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NONLINEAR ¢-LIE-+-DERIVATIONS ON VON
NEUMANN ALGEBRAS

A1L1 YANG

ABSTRACT. Let #(7) be the algebra of all bounded linear op-
erators on a complex Hilbert space 7 and .# C HB(H) be a
von Neumann algebra without central abelian projections. Let &
be a non-zero scalar. In this paper, it is proved that a mapping
¢ 1 M — B(A) satisfies o([A,B]S) = [p(A), B + [A, o(B)}S
for all A,B € . if and only if ¢ is an additive #-derivation and
V(EA) =E&p(A) for all Ae #.

1. Introduction

Let &7 be an associative x-algebra over the complex field C and £ be a
non-zero scalar. For A, B € <7, define the £-Lie-x product of A and B as
[A, B]S = AB —¢BA*. A mapping ¢ between x-algebras A and B is said
to preserve the &-Lie-* product if p([A, B]S) = [p(A), Bl$+[A, ¢(B)]S for
all A,B € .. A map: &/ — &/ is said to be an additive x-derivation if
it is an additive derivation and satisfies §(A*) = §(A)* for all A € &7 Let
¢ : o — o/ be amap (without the additivity assumption). We say that
¢ is a nonlinear -Lie derivation if ¢([A, B].) = [¢(A), B]« + [A, ¢(B)].
for all A, B € &7, where [A, B], = AB — BA*.

Received May 16, 2019. Revised November 10, 2019. Accepted November 13,
2019.

2010 Mathematics Subject Classification: 47B47 461L40.

Key words and phrases: *-derivation; ¢-Lie-* derivations; von Neumann algebras.

This work is partially supported by Shannxi Natural Science Founda-
tion(112/6121618059).

© The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.


https://doi.org/10.11568/kjm.2019.27.4.969

970 Aili Yang

The structure of linear Lie derivations on C*-algebras has attracted
some attention over past years. Johnson [1] proved that every continuous
linear Lie derivation from a C*-algebra A into a Banach .o/-bimodule
& can be decomposed as § + h, Where § : &/ — & is a derivation
and h is a linear mapping from &7 into the center of &. Mathieu and
Villena [2] proved that every linear Lie derivation on a C*-algebra can
be decomposed into the sum of a derivation and a center-valued trace.
In [3], Zhang proved the same result for nest subalgebras of factor von
Neumann algebras. Cheung gave in [4] a characterization of linear Lie
derivations on triangular algebras. Qi and Hou [5] discussed additive &-
Lie derivations on nest algebras. The most interesting result on additive
Lie derivations of prime rings was obtained in [6]. However, the structure
of nonlinear Lie derivations or nonlinear *-Lie derivations on operator
algebras is not clear, it needs to be discussed further. In [7], Cheng and
Zhang investigated nonlinear Lie derivations on upper triangular matrix
algebras. Yu and Zhang [8] proved that every nonlinear Lie derivations
of triangular algebras is the sum of an additive derivation and a map
into its centers ending commutators to zero. Motivated by these study,
we consider nonlinear *-Lie derivations on von Neumann algebras.

As usual, R and C denote respectively the real field and complex field.
Let s be a complex Hilbert space. We denote by # () the algebra
of all bounded linear operators on . Recall that .# is a factor if its
center is CI where [ is the identity of .Z .

2. Main result and the proof
In this section, our main result is the following theorem.

MAIN THEOREM. Let .# be a von Neumann algebra without
central abelian projections, and £ be a non-zero scalar. Then, a mapping
M — B(H) satisfies ¢([A4, BlS) = [p(A), B + [A, p(B)]S for all
A, B € . if and only if ¢ is an additive x-derivation.

Before proving the theorem, we need some notations and preliminaries
about von Neumann algebras. A von Neumann algebra .# is a weakly
closed, self-adjoint algebra of operators on a Hilbert space .7 containing
the identity I. Theset 2, ={Z € M : ZM = MZ,NM € .} is called
the centre of .#. A projection P is called the central abelian projection
if Pe Z, and P.Z P is abelian. Recall that the central carrier of M,
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denoted by M, is the smallest central projection P satisfying PM = M.
It is not difficult that the central carrier of M is the projection onto the
closed subspace span by {NM(h) : h € s}. If M is self-adjoint, then
the core @ satisfying Q < P. A projection P is said to be core-free if
P =0. It is clear that P =0 if and only if ] — P = 1.

