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ANALYTIC CALCULATION OF EUROPEAN OPTION

PRICING IN STOCHASTIC VOLATILITY ASSET

MODEL

Jae-pill Oh

Abstract. We deal some analytic calculations for European option
pricing by using the theory of elementary solution of generalized
diffusion equation mainly.

1. Introduction

In this paper, we introduce a method of option pricing for several
asset models which are special forms of a general class of volatility asset
models.

In preprint [6], we can meet the general class of volatility asset models
of the form

dSt/St = µdt+ f(σt)[
√
1− ρ2dW

(1)
t + ρdW

(2)
t ](1)

dσt/σt = β(σt)dt+ g(σt)dW
(2)
t ,(2)

where W
(1)
t and W

(2)
t are standard Brownian motions on a same proba-

bility space (Ω,F, P ). St denotes the price of the (traded) asset and σt is
the (non-traded) stochastic local return variance at time t. The authors
in [6] classified many stochastic volatility models by using some speci-
fications and studied hedge strategies from an experimental as well as
from an empirical perspective. Because the solutions of above stochastic
differential equations can be represented by closed forms, perhaps we can
get option pricing of asset models which are defined from above equa-
tions by same method. But, in this paper, we introduce some analytic
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calculations of option pricing by using the theory of elementary solution
of diffusion equation.

There are many asset models which are modified by stochastic volatil-
ities. As we know, Black-Scholes volatility asset model is defined by two
stochastic differential equations of the forms

dSt = St(µdt+ σtdWt),(3)

dσt = b(σt)dt+ a(σt)dW̄t,(4)

where µ is a constant, Wt and W̄t are independent Brownian motions,
and σt defined by (4) is volatility of asset price St at time t. As we know,
some stochastic volatility models σt, t ≥ 0 defined by the solutions of
stochastic differential equations are diffusion processes.

Stein and Stein([8]) introduced a mean reverting diffusion process

(5) dσt = −δ(σt − θ)dt+ kdW̄t,

and used a Fourier inverse transformations to integrate the resulting
partial differential equation for the price of a European option. Also,
this model is a special form of above general class represented by (1)
and (2). But this volatility model is a diffusion process, more in full, a
Ornstein-Uhlenbeck process. Thus, we can use the elementary solution
theory to get option prices.

We denote the density function fWT
of random variable WT of (3).

Then we can get the European option pricing at time t = 0 with maturity
T , if it is call and ST ≥ K,

u(t, 0) = e−rTS0e
µT

∫
R+

∫ ∞

0

h(z)p(T, s(x), s(z))dm(s(z))fWT
(y)dy

−e−rTK.

for the function h(z) = exp{−(1/2)z2T + zy}.
Under some special case, we can get the distribution function

p(T, s(x), s(z)).

If we assume b(x) = −b(constant) and in (4), this corresponding diffu-
sion equation is periodic and we get

p(t, x, y) = (1/2
√
πt) exp{−λ0t− (x− y)2/4t+ b(x+ y)/2}.

Under some reflecting boundary conditions, we get for large t,

p(t, x, y) ∼ (2πt)−1/2e−B(0),



Analytic calculation of option in volatility asset model 49

and
p(t, x, y) ∼ 1/M, for some M

Therefore, in these case, we get for large t,

E[h(σt)] ∼ (2πt)−1/2

∫ ∞

0

a(x)−1h(x)eB(x)−B(0)dx,

and

E[h(σt)] ∼ M−12

∫ ∞

0

a(x)−1h(x)eB(x)dx,

respectively.
In Section 2, we deal the elementary solution p(t, x, y) of the gener-

alized diffusion equation. In Section 3, we introduce the calculation of
the price of European call option for, so-called, the Stein/Stein volatility
model.

2. Distribution of diffusion process

Let a ∈ C1(R+), b ∈ C(R+), R+ = (0,∞) with a(x) > 0 and (W̄t, P )
be a standard Brownian motion. Let σt, t > 0 be the solution of sto-
chastic differential equation (4);

(6) σt = σ0 +

∫
R

a(σt)dW̄t +

∫
R

b(σt)dt

with initial condition σ0 = x ∈ (0,∞). Then we know that the solution
σt, t > 0 is a diffusion process with the generator

(7) L =
1

2
a2(x)

d2

dx2
+ b(x)

d

dx
.

