HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC-CUBIC-QUARTIC FUNCTIONAL EQUATION

Yang-Hi Lee

ABSTRACT. In this paper, we investigate Hyers-Ulam-Rassias stability of a functional equation

$$f(x+ky) + f(x-ky) - k^2 f(x+y) - k^2 f(x-y) + 2(k^2-1)f(x) + (k^2+k^3)f(y) + (k^2-k^3)f(-y) - 2f(ky) = 0.$$

1. Introduction

Let V and W be real normed spaces, Y a real Banach space, and k a fixed real number with $|k| \neq 1$. In this paper, the following abbreviations are used for a given mapping $f: V \to W$:

$$Qf(x,y) := f(x+y) + f(x-y) - 2f(x) - 2!f(y),$$

$$Cf(x,y) := f(x+2y) - 3f(x+y) + 3f(x) - f(x-y) - 3!f(y),$$

$$Q'f(x,y) := f(x+2y) - 4f(x+y) + 6f(x) - 4f(x-y) + f(x-2y) - 4!f(y),$$

$$D_k f(x,y) := f(x+ky) + f(x-ky) - k^2 f(x+y) - k^2 f(x-y) + 2(k^2-1)f(x) + (k^2+k^3)f(y) + (k^2-k^3)f(-y) - 2f(ky)$$

Received April 10, 2019. Revised March 4, 2020. Accepted March 9, 2020.

²⁰¹⁰ Mathematics Subject Classification: 39B82, 39B52.

Key words and phrases: stability of a functional equation, quadratic-cubic-quartic functional equation, quadratic-cubic-quartic mapping.

[©] The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

for all $x, y \in V$. All solutions of the functional equations Qf(x,y) = 0, Cf(x,y) = 0, and Q'f(x,y) = 0 are called a quadratic mapping, a cubic mapping, and a quartic mapping, respectively. If a mapping can be represented by the sum of a quadratic mapping, a cubic mapping and a quartic mapping, we call the mapping a quadratic-cubic-quartic mapping. When each solution of a functional equation is a quadratic-cubic-quartic mapping and all quadratic-cubic-quartic mapping is a solution of that equation, the functional equation is called a quadratic-cubic-quartic functional equation. Gordji $et\ al.\ [4]$ investigated the stability of the quadratic-cubic-quartic functional equation

$$f(x+ny) + f(x-ny) - n^2 f(x+y) - n^2 f(x-y)$$
$$-2(1-n^2)f(x) - \frac{n^2(n^2-1)}{6}(f(2y) + 2f(-y) - 6f(y)) = 0$$

in non-Archimedean normed spaces, when n is a fixed integer.

In 1940, Ulam [6] questioned the stability of group homomorphisms, and in 1941 Hyers [3] showed the stability of the Cauchy additive functional equation as a partial answer to that question. In 1978, Rassias [5] made Hyers' result generalized and Găvruta [2] more generalized Rassias' result. The concept of stability shown by Rassias is called 'Hyers-Ulam-Rassias stability'.

In this paper, we will show that the functional equation $D_r f(x,y) = 0$ is a quadratic-cubic-quartic functional equation when r is a rational number. And also we prove the Hyers-Ulam-Rassias stability of the functional equation $D_k f(x,y) = 0$ when k is a real number.

2. Main results

The following theorem is a special case of Baker's theorem [1].

THEOREM 2.1. (Theorem 1 in [1]) Suppose that V and W are vector spaces over \mathbb{Q} , \mathbb{R} or \mathbb{C} and $\alpha_0, \beta_0, \ldots, \alpha_m, \beta_m$ are scalar such that $\alpha_j \beta_l - \alpha_l \beta_j \neq 0$ whenever $0 \leq j < l \leq m$. If $f_l : V \to W$ for $0 \leq l \leq m$ and

$$\sum_{l=0}^{m} f_l(\alpha_l x + \beta_l y) = 0$$

for all $x, y \in V$, then each f_l is a generalized polynomial mapping of degree at most m-1.