LEMMA 2.1([9, Lemma 4]) Let .# be a von Neumann algebra without
central abelian projections, and & be a non-zero scalar. Then each non-
zero cental projection in .# is the central carrier of a core-free projection

in A.

LEMMA 2.2 Let .# be a von Neumann algebra on a Hilbert space
H. Let A€ B(A) and P € M is a projection with P = 1.

(a) If ABP =0 for all B € ., then A = 0;

(b) If [PT(I — P), Al =0 for all T € .#, then A(I — P) = 0.

Proof. (a) It follows from P = I that the linear span of {BP(z): z €
A} is dense in . So ABP =0 for all B € . implies A = 0.

(b) Since [PT(I — P), Al$ = PT(I — P)A — ¢A(I — PYT*P = 0, by
replacing i7" by T, we get PT(I — P)A+£A(I — P)T*P = 0 and hence
A(l — P)T*P=0forall Ae .#. By (a), A(I — P) =0. O

By Lemma 2.1, there exists a projection P such that P = 0 and
P = I. Throughout the paper, P, = P is fixed, and let P, = I — P. Set
My = Pl P;. Then M =37 My;.

LEMMA 2.3 Let .# be a von Neumann algebra without central abelian
projections, and £ be a non-zero scalar. Then, a mapping ¢ : A —
B(H) satisfies p([A, B]S) = [¢(A), B]S + [A, o(B)]S for all A,B € .,
then ¢ is additive.

Proof. We shall organize the proof in a series of claims.

Claim 1 ¢(0) = 0.

Indeed, (0) = ([0, 0)5) = [(0), 0] + [0, £(O)]¢ = 0.

Claim 2 For i, j, k € {1,2},i # j, Apx € Mk, Bij € M;j, we have

O(Apr + Bij) = o(Ape) + 0(Bij).

We only prove the case i = k = 1, 7 = 2, the proof of the other cases is
simﬂar. Let T = T11 + T12 + T21 + T22 = SO(Akk + B@]) — QO(Akk) — @(Bw)
We only need to prove 7' = 0.
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For any « < (C, since [OéPQ, All]g = 0 and [O_/PQ, All‘l’BlQ]i = [O./PQ, Blg]i,

it follows from Claim 1 that

[o(aPs), A1y + Bm]i + [Py, (A1 + Bl2)]£

= ¢([aPy, Any + Bialf)

= ([ Py, B12])

= p([aPy, AnlS) + ([ Py, BislS)

= [SO(OZP2)7A11]§ + [aPs, SO(AM)]E + [p(aPy), B12]£ + [aPs, 80(312)]5

= [p(aPy), Any + Buofs + [Py, p(An) + ¢(Bra) s

Hence [Ong, (All +B12) (All) (312)] = O that iS [OéPQ, T] 0
so aPyT —alTP, = 0 for any a € C. Let o — @€ # 0, we have Ti5 =
Ty =Ty = 0.

Similarly, since [a& P, +a@ Py, B1o)S = 0 and [aé Py +a Py, Ay + BialS =
[CYgPl + @PQ, All]ia it follows that

[p(al Py +TP,), Ay + Brols + [a€ Py + Py, o(A1y + Buo)ls
= o([a€ Py + @P3, A1y + Bi2]$)

= ¢([alP, +@P2,A11] )

= p([a& P + b, An] )+ p([a Py + aPs, Blz]ﬁ)
= [p(a€ P +aPy), A + [a€ Py + Py, p( A1)
+lp(a Py +@P,), Biol§ + [a& Py + @Ps, p(Bia)]S
= [p(alPy +aP,), A1y + B + [0€ Py + APy, 0(A11) + o(Bia) 5

Hence [af Py +aPy, p(A1+ Bia) — (A1) —¢(Br2)]S = 0, that is, [a& P+
aP,, T)S = 0, from which and the result T1» = Ty, = Thy = 0 we have
(. — a€)Ty; = 0 for any a € C, so Ti; = 0, hence p(Ay; + Byp) =
©(A11) + ¢(Bra).

Claim 3 For AH S %11, Bgz S %22, we have

(A1 + Baa) = o(A1n1) + ¢(Baz).

