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SOLVABILITY OF SYLVESTER OPERATOR EQUATION

WITH BOUNDED SUBNORMAL OPERATORS IN

HILBERT SPACES

Lourabi Hariz Bekkar and Abdelouahab Mansour∗

Abstract. The aim of this paper is to present some necessary and
sufficient conditions for existence of solution of Sylvester operator
equation involving bounded subnormal operators in a Hilbert space.
Our results improve and generalize some results in the literature
involving normal operators.

1. Introduction

In recent years, many problems in control theory, optimization, dy-
namical systems and quantum mechanics require the use of Sylvester
matrix equation AX − XB = C or its generalization AX − Y B = C.
In fact, Sylvester equation has the improved technique to give necessary
and sufficient conditions for the existence of solution.
Roth [13] proved that, if A and B are finite matrices over a field,

then Sylvester equation has a solution if and only if

(
A 0
0 B

)
and
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A C
0 B

)
are similar. Later Rosenblum [11] showed that the result re-

mains true even A and B are bounded self adjoint operators. On other
hand Bhatia [1] gave the solution based on chain convergence.
Lancaster et al. [8] proved that the Lyaponov equation AX + XB = C
has a unique solution if and only if A and B have no common eigenvalues.
In [14] the author generalized the results of Roth for normal operators
for the infinite case. Recently, Mecheri and Mansour [10] replaced the
condition of normality of the operators A and B by the normality of one
operator A, assuming the pair (B,A) to satisfy Fuglede-Putnam prop-
erty.
In this paper, we resolve the Sylvester equation AX−XB = C assuming
A and B to be subnormal operators. Further, we give some consequences
for the case of rank one operators, which have applications in physics
and dynamical systems.

2. Preliminaries

Let B(H) be the algebra of all bounded linear operators on an infinite
dimensional complex Hilbert space H.

Definition 2.1. [3] Let S be an operator in B(H). S is called normal
if and only if it commutes with its adjoint, i.e., SS∗ = S∗S.

Definition 2.2. [3] Let S be an operator in B(H). S is called sub-
normal if there exists a Hilbert space K, on which S admits an extension
NS such that:

1. H ⊂ K.
2. NS is normal on K.
3. NS/H = S.

In general, if S is subnormal, one can take K = H ⊕ H⊥, so NS is

given by NS =

(
S Q
0 T

)
, where Q : H⊥ → H and T : H⊥ → H⊥.

Example 2.1. Let S be an operator in B(H) and let S = M(S∗S)
1
2

be its polar decomposition, where M is an isometry, i.e., M∗M = I. If
M commutes with (S∗S)

1
2 , then S is subnormal.

In fact, if P = MM∗, then P is the projection onto the final space of
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M , thus (I − P )M = M∗(I − P ) = 0.
We define L and T by

L =

(
M I − P
0 M∗

)
, T =

(
(S∗S)

1
2 0

0 (S∗S)
1
2

)
.

Since S = M(S∗S)
1
2 = (S∗S)

1
2M we get

MS = MM(S∗S)
1
2 = M(S∗S)

1
2M = SM

and
M∗(S∗S)

1
2 = (S∗S)

1
2M∗.

Then L is unitary, LT = TL and T positive.

Let N = LT =

(
S (I − P )(S∗S)

1
2

0 M∗(S∗S)
1
2

)
. Clearly N is normal and it is

an extension of S. Consequently, S is a subnormal operator.

Lemma 2.1. [3] Every normal operator is subnormal, but the converse
does not hold in general.

Example 2.2. Let H = `2. The shift operator T ∈ B(H) is given by

T (x1, x2, .., xn, ...) = (0, x1, x2, ..., xn, ...).

Then T is a subnormal operator, but it is not normal since T ∗T 6= TT ∗.

Definition 2.3. Let S and T be two operators in B(H). The pair
(S, T ) is said to satisfy Fuglede-Putnam property if for any operator
Q ∈ B(H) such that SQ = QT , S∗Q = QT ∗.

Theorem 2.2. [11] If S and T are two normal operators in B(H)
and Q ∈ B(H) such that SQ = QT , then S∗Q = QT ∗.