Baker [1] stated that if f is a generalized polynomial mapping of degree at most m-1, then f is expressed as $f(x) = x_0 + \sum_{l=1}^{m-1} a_l^*(x)$ for $x \in V$, where a_l^* is a monomial mapping of degree l and a_l^* has a property $a_l^*(rx) = r^l a_l^*(x)$ for $x \in V$ and $r \in \mathbb{Q}$.

Suppose that g, f', h are generalized polynomial mappings of degree at most 4 and r is a rational number such that $r \neq 0, \pm 1$. Baker [1] also stated that if the equalities $g(rx) = r^2g(x)$, $f'(rx) = r^3f'(x)$ and $h(rx) = r^4h(x)$ hold for all $x \in V$, then g, f' and h are a quadratic mapping, a cubic mapping and a quartic mapping, respectively.

Now we will show that the functional equation $D_r f(x, y) = 0$ is a quadratic-cubic-quartic functional equation when r is a rational number such that $r \neq 0, \pm 1$.

The following abbreviations are used in this section for convenience.

$$f_o(x) := \frac{f(x) - f(-x)}{2}, \quad f_e(x) := \frac{f(x) + f(-x)}{2},$$

$$\Delta f(x) := \frac{1}{k^4 - k^2} [-D_k f_e((k+2)x, x) - D_k f_e((k-2)x, x) - 4D_k f_e((k+1)x, x) - 4D_k f_e((k-1)x, x) + 10D_k f_e(kx, x) + D_k f_e(2x, 2x) + 4D_k f_e(x, 2x) - k^2 D_k f_e(3x, x) - 2(k^2 + 1)D_k f_e(2x, x) + (17k^2 - 8)D_k f_e(x, x)] + \frac{(17k^2 + 10)D_k f(0, 0)}{2k^2(k^2 - 1)}$$

for all $x, y \in V$.

THEOREM 2.2. Let r be a rational number such that $r \neq 0, \pm 1$. A mapping f satisfies the functional equation $D_r f(x, y) = 0$ for all $x, y \in V$ if and only if f is a quadratic-cubic-quartic mapping.

Proof. Assume that the mapping $f: V \to W$ satisfies the functional equation $D_r f(x,y) = 0$ for all $x,y \in V$, and g,h are the mappings defined as $g(x) = \frac{-f_e(2x) + 16f_e(x)}{12}$ and $h(x) = \frac{f_e(2x) - 4f_e(x)}{12}$. Then the equalities $f(0) = \frac{D_r f(0,0)}{2(r^2-1)} = 0$, $\Delta f(x) = 0$, $D_r f_o(x,y) = 0$, $D_r g(x,y) = 0$ and $D_r h(x,y) = 0$ hold for all $x,y \in V$, and f_o , g and h are generalized polynomial mappings of degree at most 4 by Theorem 2.1. We can see that the mappings f_o , g and h satisfy the properties g(2x) = 4g(x),

 $h(2x) = 2^4 h(x)$ and $f_o(rx) - r^3 f_o(x) = 0$ for all $x \in V$, since the equalities

(1)
$$f_e(4x) - 20f_e(2x) + 64f_e(x) = \Delta f(x),$$
$$f_o(rx) - r^3 f_o(x) = \frac{-D_r f(0, x)}{2}$$

hold for all $x \in V$. Therefore, according to Baker's comment before this theorem, g, f_o and h are a quadratic mapping, a cubic mapping and a quartic mapping, respectively. From $f = f_o + g + h$, f is a quadratic-cubic-quartic mapping.

Conversely, assume that f is a quadratic-cubic-quartic mapping, i.e., there exist a quadratic mapping g, a cubic mapping f' and a quartic mapping h such that f = f' + g + h. Notice that the equalities $f'(rx) = r^3 f'(x)$, f'(x) = -f'(-x), $g(rx) = r^2 g(x)$, g(x) = g(-x), $h(rx) = r^4 h(x)$, and h(x) = h(-x) hold for all $x \in V$ and $r \in \mathbb{Q}$.