We let T' = Thy + Tho + Ty + Too = @(A11 + Bag) — ¢(A11) — p(Ba2),
then, we only need to prove that 7' = 0.
For any a € C, since [a Py, By)$ = 0 and [a Py, Ay1+Bos)S = [aPy, ApS,
it follows that
[o(aPr), A + BQ2]§ + [aPr, (A + BQ2)]£
= w([apl,An + By)f)
p([aPr, Baol)
p([aPy, AnlS) + ([aPy, Bylt)
[@(apl) Anls + [aPr, o(An)fS + [e(aPy), Byl + [Py, o(B))S
= [p(aPy), Any + Baols + [Py, p(An) + ¢(Bag) 5.
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Consequently, [aPr, (A1 + Bag) — (A1) — @(B)]S = 0, that is,
[aPy, TS =0, s0 aP,T —aéTP, =0 for any a € C. Let a — @€ # 0, we

have T1; = T1o = T3, = 0. Similarly, we have T5, = 0. Hence T = 0, that

is, (A1 + Ba) = ©(A11) + o(Baz).
Claim 4 For A12 € %12, Bgl S %21, we have

©(A12 + Ba1) = p(Ar2) + ¢(Ba1).

We let T' = Ty + Tho + Tor + Ty = @(A1g + Bar) — ¢(A12) — ¢(Ba),
then we only need to prove that T = 0. Since [P, + aP,, Ap)S = 0
and [a€P, + aPy, Ay + By S = [a€P, + @by, By S, it follows that

[p(a€PL +TP,), Arp + Bal§ + [Py +@Py, p(Ara + Bo)JS
= o([a€ Py + @P3, A1s + Ba1]$)

= o([a& Py + Py, Bs]8)

= ([0 Py + APy, A1p]S) + o([a& Py + @Py, ByilS)
= [p(a€ Py +aPy), A + [a€ Py 4+ Py, (A1)
+[p(€ Py +@P,), Bn S + [a& Py + @Py, o(Ba)[S

= [p(alPy +AP,), A1z + Bor|s + [0€ Py + @Py, 9(A1z) + (B2 5

Therefore, [Oégpl + EPQ, QO(AH + BQl) — @(Alg) — @(Bgl)]i = 0, that iS,
[a€ Py + @P,, T)S = 0, from which we get Ty, = Ty = 0.

And since [Ao, P1]S = 0, it follows that ¢([A12+Bay, Pi]S) = ¢([A12, P15+
©([Bay, P1]5). Hence [T, Py]S, from which we get Ty, = 0. Similarly,
T12 = 0. Therefore, gD(Alg + B21) = @(Alg) + gO(Bgl)

Claim 5 For AH S e%11, 312 S %12, 021 S %21, D22 S %22, we have
(A1 + Az + Ca1) = p(A11) + ¢(Bi2) + ¢(Ca1)

and

©(Daz + Arg + Co1) = ¢(Dag) + ¢(Bia) + ¢(Can).
We only need to prove that T' = p(A11 + A12+ Ca1) — (A1) — p(Bi2) —
©(Cq1) = 0. Similarly, we can prove ¢(Dag + Ajg + Co1) = @(Dag) +
©(B12) + ¢(Cy). For any o € C, since [aP,, Aj1]¢ = 0 and [a Py, Ay +
Bo)§ = [aP,, Bis]s, it follows from Claim 4 that

[o(aPs), A1y + B + C21]£ + [aPs, (A1 + Bia + Cm)]ﬁ
= o([aPy, A1y + Bia + Co1]%)
= ¢([aPy, B3
= p([aPy, A11]S) + ([aPy, Biy + Canlt)
= [p(aP), Ai1]§ + [Py, 0(A1r)S
+p(aPy), Bia + Coul + [Py, o(Big + Ca1)
= [p(aPy), A1 4+ Biz + Col§ + [Py, p(A11) + ©(Bia + ¢(Ca1)))S.
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Hence [Py, T]¢ = 0 for any o € C, from which we get T1o = Ty = Thy =
0.

Since [aP) + a& Py, Oy ]S = 0, it follows from Claim 2 that

[p(@P, + abPy), A1 + Bia + Co1]é + [aPs, (Ay1 + Bia + Co))S
= p([aP, + a&Py, A1 + Biz + Cn %)
= po([@Py + afPy, Ar1 + BplS) 4 o([aPy 4+ af Py, Cn]5)
= [p(@P1 + alPy), A11 + Bia + Co ¢ + [aPy
+alPa, p(An) + @(Biz + 0(Ca)) S

Hence [aP; + &Py, TS = 0 for any o € C, from which we get Ty; = 0.