Thus, by the differential equations theory in diffusion process, we get
the scale function s(x) and the speed density dM(y) := m(y)dy with the
natural scale y = s(x) as following;

s(x) =

∫ x

1

a(z)−1e−B(z)dz, x ∈ (0,∞),(8)

m(y) = 2

∫ s−1(y)

1

a(z)−1eB(z)dz, y = s(x) ∈ (s(0), s(∞)),(9)

where

B(z) :=

∫ z

1

2b(ξ)

a(ξ)2
dξ.
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Then the value of functional E[h(σt)] is the expectation of h(σt) with
respect to the probability P ;

(10) E[h(σt)] =

∫ ∞

0

h(z)p(t, s(x), s(z))dm(s(z)),

where h is a smooth function and σt is the solution of stochastic differ-
ential equation (6).

Let S = (l1, l2) be an open interval in the sense of McKean(c.f. [4])
with −∞ ≤ l1 < 0 < l2 ≤ ∞ and m(x) a real valued nontrivial right
continuous nondecreasing function on it with m(0) = 0. For a functional

(11) v(t, x) = E[h(σt)|σ0 = x],

where h is a smooth function on R with polynomial growth order, we
get the second order partial differential equation which is so-called the
generalized diffusion equation;

∂v(t, x)

∂t
= Av(t, x),(12)

v(0, x) = h(x),

where

A =
1

2
a(x)2

∂2

∂x2
+ b(x)

∂

∂x

on the interval S. Further, from the elementary solution (the fundamen-
tal solution of (12)) p(t, x, y) of the generalized diffusion equation, we
get

(13) v(t, x) =

∫
R

h(y)p(t, x, y)dy.

To get the elementary solution p(t, x, y) of (12) which is in (13) on
the interval S, so-called in the McKean sense, we need several a little
bit complex steps. For each α ∈ C and x ∈ S, let φ1(x, α) and φ2(x, α)
be the solution of the integral equations

φ1(x, α) = 1 + α

∫ x+

0+

(x− y)φ1(x, α)dm(y),

φ2(x, α) = x+ α

∫ x+

0+

(x− y)φ2(x, α)dm(y),
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respectively. Then for each α > 0, there exist the limits

h1(α) = − lim
x↓l1

φ2(x, α)/φ1(x, α),

h2(α) = lim
x↑l2

φ2(x, α)/φ1(x, α).

We will use usual convention 1/∞ = 0, (±a)/0 = ±∞, ∞±a = ∞, and
−∞ ± a = −∞ for positive real number a. Define the function h/(α)
by the equality

1/h(α) = 1/h1(α) + 1/h2(α)

and ui(x, α), i = 1, 2, α > 0, x ∈ S by

ui(x, α) = φ1(x, α) + (−1)i+1φ2(x, α)/hi(α).

Then it is known that u1(x, α)[u2(x, α)] is positive non-decreasing[resp.
non-increasing] in x ∈ S with u1(0, α) = u2(0, α) = 1. Let

h11(α) = h(α), h22(α) = −(h1(α) + h2(α))
−1,

h12(α) = h21(α) = −h(α)/h2(α).

Then it is seen that all these functions hij(α), i, j = 1, 2 can be analyt-
ically continued to the exterior of the half line (−∞, 0] in the complex
plane. The spectral measure σij(dλ), i, j = 1, 2 are given by

σij([λ1, λ2]) = lim
ϵ↓0

1

π

∫ λ2

λ1

Imhij(−λ−
√
−1ϵ)dλ

for all continuity points λ1 < λ2. Then the matrix valued measure
[σij(dλ)]i,j=1,2 is symmetric and nonnegative definite. Thus, we define
the elementary solution p(t, x, y) of the generalized diffusion equation
(12) by

(14) p(t, x, y) =
2∑

i,j=1

∫ ∞

0−
e−λtφi(x,−λ)φj(y,−λ)σij(dλ),

for t > 0 and x, y ∈ S.
We call the generalized diffusion equation (12) is periodic if A in (12)

denoted by A = d(d/ds)/dm satisfy following (a), (b) and (c);
(a) s(x) defined by (8) is continuous and increasing function,
(b) m(y) defined by (9) is non-trivial, right continuous and nonde-

creasing,
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(c) There is a positive ρ such that

s(x+ 1)− s(y + 1) = ρ−1(s(x)− s(y)),(15)

m(x+ 1)−m(y + 1) = ρ−1(m(x)−m(y)).(16)

Then we get that the elementary solution p(t, x, y) of periodic diffu-
sion equation (12) has some asymptotic behaviors to some more simple
values; for large t > 0, and x, y ∈ R,

(17) p(t, x, y) ∼ α(x, y, λ0)t
−1/2 exp(−λ0t),

where λ0 is the principle eigenvalue of A, and α(x, y, λ0) is a positive
constant depending on x, y and λ0.