The equality $D_r g(x,y) = 0$ is deduced from the equality

$$D_r g(x,y) = Qg(x,ry) - r^2 Qg(x,y)$$

for all $x, y \in V$. In order to prove that $D_r f'(x, y) = 0$ and $D_r h(x, y) = 0$ when r is a rational number, let us first see that $D_r f'(x, y) = 0$ and $D_n h(x, y) = 0$ when n is a natural number. Using mathematical induction, the equalities $D_r f'(x, y) = 0$ and $D_n h(x, y) = 0$ are obtained from the equalities

$$D_1 f'(x,y) = 0, D_1 h(x,y) = 0,$$

$$D_2 f'(x,y) = C f'(x,y) - C f'(x-y,y), D_2 h(x,y) = Q' h(x,y),$$

$$D_n f'(x,y) = D_{n-1} f'(x+y,y) + D_{n-1} f'(x-y,y) - D_{n-2} f'(x,y) + (n-1)^2 D_2 f'(x,y),$$

$$D_n h(x,y) = D_{n-1} h(x+y,y) + D_{n-1} h(x-y,y) - D_{n-2} h(x,y) + (n-1)^2 D_2 h(x,y)$$

for all $x, y \in V$ and all $n \in \mathbb{N}$. Let us now see that $D_r f'(x, y) = 0$ and $D_r h(x, y) = 0$ hold when r is a rational number such that $r \neq 0, \pm 1$. Notice that if $r \in \mathbb{Q} \setminus \{0\}$, then there exist $m, n \in \mathbb{N}$ such that $r = \frac{n}{m}$ or $r = \frac{-n}{m}$. Since the equalities $D_{\frac{n}{m}} f'(x, y) = 0$, $D_{\frac{-n}{m}} f'(x, y) = 0$,

 $D_{\frac{n}{m}}h(x,y)=0$ and $D_{\frac{-n}{m}}h(x,y)=0$ are deduced from the equalities

$$D_{\frac{n}{m}}f'(x,y) = D_n f'\left(x, \frac{y}{m}\right) - \frac{n^2}{m^2} D_m f'\left(x, \frac{y}{m}\right),$$

$$D_{\frac{-n}{m}}f'(x,y) = D_{\frac{n}{m}}f'(x,y),$$

$$D_{\frac{n}{m}}h(x,y) = D_n h\left(x, \frac{y}{m}\right) - \frac{n^2}{m^2} D_m h\left(x, \frac{y}{m}\right),$$

$$D_{\frac{-n}{m}}h(x,y) = D_{\frac{n}{m}}h(x,y)$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we conclude that $D_r f'(x, y) = 0$ and $D_r h(x, y) = 0$ hold for all $x, y \in V$.

For a given mapping $f: V \to W$ and a real number $p \neq 2, 3, 4$, let $J_n f: V \to W$ be the mappings defined as $J_n f(x) :=$

$$\begin{cases} k^{3n} f_o(k^{-n}x) + \frac{4^{2n+1}-4^n}{3} f_e(2^{-n}x) - \frac{4^{2n+2}-4^{n+2}}{3} f_e(2^{-n-1}x) & \text{if } p > 4, \\ k^{3n} f_o(k^{-n}x) - \frac{4^{n-1}}{3} \left(f_e(2^{-n+1}x) - 16 f_e(2^{-n}x) \right) \\ + \frac{f_e(2^{n+1}x) - 4 f_e(2^nx)}{12 \cdot 16^n} & \text{if } 3$$

for all $x \in V$ and all nonnegative integers n when 1 < |k|, and $J_n f(x) :=$

$$\begin{cases} \frac{f_o(k^n x)}{k^{3n}} + \frac{4^{2n+1} - 4^n}{3} f_e(2^{-n} x) - \frac{4^{2n+2} - 4^{n+2}}{3} f_e(2^{-n-1} x) & \text{if } p > 4, \\ \frac{f_o(k^n x)}{k^{3n}} - \frac{4^{n-1}}{3} \left(f_e(2^{-n+1} x) - 16 f_e(2^{-n} x) \right) \\ + \frac{f_e(2^{n+1} x) - 4 f_e(2^n x)}{12 \cdot 16^n} & \text{if } 3$$

