpha}(K_{n_1,\dots,n_i+1,\dots,n_j-1,\dots,n_k}) < {}^0R_{\alpha}(K_{n_1,\dots,n_i,\dots,n_j,\dots,n_k})$, which is a contradiction to the choice of G.

Recall that $n = k \lfloor \frac{n}{k} \rfloor + q = (k - q) \lfloor \frac{n}{k} \rfloor + q(\lfloor \frac{n}{k} \rfloor + 1)$. By the definition of the zeroth-order general Randić index, we obtain the value of ${}^{0}R_{\alpha}(\boldsymbol{T}_{n}(k))$ immediately.

Conversely, it is easy to see that the equality holds in (i) or (ii) when $G \cong \mathbf{T}_n(k)$. The proof is completed.

THEOREM 3.5. Let $G \in \chi_{n,k}$. Then ${}^{0}R_{\alpha}(G) \leq {}^{0}R_{\alpha}(K_{n+1-k,1,1,\cdots,1}) = (k-1)(n-1)^{\alpha} + (n-k+1)(k-1)^{\alpha}$ for $\alpha > 2n-1$, with the equality holding if and only if $G \cong K_{n+1-k,1,1,\cdots,1}$, where $K_{n+1-k,1,1,\cdots,1}$ is the complete k-partite graph with n vertices whose partition sets size are $n+1-k, 1, 1, \cdots, 1$, respectively.

Proof. Similar to the proof of theorem 3.4, the graph $G \in \chi_{n,k}$ which reaches the maximum zeroth-order general Randić indices for $\alpha > 2n-1$ will be a complete k-partite graph K_{n_1,n_2,\cdots,n_k} . Suppose that the graph $G \in \chi_{n,k}$ has the maximum zeroth-order general Randić indices for $\alpha > 2n-1$.

Now we claim that $G \in K_{n+1-k,1,1,\dots,1}$. Otherwise, there exist two classes of size n_i and n_j , respectively, satisfy $n_j \ge n_i \ge 2$, without loss of generality, we assume that $1 \le i < j \le k$.

J. Du, Y. Shao, and X. Sun

Note that

$${}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i}-1,\cdots,n_{j}+1,\cdots,n_{k}}) - {}^{0}R_{\alpha}(K_{n_{1},\cdots,n_{i},\cdots,n_{j},\cdots,n_{k}})$$

= $f(n_{j}+1) - f(n_{j}) - [f(n_{i}) - f(n_{i}-1)]$
= $f'(\xi) - f'(\eta),$

where $n_j < \xi < n_j + 1$, $n_i - 1 < \eta < n_i$. By Lemma 2.9, we have $f'(\xi) - f'(\eta) > 0$, i.e., ${}^0R_{\alpha}(K_{n_1,\dots,n_i-1,\dots,n_j+1,\dots,n_k}) > {}^0R_{\alpha}(K_{n_1,\dots,n_i,\dots,n_j,\dots,n_k})$, which contradicts the choice of G.

From the definition of zeroth-order general Randić index, we have

$${}^{0}R_{\alpha}(K_{n+1-k,1,1,\cdots,1}) = (k-1)(n-1)^{\alpha} + (n-k+1)(k-1)^{\alpha}$$

Conversely, it is easy to see that the equality holds when $G \cong K_{n+1-k, 1, 1, \dots, 1}$. This completes the proof.

LEMMA 3.6. ([7]) Let G = (V, E) be a graph with $\omega(G) \leq k$. Then there is a k-partite graph G' = (V, E') such that for every vertex $v \in V$, $d_G(v) \leq d_{G'}(v)$.

THEOREM 3.7. Let $G \in \mathcal{W}_{n,k}$. Then

 $(i) {}^{0}R_{\alpha}(G) \leq (k-q)(n-\lfloor \frac{n}{k} \rfloor)^{\alpha} + q(\lfloor \frac{n}{k} \rfloor+1)(n-\lfloor \frac{n}{k} \rfloor-1)^{\alpha} \text{ for } 0 < \alpha < 1$ or $1 < \alpha \leq 2$, with the equality holding if and only if $G \cong \mathbf{T}_{n}(k)$;

(ii) ${}^{0}R_{\alpha}(G) \ge (k-q)(n-\lfloor \frac{n}{k} \rfloor)^{\alpha} + q(\lfloor \frac{n}{k} \rfloor + 1)(n-\lfloor \frac{n}{k} \rfloor - 1)^{\alpha}$ for $\alpha < 0$, with the equality holding if and only if $G \cong \mathbf{T}_{n}(k)$.