3. Calculation of price in European options

As we know, the solution of stochastic differential equation (3) is a
closed form as following;

(18) St = S0 exp{µt−
1

2
σ2
t t+ σtWt}.

The price of European option is defined by

u(t, x) = E[e−r(T−t)g(ST )|St = st].

where the function g is the pay-off function and T is the maturity. The
option is call if g(x) = (x −K)+, and is put if g(x) = (K − x)+ where
(x)+ = max{0, x} and K is the strike price.

If we use the general class of stochastic volatility model (1) and (2)
for the Stein/Stein volatility model in [6], we get of the form

dσt

σt

=
δ(θ − σt)

σt

dt+
k

σt

dW̄t.

Thus, we can get the closed form of solution;

(19) σ2
t = σ2

0 exp{
∫

δ(θ − σt)

σt

dt+

∫
(
k

σt

)dW̄T}.

Thus, from this random variable σ2
T , the asset price ST at time T is

of the form;

(20) ST = S0 exp{µT − 1

2
σ2
TT + σTWT}.
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From the definition of option price, the price of European call option at
time t = 0 is calculated as

u(t, 0) = E[e−rT g(ST )|S0 = s0](21)

= E[e−rT (ST −K)+|S0 = s0]

= e−rTE[ST |S0 = s0]− e−rTK, if ST ≥ K

= e−rTS0E[exp{µT − 1

2
σ2
TT + σTWT}]− e−rTK.

If we assume Brownian motion Wt has mean µ∗
t and variance σ∗

t , we get
density function fWT

of random variable WT . For the solution σt of sto-
chastic differential equation (5), we assume Brownian motion W̄t which
is independent with Brownian motion Wt, has mean µ̄∗

t and variance σ̄∗
t .

Then, we get density function fW̄T
of random variable W̄T . Thus, from

equations (19) and (21), we get

u(t, 0) = e−rT s0e
µTE[exp{−1

2
exp{σ2

0 exp{
∫

δ(θ − σt)

σt

dt(22)

+

∫
(
k

σt

)dW̄T}}T + exp{σ2
0 exp{

∫
δ(θ − σt)

σt

dt

+

∫
(
k

σt

)dW̄T}}Wt}]− e−rTK.

Thus, we can get the European call option price at t = T ; if we know
the density functions fWT

and fW̄T
.

Stein and Stein volatility model is a diffusion process of the form of
solution of stochastic differential equation (5) having a form of (reflected)
Ornstein-Uhlenbeck diffusion process. The solution of this stochastic
differential equation is represented as an integral form;

(23) σt = σ0 + (−δ)

∫ t

0

(σs − θ)ds+

∫ t

0

kdW̄s.

To get the price of European option, we can use the expectation (10)
of the random variable h(σT ) for the solution σt of (4);

(24) E[h(σT )|σ0 = x] =

∫ ∞

0

p(T, s(x), s(z))h(z)dm(s(z)).
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In here,

s(x) =

∫ x

1

a(z)−1e−B(z)dz, x ∈ (0,∞)

=

∫ x

1

1

k
e−B(z)dz,

and

m(y) = 2

∫ s−1
1 (y)

1

a(z)−1eB(z)dz

= 2

∫ s−1
1 (y)

1

1

k
eB(z)dz, y = s(x) ∈ (s(0), s(∞)),

where

B(z) :=

∫ z

1

2b(ξ)

a(ξ)2
dξ =

∫ z

1

−2δ(ξ − θ)

k2
dξ

=
δ

k
(2θz + 1− δz2 − 2δθ),

because of a(x) = k, b(x) = −δ(x − θ). From the fact (21), if ST ≥ K,
we get

u(t, 0) = e−rT s0 exp{µT}E[exp{−1

2
σ2
TT + σTWT}]− e−rTK,

where the random variable σT is the solution of (4) at t = T . Thus, we
get the European option price for the function h(z) = exp{−(1/2)z2T +
zy},

u(t, 0) = e−rTS0e
µT

∫
R+

∫ ∞

0
h(z)p(T, s(x), s(z))fWT

(y)dydm(s(z))− e−rTK

(25)

= e−rTS0e
µT

∫
R+

∫ ∞

0
[exp{−1

2
z2T + zy}]fWT

(y)

p(T, s(x), s(z))dm(s(z))dy − e−rTK,

where fWT
(y) is the density function ofWT . To get calculation of p(T, s(x), s(z)),

we will introduce several cases.