for all $x \in V$ and all nonnegative integers n when 0 < |k| < 1. By the definition of $J_n f$ and (1), we can calculate that $J_n f(x) - J_{n+1} f(x) =$

$$\begin{cases}
\frac{-k^{3n}}{2}D_k f(0, \frac{x}{k^{n+1}}) + \frac{4^n (4^{n+1}-1)}{3} \Delta f(\frac{x}{2^{n+2}}) & \text{if } p > 4, \\
\frac{-k^{3n}}{2}D_k f(0, \frac{x}{k^{n+1}}) - \frac{1}{192 \cdot 16^n} \Delta f(2^n x) - \frac{4^{n-1}}{3} \Delta f(\frac{x}{2^{n+1}} x) \\
& \text{if } 3$$

for all $x \in V$ and all nonnegative integers n when 1 < |k|, and $J_n f(x) - J_{n+1} f(x) =$

(3)
$$\begin{cases} \frac{D_k f(0,k^n x)}{2k^{3n+3}} + \frac{4^n (4^{n+1}-1)}{3} \Delta f(2^{-n-2}x) & \text{if } p > 4, \\ \frac{D_k f(0,k^n x)}{2k^{3n+3}} - \frac{1}{192 \cdot 16^n} \Delta f(2^n x) - \frac{4^{n-1}}{3} \Delta f(2^{-n-1}x) & \text{if } 3$$

for all $x \in V$ and all nonnegative integers n when 0 < |k| < 1. Therefore, together with the equality $f(x) - J_n f(x) = \sum_{i=0}^{n-1} (J_i f(x) - J_{i+1} f(x))$ for all $x \in V$, we obtain the following lemma.

LEMMA 2.3. If $f: V \to W$ is a mapping such that

$$D_k f(x,y) = 0$$

for all $x, y \in V$, then

$$J_n f(x) = f(x)$$

for all $x \in V$ and all positive integers n.

From Lemma 2.3, we can prove the following stability theorem.

THEOREM 2.4. Let X be a real normed space, Y a real Banach space, and p a positive real number with $p \neq 2, 3, 4$. Suppose that $f: X \to Y$ is a mapping such that

(4)
$$||D_k f(x,y)|| \le \theta(||x||^p + ||y||^p)$$

for all $x, y \in X$. Then there exists a unique solution mapping F of the functional equation $D_k F(x, y) = 0$ such that

$$||f(x) - F(x)|| \le \begin{cases} \frac{\theta||x||^p}{2||k|^3 - |k|^p|} + \frac{K\theta||x||^p}{3 \cdot 2^p} \left(\frac{4}{2^p - 16} - \frac{1}{2^p - 4}\right) & \text{if } p > 4, \\ \frac{\theta||x||^p}{2||k|^3 - |k|^p|} + \frac{K\theta||x||^p}{12} \left(\frac{1}{16 - 2^p} + \frac{1}{2^p - 4}\right) & \text{if } 3$$

for all $x \in X$, where

$$K = \frac{37k^2 + 42 + (2k^2 + 8)2^p + k^23^p + 10|k|^p + 4|k - 1|^p}{|k^4 - k^2|} + \frac{4|k + 1|^p + |k - 2|^p + |k + 2|^p}{|k^4 - k^2|}.$$

Proof. We prove this theorem by dividing it into two cases, |k| < 1 and 1 < |k|.