So T' = 0. Therefore, (A11 + Az + Co1) = p(A11) + ©(Bi2) + ¢(Ca1).

Similarly, we have gO(DQQ + A12 + 021) = QO(DQQ) -+ QO(BlQ) -+ gO(Cgl)
Claim 6 For A;;, B;; € #;;,1 <i# j <2, we have

©(Ai; + Bij) = ¢(Ai) + (Byj).

Compute [P; + A;j, Pj+ By;]s = Aij + Bij — §AY; — EBy; A Tt follows
from Claim 5 and Claim 2 that

©(Aij + By) — p(§A;) — w(EBi; A7)

—@([P +AZ]’P +Bw] )
= [p(P; + Aij), P + Bj|5 + [P + Aij, 0(P; + Byj)ls
[( 1) + (A )P+sz] [P+Am, (P;) + (Bl
©(Aij) + @(Bij) — p(EAT;) — p(EBi A).

Consequently, p(A;; + Bi;) = ¢(Ai;) + ¢(Bij)-
Claim 7 For A;;, B; € M;;,1 = 1,2, we have

¢(Aii + Bii) = p(Aii) + ¢(Bii).
Let T'= p(Ai; + Bi) — p(Ai) — @(Bii). We only need to prove T' = 0.
For any o € C, since [aPj, AylS = [aP;, Byls = [P}, Ay + Bils
0(i # 7), it follows that
o([aP;, Aii + Biil3) = o([aP;, Aiil%) + o([aPj, Byils).

Hence, [aP;, T]¢) = 0, from which we get that Tj; = Tj; = T;; = 0.
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For any C;; € #;;(i # j), it follows from Claim 6 that

[@(Aiz‘ + Bii), Cyjls + [Au‘ + Bii, 0(Ciy)Ls
o([(Aii + Bii), Cy5)%)

(AZZCZJ + BZZCZ])

(AZZCZ]) + SO(B'L'LC'LJ)

([Ana C’L]] ) + @([BM? CZ]]E)

[((Aii) + ©(Bii)), Cijls + [Aii + Bii, 0(Cij)].-

Consequently, [Ty, Cy;]S = 0, that is, T;C;; = 0 for any C;; € 4.
Note that I — P = I. It follows from Lemma 2.2 (1) that 7;; = 0. So
©(Aji + Bi;) = o(Aii) + ¢(Bii).
Claim 8 For AH € %11, Blg < %12, 021 < %21, D22 < %22, we have
©(A11 4+ A1 + Cor + Do) = @(Anr) + ¢(B12) + ¢(Car) + ¢(Da2).

Let T' = p(A11 4+ A1z + Co1 + Dag) — (A1) — @(Bi2) — (Car) — ¢(Da2).
We only need to prove 7' = 0.
For any a € C, since [Py, Dy]$ = 0, It follows from Claim 5 that

[p(aPr), A1y + Aiz + Co1 + Daols + [aPr, o(Arr + Az 4+ Cog + Da))S
= ¢([aPr, A1y + A1g + Co1 + Daslf)
= o([aPr, A1 + A1z + Cn %) + ¢([aPr, Da)$)
= [p(aPy), A1 + A1g + Coy + Doylé
+aPy, (An) + ¢(Biz) + ¢(Can) + o(Da2)]S

Hence, [a Py, T)S = 0, from which we have Th; = T1o = Ty = 0. Similarly,
we can get Tos = 0. Hence, ¢(Aj1+ A1o+Co1 4 Dao) = (A1) +¢(Bia) +
©(Co1) + (D).

Claim 9 ¢ is additive.

It is an immediate consequence of Claims 6, 7 and 8. O

¥
¥
¥

LEMMA 2.4 For any A € .4, we have p(€A) = {p(A) and p(A*) =
p(A)"

Proof. For any A € . , it follows from ¢(I) = 0 that
p(A) = (€A) = o([1, ALY) = [I, p(A)]; = p(A) — Ep(A).
On the other hand, we have
p(A) = Ep(A") = ([A 115) = [p(A), 1S = p(A) — Ep(A)".
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Proof of Main Theorem By Lemma 2.2, Lemma 2.3 and Lemma

2.4,

we get that if o([A, B]S) = [p(A), Bl +[A, o(B)]S forall A, B € #,

then ¢ is an additive *-derivation and ¢(£A) = {p(A) for all A € .
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