[I]. The following formulation of this subsection is found in [5] mainly.
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Let us assume b(·) = 0 in (4). From the stochastic differential equation
(4), if we use s(x) and m(y) of (8) and (9), we get

s(x) =

∫ x

1dξ = x,

m(x) = 1/σ2(x)s′(x) = 1/σ2(x).

Then, for the generator L in (7) and the function h in (10), we get

Lh(x) =
1

2
a2(x)

d2

dx2
h(x) + b(x)

d

dx
h(x)

=
1

2

d

dM

d

ds
h(x) =

1

2
σ2(x)h′′(x).

Then we get that ρ = 1 of (15) and (16). Therefore, in this case, we can use
the theory of periodic diffusion equation easily.

As a more general case of periodic diffusion operator A in (12), if we think
a generator

L = a2(x)
d2

dx2
− b

d

dx
,

where b is a real number, then we can get following;

ρ = eb, ds(x) = ebxdx, dm(x) = e−bxdx,

satisfying (15) and (16). Therefore, as we see in [4] and [5], we get S = [λ0,∞),
λ0 = b2/4,

α(x, y, λ0) = (1/2
√
π)eb(x+y)/2,

and for t > 0, x, y ∈ R,

(26) p(t, x, y) = (1/2
√
πt) exp{−λ0t− (x− y)2/4t+ b(x+ y)/2}.

From this elementary solution, we get option price by using (25). Further,
if we know some real data, we can get the period of the movement of prices
of asset and volatility.

The following formulation of this subsection [II] and [III] can be found in
[4].

[II]. From the stochastic differential equation (4), if we assume∫ 1

0
|2b(x)
a(x)2

|dx =

∫ 1

0
|−2δ(x− θ)

k2
|dx < ∞,(27) ∫ 1

0
a(x)−1dx =

∫ 1

0

1

k
dx = ∞,(28) ∫ ∞

1
a(x)−1eB(x)

∫ x

1
a(z)−1e−B(z)dz =

∫ ∞

1

1

k
eB(x)

∫ x

1

1

k
e−B(z)dz < ∞,(29)
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and we impose the reflecting boundary condition at upper boundary B1 in
case of

B1 :=

∫ ∞

1
a(x)−1e−B(x)dx < ∞,

then we get l1 = s(0+) = −∞, l2 = ∞, and

m(y) ∼ 2e2B(0)y as y → −∞,∫ ∞

0
ydm(y) < ∞.

Thus, we get long time asymptotic behavior of the elementary solution p(t, x, y)
of the generalized diffusion equation as following

(30) p(t, x, y) ∼ (2πt)−1/2e−B(0) as t → ∞.

For the option pricing of asset price process St, t ≥ 0, we write the expectation
of h(σt) with respect to probability measure P as following

E[h(σt)] =

∫ ∞

0
p(t, s(x), s(z))h(z)dm(s(z))

∼ (2πt)−1/2

∫ ∞

0
a(x)−1h(x)eB(x)−B(0)dx as t → ∞.(31)

for all h such that the integral in the right-hand side converges absolutely.

[III]. Instead of (27), (28) and (29), if we assume

2

∫ ∞

0
a(x)−1eB(x)dx < ∞

and impose the reflecting boundary condition at lower boundary B2 in case
of

B2 := −
∫ 1

0
a(x)−1e−B(x)dx > −∞,

then we get l1 = −∞, l2 = ∞ and

M := m(∞)−m(−∞) = 2

∫ ∞

0
a(x)−1eB(x)dx < ∞.

Then, we get

(32) p(t, x, y) ∼ 1/M as t → ∞.

and

(33) E[h(σt)] ∼ M−12

∫ ∞

0
a(x)−1h(x)eB(x)dx as t → ∞

for all h such that the integral in the right-hand side converges absolutely.
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4. Some other volatility asset models

I. Hull and White volatility model.
From [3], Hull and White volatility model is defined by the solution σ2

t of
the stochastic differential equation

(34) dσ2
t = σ2

t (pdt+ qdW̄t).

Thus, from the solution, we can get a non-negative random variable of the
form;

(35) σ2
T = σ2

0 exp{pT − 1

2
(q2T ) + qW̄T }.