Lemma 2.3. [15] If S is a subnormal operator on a Hilbert space H,
then αS + βS∗ is subnormal, where α, β are complex numbers.

Theorem 2.4. [5] If S and T ∗ are subnormal and Q is an operator
such that SQ = QT , then S∗Q = QT ∗.

By combining Lemma 2.3 and Theorem 2.4, we get the following
proposition.

Proposition 2.1. If S and T are subnormal operators in B(H) and
Q is in B(H) such that SQ = QT , then S∗Q = QT ∗.

Proof. Since T is subnormal, from Lemma 2.3 its adjoint T ∗ is sub-
normal, too. Applying Theorem 2.4 we obtain the required result.
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Definition 2.4. [1] Let A,B and C be bounded operators in a

Hilbert space H. Two operators

(
A C
0 B

)
and

(
A 0
0 B

)
are said

to be similar if and only if there exists an invertible operator

(
Q R
S T

)
in B(H ⊕H) such that(

Q R
S T

)(
A C
0 B

)
=

(
A 0
0 B

)(
Q R
S T

)
.

Theorem 2.5. [10] Let A be a normal operator inB(H) and letB and
C be two bounded operators, such that the pair (B,A) satisfies Fuglede-
Putnam property. Then the equation AX −XB = C has a solution in

B(H) if and only if the two operators

(
A 0
0 B

)
and

(
A C
0 B

)
are

similar.

Lemma 2.6. [14] LetQ,R, S and T be operators inB(H). If

(
Q R
S T

)
is invertible, then S∗S +Q∗Q is invertible.

Definition 2.5. An operator S ∈ B(H) is called a rank one operator
if its range is one dimensional.

Lemma 2.7. An operator S ∈ B(H) is a rank one operator if and
only if it can be written in the form of tensorial product of two vectors
in H, i.e., there exist u and v in H such that S = u⊗ v.

Proof. Since S is rank one operator, its range is one dimensional, i.e.,
its range is generated by a single element u ∈ H. Hence for all x ∈ H,
there exists λx ∈ C such that;

Sx = λxu.

The mapping x 7→ λx is continuous linear form, so by Riez decomposition
theorem, there exists v ∈ H such that

λx = 〈x, v〉, x ∈ H.

Thus

Sx = λxu = 〈x, v〉u = (u⊗ v)x, x ∈ H.
Consequently, S = u⊗ v. The converse is evident.
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3. Main results

Let A,B and C be operators in B(H). Consider the equation:

(3.1) AX −XB = C.

Theorem 3.1. Let A be a subnormal operator and B,C in B(H).
Assume that the pair (B,A) satisfies Fuglede-Putnam property. Then

the equation (3.1) has a solution in B(H) if and only if

(
A 0
0 B

)
and(

A C
0 B

)
are similar.

Proof. If X is a solution of (3.1), then we have(
I −X
0 I

)(
A 0
0 B

)(
I X
0 I

)
=

(
A AX −XB
0 B

)
=

(
A C
0 B

)
,

which implies that

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

Conversely, if the two operators

(
A 0
0 B

)
and

(
A C
0 B

)
are similar,

then there exists an invertible operator

(
Q R
S T

)
such that(

A 0
0 B

)(
Q R
S T

)
=

(
Q R
S T

)(
A C
0 B

)
,

which gives (
AQ AR
BS BT

)
=

(
QA QC +RB
SA SC + TB

)
.

Hence we get AQ = QA.
Since A is subnormal, by Proposition 2.1 we get

A∗Q = QA∗.

We also have
AR−RB = QC,

BS = SA

and
BT − TB = SC.

Since the pair (B,A) satisfies Fuglede-Putnam property and SA = BS,
B∗S = SA∗.
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Since A commutes with Q and Q∗, it commutes with Q∗Q.
On other hand taking the adjoint in

B∗S = SA∗,

we get

S∗B = AS∗.