Let us first prove the case of 1 < |k|. From the definition of Δf and (3), we have

$$\|\Delta f(x)\| = \left\| \frac{1}{k^4 - k^2} [-D_k f_e((k+2)x, x) - D_k f_e((k-2)x, x) - 4D_k f_e((k+1)x, x) - 4D_k f_e((k-1)x, x) + 10D_k f_e(kx, x) + D_k f_e(2x, 2x) + 4D_k f_e(x, 2x) - k^2 D_k f_e(3x, x) - 2(k^2 + 1)D_k f_e(2x, x) + (17k^2 - 8)D_k f_e(x, x)] + \frac{(17k^2 + 10)D_k f(0, 0)}{2k^2(k^2 - 1)} \right\|$$

$$(6) \leq K\|x\|^p$$

for all $x \in X$. It follows from (2) and (4) that $||J_n f(x) - J_{n+1} f(x)|| \le$

$$\begin{cases} \left(\frac{|k|^{3n}}{2\cdot|k|^{(n+1)p}} + \frac{4^n(4^{n+1}-1)K}{3\cdot2^{(n+2)p}}\right)\theta \|x\|^p & \text{if } p > 4, \\ \left(\frac{|k|^{3n}}{2\cdot|k|^{(n+1)p}} + \frac{2^{np}K}{12\cdot16^{n+1}} + \frac{4^{n-1}K}{3\cdot2^{(n+1)p}}\right)\theta \|x\|^p & \text{if } 3$$

for all $x \in X$. Together with the equality $J_n f(x) - J_{n+m} f(x) = \sum_{i=n}^{n+m-1} (J_i f(x) - J_{i+1} f(x))$ for all $x \in X$, we get $||J_n f(x) - J_{n+m} f(x)|| \le$

(7)
$$\sum_{i=n}^{n+m-1} \begin{cases} \left(\frac{|k|^{3i}}{2 \cdot |k|^{(i+1)p}} + \frac{4^{i}(4^{i+1}-1)K}{3 \cdot 2^{(i+2)p}}\right) \theta \|x\|^{p} & \text{if } p > 4, \\ \left(\frac{|k|^{3i}}{2 \cdot |k|^{(i+1)p}} + \frac{2^{ip}K}{12 \cdot 16^{i+1}} + \frac{4^{i-1}K}{3 \cdot 2^{(i+1)p}}\right) \theta \|x\|^{p} & \text{if } 3$$

for all $x \in X$ and $n, m \in \mathbb{N} \cup \{0\}$. It follows from (7) that the sequence $\{J_n f(x)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{J_n f(x)\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \to Y$ by

$$F(x) := \lim_{n \to \infty} J_n f(x)$$

for all $x \in X$. Moreover, letting n = 0 and passing the limit $n \to \infty$ in (7) we get the inequality (5). For the case 2 , from the definition of <math>F, we easily get

$$||D_k F(x,y)|| = \lim_{n \to \infty} \left\| \frac{1}{2 \cdot k^{3n}} \left(D_k f\left(k^n x, k^n y\right) - D_k f\left(-k^n x, -k^n y\right) \right) + \frac{4^n}{12} \left(-D_k f_e\left(\frac{2x}{2^n}, \frac{2y}{2^n}\right) + 16D_k f_e\left(\frac{x}{2^n}, \frac{y}{2^n}\right) \right) + \frac{D_k f_e\left(2^{n+1} x, 2^{n+1} y\right) - 4D_k f_e\left(2^n x, 2^n y\right)}{12 \cdot 16^n} \right\|$$

$$\leq \lim_{n \to \infty} \left(\frac{k^{np}}{k^{3n}} + \frac{4^n (2^p + 16)}{12 \cdot 2^{np}} + \frac{2^{np} (2^p + 4)}{12 \cdot 16^n} \right) \theta(||x||^p + ||y||^p)$$

$$= 0$$

for all $x, y \in X$. Also we easily show that $D_k F(x, y) = 0$ by the similar method for the other cases, either 0 or <math>3 or <math>4 < p.

To prove the uniqueness of F, let $F': X \to Y$ be another solution mapping satisfying (5). Instead of the condition (5), it is sufficient to show that there is a unique mapping that satisfies condition $||f(x) - F(x)|| \le \frac{\theta||x||^p}{2||k|^3 - |k|^p|} + \frac{K\theta||x||^p}{12} \left(\frac{1}{|16 - 2^p|} + \frac{1}{|4 - 2^p|}\right)$ simply. Notice that $||f(x) - F(x)|| = ||f_e(x) - F_e(x)|| = ||f_o(x) - F_o(x)||$ and $F'(x) = J_n F'(x)$ for all $n \in \mathbb{N}$ by Lemma 2.3.