From this random variable σ2
T and the asset price ST at time T , the price of

European call option at time t = 0 is calculated as (21).
If we assume the Brownian motion Wt has the density function fWT

of
random variable WT . For the solution σt of stochastic differential equation
(34), we assume the Brownian motion W̄t has the density function fW̄T

of

random variable W̄T . Then, we can calculate option price by following;

u(t, 0) = e−rT s0e
µTE[exp{−1

2
exp{pT − 1

2
(q2T ) + qW̄T }T

+exp{pT − 1

2
(q2T ) + qW̄T }

1
2WT }}]− e−rTK, if ST ≥ K.(36)

To calculate option price by using elementary solution of diffusion process,
we rewrite (34) as

σt = σ0 +

∫ ∞

0
qσtdW̄t +

∫ ∞

0
pσtdt, σt > 0

with condition σ0 = x > 0. Then we get generator

L =
1

2
(qx)2

d2

dx2
+ px

d

dx
,

scale function s(x), and speed density m(x) for x ∈ (0,∞);

s(x) =

∫ x

0
e−B(z)dz =

∫ x

0
z
− 2p

q2 dz =

∫ x

1
z

q2

2p dz =
2p

q2 + 2p
x

q2+2p
2p ,

m(x) = 1/(qx)2s′(x) = 1/(qx)2x
q2

2p , x ∈ (0,∞).

because

B(z) :=

∫ z

0

2pξ

(qξ)2
dξ =

∫ z

1

2p

q2
1

ξ
dξ =

2p

q2
ln z.

To get the elementary solution p(T, x, y), we can use the theory of diffusion
equation. But, as we know, the solution of (34) is a geometric Brownian
motion which is more simple than diffusion process in general to get option
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prices. Thus, it is more simple if we use (36) by using density functions of
WT and W̄T .

II. Heston volatility model.
The Heston volatility model(c.f. [2]) is denoted by a stochastic differential

equation having a solution of the form;

(37) σ2
t = σ2

0 +

∫ t

0
δ(θ − σ2

s)ds+

∫ t

0
kσsdW̄s.

As a similar method as the Stein/Stein model, if Wt and W̄t are independent,
to get the price of European option we need to get the expectation of random
variable h(σ2

t ), where σ
2
t is the solution of stochastic differential equation (37);

(38) E[h(σ2
t )|σ0 = x] =

∫ ∞

0
p(t, s(x), s(z))h(z)dm(s(z)).

In here,

s(x) =

∫ x

1
a(z)−1e−B(z)dz, x ∈ (0,∞)

=

∫ x

1

1

kz1/2
e−B(z)dz, x ∈ (0,∞),

and

m(y) = 2

∫ s−1(y)

1

1

kz1/2
eB(z)dz, y = s(x) ∈ (s(0), s(∞)),

where

B(z) :=

∫ z

1

2b(ξ)

a(ξ)2
dξ =

∫ z

1

2δ(θ − ξ)

k2ξ
dξ

=
2δθ

k2
(ln 2)− 2δ

k2
z +

2δ

k2
,

because of a(x) = kz1/2, b(x) = δ(θ − x). From the solution of (3), we get

ST = S0 exp{µT − 1

2
σ4
TT + σ2

TWT },

and, if ST ≥ K, we get

u(t, 0) = e−rT s0 exp{µT}E[exp{−1

2
σ4
TT + σTWT }]− e−rTK,

where the random variable σ2
T is the solution of (37) at t = T . Thus, we can

get the European option price by using

u(t, 0) = e−rTS0 exp{µT}
∫
R+

∫ ∞

−1
[exp{−1

2
z4T + z2y}](39)

fWT
(y)p(T, s(x), s(z))dm(s(z))dy − e−rTK,
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where fWT
(y) is the density function of WT in (3).

But, Heston volatility model has a big meaning when Wt and W̄t are not
independent. In this case, we can get Corr(Wt, W̄t) ̸= 0 which discharge for
the leverage works. Thus, to study leverage works, our diffusion method is
needed not.

5. Summary

As we know from [6] and above, for many types of volatility asset models
which are defined by the solutions of stochastic differential equations and are
represented by closed forms, we can calculate option prices if we know the
distribution of volatility σt basically. For the types of volatility models repre-
sented by stochastic differential equations, if the solutions(volatility models)
are diffusion processes, we can calculate the option prices by using the theory
of diffusion equations, i.e., using the theory of elementary solutions of dif-
fusion equations derived from some functionals. Further, if we impose some
conditions to define various types of diffusion equations (c.f. [4] and [5]), we
can get option prices for various types of volatility models which are defined
by some diffusion processes.
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