Since BS = SA,

S∗BS = S∗SA,

but S∗B = AS∗, so

AS∗S = S∗SA,

which implies that A commutes with S∗S, so it commutes with the sum
S∗S +Q∗Q.
Then we have

(S∗S +Q∗Q)C = S∗SC +Q∗QC

= S∗(BT − TB) +Q∗(AR−RB)

= Q∗(AR−RB) + S∗(BT − TB)

= Q∗AR−Q∗RB + S∗BT − S∗TB.
Since A∗Q = QA∗, passing to the adjoint we get Q∗A = AQ∗. Further,
since S∗B = AS∗, we get

(S∗S +Q∗Q)C = AQ∗R−Q∗RB + AS∗T − S∗TB

= A(Q∗R + S∗T )− (Q∗R + S∗T )B.

Since S∗S + Q∗Q is invertible (from Lemma 2.6), A commutes with
(S∗S +Q∗Q)−1, because it commutes with S∗S +Q∗Q. Then

C = A(S∗S +Q∗Q)−1(Q∗R + S∗T )− (S∗S +Q∗Q)−1(Q∗R + S∗T )B.

This yields that the solution of equation (3.1) is given by

X = (S∗S +Q∗Q)−1(Q∗R + S∗T ).

Corollary 3.1. Let A and B be bounded subnormal operators on
a complex Hilbert space H and C ∈ B(H). Then the equation (3.1) has

a solution in B(H) if and only if

(
A 0
0 B

)
is similar to

(
A C
0 B

)
.

Proof. This corollary follows by Proposition 2.1 and Theorem 3.1.
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Corollary 3.2. Let B be a bounded subnormal operator on a com-
plex Hilbert space H, let A,C ∈ B(H) and suppose that the pair
(A∗, B∗) satisfies Fuglede-Putnam property. Then the equation B∗X −

XA∗ = C has a solution in B(H) if and only if

(
B∗ C
0 A∗

)
is similar

to

(
B∗ 0
0 A∗

)
.

Proof. It follows immediately from Lemma 2.3 and Theorem 3.1.

Corollary 3.3. Let A be a bounded subnormal operator on a com-
plex Hilbert space H and B,C ∈ B(H). Assume that A and B are
invertible and the pair (B,A) satisfies Fuglede-Putnam property. Then
the equation A−1X −XB−1 = C has a solution in B(H) if and only if(
A−1 C

0 B−1

)
is similar to

(
A−1 0

0 B−1

)
.

Proof. If X is a solution of the equation A−1X −XB−1 = C, then(
I −X
0 I

)(
A−1 0

0 B−1

)(
I X
0 I

)
=

(
A−1 A−1X −XB−1

0 B−1

)
=

(
A−1 C

0 B−1

)
.

Hence

(
A−1 C

0 B−1

)
and

(
A−1 0

0 B−1

)
are similar.

If

(
A−1 C

0 B−1

)
is similar to

(
A−1 0

0 B−1

)
, then their inverses

are similar, i.e.,

(
A −ACB
0 B

)
and

(
A 0
0 B

)
are similar. Hence by

Theorem 3.1 the equation AX −XB = −ACB has a solution X. Since
A and B are invertible, we obtain

AXB−1 −X = −AC.
Thus we get

XB−1 − A−1X = −C,
which implies

A−1X −XB−1 = C.

If A = B, we get the following result.
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Theorem 3.2. Let A be a subnormal operator in B(H) and let C be
an operator in B(H). Then the matrices(

A 0
0 A

)
and

(
A C
0 A

)
are similar if and only if C is in the range

of the derivation δA
(
δA(X) = AX −XA

)
.

Proof. It suffices to apply Theorem 2.4 with replacing B by A.

If C is a rank one operator, then from Lemma 2.7 it can be written
as C = a⊗ b, where a and b are two vectors in H. We have the following
result.

Theorem 3.3. Let A be a bounded subnormal operator and let B be
an operator in B(H) such that the pair (B,A) satisfies Fuglede-Putnam
property. Then the equation AX − XB = a ⊗ b has a solution if and

only if

(
A 0
0 B

)
is similar to

(
A a⊗ b
0 B

)
.

References

[1] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Vol. 169, Springer-
Verlag, New York, 1997.

[2] R. Bhatia and P. Rosental, How and why to solve the operator equation AX −
XB = Y , Bull. London. Math. Soc. 29 (1997), 1–21.

[3] J. B. Conway, The theory of subnormal operators, Math. Surveys and Mon-
graphs, Vol. 36, Amer. Math. Soc. Providence Rhode Island, 1991.
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