For the case 3 , we have

$$||J_{n}f(x) - F'(x)||$$

$$= ||J_{n}f(x) - J_{n}F'(x)||$$

$$= ||k^{3n}f_{o}(k^{-n}x) - \frac{4^{n-1}}{3}(f_{e}(2^{-n+1}x) - 16f_{e}(2^{-n}x))$$

$$+ \frac{f_{e}(2^{n+1}x) - 4f_{e}(2^{n}x)}{12 \cdot 16^{n}} - k^{3n}F'_{o}(k^{-n}x)$$

$$+ \frac{4^{n-1}}{3}(F'_{e}(2^{-n+1}x) - 16F'_{e}(2^{-n}x)) - \frac{F'_{e}(2^{n+1}x) - 4F'_{e}(2^{n}x)}{12 \cdot 16^{n}}||$$

$$\leq |k|^{3n}||(f_{o} - F'_{o})(k^{-n}x)|| + \frac{||(f_{e} - F'_{e})(2^{n}x)||}{3 \cdot 16^{n}} + \frac{||(f_{e} - F'_{e})(2^{n+1}x)||}{12 \cdot 16^{n}}$$

$$+ \frac{4^{n-1}}{3}||(f_{e} - F'_{e})(2^{-n+1}x)|| + \frac{4^{n+1}}{3}||(f_{e} - F'_{e})(2^{-n}x)||$$

$$\leq \left(\frac{|k|^{3n}}{|k|^{np}} + \frac{2^{np}}{3 \cdot 16^{n}} + \frac{4 \cdot 2^{(n+1)p}}{3 \cdot 16^{n+1}} + \frac{4^{n-1}}{3 \cdot 2^{(n-1)p}} + \frac{4^{n+1}}{3 \cdot 2^{np}}\right) \times$$

$$\left(\frac{1}{2||k|^{3} - |k|^{p}} + \frac{K}{12|16 - 2^{p}|} + \frac{K}{12|4 - 2^{p}|}\right) \theta ||x||^{p}$$

for all $x \in X$ and all positive integers n. Taking the limit in the above inequality as $n \to \infty$, we can conclude that $F'(x) = \lim_{n \to \infty} J_n f(x)$ for all $x \in X$. For the other cases, either 0 or <math>2 or <math>4 < p, we also easily show that $F'(x) = \lim_{n \to \infty} J_n f(x)$ by the similar method. This means that F(x) = F'(x) for all $x \in X$.

Now consider the case of |k| < 1, which has not yet been proven. From (3), (4), (6) and the definition of $J_n f$, we have $||J_n f(x) - J_{n+m} f(x)|| \le$

$$\sum_{i=n}^{n+m-1} \begin{cases} \left(\frac{|k|^{ip}}{2\cdot|k|^{3(i+1)}} + \frac{4^i(4^{i+1}-1)}{3\cdot2^{(i+2)p}}K\right)\theta \|x\|^p & \text{if } p > 4, \\ \left(\frac{|k|^{ip}}{2\cdot|k|^{3(i+1)}} + \frac{2^{ip}K}{12\cdot16^{i+1}} + \frac{4^{i-1}K}{3\cdot2^{(i+1)p}}\right)\theta \|x\|^p & \text{if } 3$$

for all $x \in X$ and $n, m \in \mathbb{N} \cup \{0\}$. The remainder of the proof in the case of 0 < |k| < 1, derived from the above inequality, is omitted because it proceeds very similar to the case of 1 < |k|.

References

- [1] J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci. 133 (6) (2005), 1657–1664.
- [2] P. Găvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [4] M. E. Gordji, H. Khodaei, and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull. Series A 72 (3) (2010), 69–84.
- [5] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297–300.
- [6] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.

Yang-Hi Lee

Department of Mathematics Education Gongju National University of Education Gongju 32553, Republic of Korea

E-mail: yanghi2@hanmail.net