(iii) ${}^{0}R_{\alpha}(G) \leq (k-1)(n-1)^{\alpha} + (n-k+1)(k-1)^{\alpha}$ for $\alpha > 2n-1$, with the equality holding if and only if $G \cong K_{n+1-k,1,1,\dots,1}$, where $K_{n+1-k,1,1,\dots,1}$ is the complete k-partite graph of order n whose partition sets size are $n+1-k, 1, 1, \dots, 1$, respectively.

Proof. If k = n, then $G \cong K_n$. Thus, we assume that k < n. Pick a graph $G \in \mathcal{W}_{n,k}$ such that G has the maximum zeroth-order general Randić indices for $0 < \alpha < 1$, $1 < \alpha \leq 2$ or $\alpha > 2n - 1$, and has the minimum zeroth-order general Randić indices for $\alpha < 0$, respectively. Now we claim that $G \in \chi_{n,k}$. To the contrary, since $\omega(G) = k$, by Lemma 3.6, we can get a k-partite graph G^* with $V(G^*) = V(G)$ such that for every vertex $v \in V(G) = V(G^*)$, $d_G(v) \leq d_{G^*}(v)$. Obviously, $G^* \in \mathcal{W}_{n,k}$. By the definition of zeroth-order general Randić index, we have ${}^0R_{\alpha}(G^*) \geq {}^0R_{\alpha}(G)$ for $0 < \alpha < 1$, $1 < \alpha \leq 2$ or $\alpha > 2n - 1$, and ${}^0R_{\alpha}(G^*) \leq {}^0R_{\alpha}(G)$ for $\alpha < 0$, respectively.

By Theorem 3.4 and 3.5, considering the uniqueness of the extremal graph in the set $\chi_{n,k}$, the theorem holds immediately.

If $\alpha = 2$, then ${}^{0}R_{2}(G)$ is the first Zagreb index $M_{1}(G)$ and by using $\alpha = 2$ in Theorem 3.5 and 3.6, we obtain the following corollary which is the result given in [29].

COROLLARY 3.8. ([29])Let $G \in \mathcal{W}_{n,k}$. Then

(i) $M_1(G) \leq (k-q)(n-\lfloor \frac{n}{k} \rfloor)^2 + q\lceil \frac{n}{k} \rceil(n-\lceil \frac{n}{k} \rceil)^2$ with the equality holding if and only if $G \cong \mathbf{T}_n(k)$; (ii) $M_1(G) \geq k^3 - 2k^2 - k + 4n - 4$ with the equality holding if and

(ii) $M_1(G) \ge k^3 - 2k^2 - k + 4n - 4$ with the equality holding if and only if $G \cong \mathcal{K}_{n,n-k}$.

REMARK 3.9. Another question is to consider the maximum zerothorder general Randić index for $\alpha \in (2, 2n - 1]$ on the graphs $G \in \mathcal{W}_{n,k}$. By inspecting some special graphs $G \in \mathcal{W}_{n,k}$, we found that for $\alpha \in (2, a)$, $\mathbf{T}_n(k)$ has maximum zeroth-order general Randić index, and for $\alpha \in (b, 2n - 1]$, $K_{n+1-k,1,1,\dots,1}$ has maximum zeroth-order general Randić index, where $a \leq b$. So further research is needed in future.

4. Conclusion

In this article, for $G \in \mathcal{W}_{n,k}$, we got that $\mathbf{K}_{n,n-k}$ (resp. $\mathbf{T}_n(k)$) has the maximum (resp. minimum) ${}^0R_{\alpha}(G)$ for $\alpha < 0$, and $\mathbf{T}_n(k)$ (resp. $\mathbf{K}_{n,n-k}$) has the maximum (resp. minimum) ${}^0R_{\alpha}(G)$ for $0 < \alpha < 1$. Furthermore, for $G \in \mathcal{W}_{n,k}$, we proved that $\mathcal{K}_{n,n-k}$ has the minimum ${}^0R_{\alpha}(G)$ for $\alpha > 1$, and $\mathbf{T}_n(k)$ (resp. $K_{n+1-k,1,1,\cdots,1}$) has the maximum ${}^0R_{\alpha}(G)$ for $1 < \alpha \leq 2$ (resp. for $\alpha > 2n - 1$).

The maximum ${}^{0}R_{\alpha}(G)$ for $\alpha \in (2, 2n - 1]$ on the graphs $G \in \mathcal{W}_{n,k}$ has not been obtained. By inspecting some special graphs $G \in \mathcal{W}_{n,k}$, it seems that for $\alpha \in (2, a)$, $\mathbf{T}_{n}(k)$ has maximum ${}^{0}R_{\alpha}(G)$, and for $\alpha \in$ (b, 2n - 1], $K_{n+1-k,1,1,\dots,1}$ has maximum ${}^{0}R_{\alpha}(G)$, where $a \leq b$. So further study is needed in future.

References

- H. Ahmeda, A. A. Bhattia and A. Ali, Zeroth-order general Randić index of cactus graphs, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej. 2018.01.006.
- [2] A. Ali, A. A. Bhatti and Z. Raza, A note on the zeroth-order general Randić index of cacti and polyomino chains, Iranian J. Math. Chem. 5 (2014), 143–152.
- [3] B. Bollobás and P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998), 225–233.

J. Du, Y. Shao, and X. Sun

- [4] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Elsevier, New York, 1976.
- [5] S. Chen and H. Deng, Extremal (n, n + 1)-graphs with respected to zeroth-order general Randić index, J. Math. Chem. 42 (2007), 555–564.
- [6] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 597–616.
- [7] P. Erdős, On the graph theorem of Turán, Mat. Lapok **21** (1970), 249–251.
- [8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. III. Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett. **17** (1972), 535–538.
- [9] Y. Hu, X. Li, Y. Shi and T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math. 155 (2007), 1044–1054.
- [10] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005), 425–434.
- [11] H. Hua and H. Deng, On unicycle graphs with maximum and minimum zerothorder general Randić index, J. Math. Chem. 41 (2007), 173–181.
- [12] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [13] L. B. Kier and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.
- [14] L. B. Kier and L. H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, Europ. J. Med. Chem. 12 (1977), 307–312.
- [15] F. Li and M. Lu, On the zeroth-order general Randić index of unicycle graphs with k pendant vertices, Ars Combin. 109 (2013), 229–237.
- [16] S. Li and M. Zhang, Sharp bounds on the zeroth-order general Randić indices of conjugated bicyclic graphs, Math. Comput. Model. 53 (2011), 1990–2004.
- [17] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), 127–156.
- [18] X. Li and Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for $\alpha \in (-1, 0)$, MATCH Commun. Math. Comput. Chem. **62** (2009), 163–170.
- [19] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004), 57–62.
- [20] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 195–208.
- [21] X. Pan and S. Liu, Conjugated tricyclic graphs with the maximum zeroth-order general Randić index, J. Appl. Math. Comput. 39 (2012), 511–521.
- [22] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math. 127 (2003), 615–626.
- [23] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609–6615.

- [24] G. Su, J. Tu and K. C. Das, Graphs with fixed number of pendent vertices and minimal zeroth-order general Randić index, Appl. Math. Comput. 270 (2015), 705–710.
- [25] G. Su, L. Xiong and X. Su, Maximally edge-connected graphs and zeroth-order general Randić index for 0 < α < 1, Discrete Appl. Math. 167 (2014), 261–268.</p>
- [26] G. Su, L. Xiong, X. Su and G. Li, Maximally edge-connected graphs and zerothorder general Randić index for $\alpha \leq -1$, J. Comb. Optim. **31** (2016), 182–195.
- [27] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [28] R. Wu, H. Chen and H. Deng, On the monotonicity of topological indices and the connectivity of a graph, Appl. Math. Comput. 298 (2017), 188–200.
- [29] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011), 1026–1030.
- [30] S. Zhang and H. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006), 427–438.
- [31] S. Zhang, W. Wang and T. C. E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general Zagreb Index, MATCH Commun. Math. Comput. Chem. 56 (2006), 579–592.

Jianwei Du

School of Science, North University of China Taiyuan 030051, China *E-mail*: jianweidu@nuc.edu.cn

Yanling Shao

School of Science, North University of China Taiyuan 030051, China *E-mail*: ylshao@nuc.edu.cn

Xiaoling Sun

School of Science, North University of China Taiyuan 030051, China *E-mail*: sunxiaoling@nuc.edu.cn