SOME RESULTS OF RELATIVE L-ORDER AND GENERALIZED RELATIVE L-ORDER OF ANALYTIC FUNCTIONS IN THE UNIT CISC

Chinmay Ghosh* and Sutapa Mondal

Abstract

Some basic properties in connection with generalized relative order and generalized relative lower order of analytic functions in the unit disc have been dicussed in this article.

1. Introduction, Definitions and Notations

Consider an analytic function f defined in the unit disc $U=$ $\{z:|z|<1\} \subset \mathbb{C}$, the set of all finite complex numbers. Let $T_{f}(r)$ be the Nevanlinna's Characteristic function, defined by

$$
T_{f}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

where $\log ^{+} x=\max (\log x, 0)$ for all $x \geqslant 0$.
The maximum modulus of f is defined by

$$
M_{f}(r)=\max _{|z|=r}|f(z)| .
$$

Received June 24, 2019. Revised December 21, 2019. Accepted December 25, 2019.

2010 Mathematics Subject Classification: 30D20, 30D30.
Key words and phrases: Analytic functions, Generalized relative order, Generalized relative lower order, Regular relative growth, Property(A).

* Corresponding Author.
(c) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

If $T_{f}(r)<(1-r)^{-\mu}$ for all r in $0<r_{0}(\mu)<r<1$, the Nevanlinna order [3] $\rho(f)$ of f is given by

$$
\rho(f)=\underset{r \rightarrow 1}{\limsup } \frac{\log T_{f}(r)}{-\log (1-r)} .
$$

Banerjee and Dutta [1] extended this notions and defined the relative Nevanlinna order (relative Nevanlinna lower order) of a analytic function f with respect to an entire function g defined as:

Definition 1.1. An entire function g is said to have the property (A), if for any $\sigma>1, \lambda>0$ and for all $r, 0<r<1$ sufficiently close to 1 $\left[G\left(\left(\frac{1}{1-r}\right)^{\lambda}\right)\right]^{2}<G\left(\left(\left(\frac{1}{1-r}\right)^{\lambda}\right)^{\sigma}\right)$, where $G(r)=\max _{|z|=r}|g(z)|$.
Definition 1.2. If f be analytic in U and g be entire, then relative order of f with respect to g, denoted by $\rho_{g}(f)$ is defined by,

$$
\begin{aligned}
\rho_{g}(f) & =\inf \left\{\mu>0: T_{f}(r)<T_{g}\left(\exp r^{\mu}\right) \text { for all } 0<r_{0}(\mu)<r<1 .\right\} \\
& =\limsup _{r \rightarrow 1} \frac{\log T_{g}^{-1} T_{f}(r)}{-\log (1-r)}
\end{aligned}
$$

In the line of Banerjee and Dutta [1] we may give the following definitions:

Definition 1.3. If $l \geq 1$ is a positive integer, then the l-th generalized relative order and l-th generalized relative lower order of an analytic function f in U with respect to an entire function g, denoted by $\rho_{f}^{[l]}(g)$ is defined by
$\rho_{g}^{[l]}(f)=\inf \left\{\mu>0: T_{f}(r)<T_{g}\left(\exp ^{[l-1]} r^{\mu}\right)\right.$ for all $0<r_{0}(\mu)<r<1$. $\}$

$$
=\limsup _{r \rightarrow 1} \frac{\log ^{[l]} T_{g}^{-1} T_{f}(r)}{-\log (1-r)} .
$$

and

$$
\lambda_{g}^{[l]}(f)=\liminf _{r \rightarrow 1} \frac{\log ^{[l]} T_{g}^{-1} T_{f}(r)}{-\log (1-r)}
$$

where $\log { }^{[n]} x=\log \left(\log ^{[n-1]} x\right)$ for $n=1,2,3, \ldots$ and $\log ^{[0]} x=x$.
For $n=2$, the quantities $\rho_{g}^{[2]}(f)=\overline{\rho_{g}}(f)$ and $\lambda_{g}^{[2]}(f)=\overline{\lambda_{g}}(f)$ are respectively called relative Nevanlinna hyper order and relative Nevanlinna hyper lower order of an analytic function f in U with respect to another entire function g.

Somasundaram and Thamizharasi [4] introduced the notion of L-order for entire functions where $L \equiv L(r)$ is a positive continuous function increasing slowly
i.e $L($ ar $) \sim L(r)$ as $r \rightarrow \infty$ for every positive constant a.

Their definitions are as follows:
Definition 1.4. The relative L-order $\left[\rho_{g}(f)\right]^{L}$ and relative L-lower order $\left[\lambda_{g}(f)\right]^{L}$ of an analytic function f in U with respect to another entire function g are defined as

$$
\left[\rho_{g}(f)\right]^{L}=\limsup _{r \rightarrow 1} \frac{\log T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)}
$$

and

$$
\left[\lambda_{g}(f)\right]^{L}=\liminf _{r \rightarrow 1} \frac{\log T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)} .
$$

Definition 1.5. The relative generalised L-order $\left[\rho_{g}^{p}(f)\right]^{L}$ and relative generalised L-lower order $\left[\lambda_{g}^{p}(f)\right]^{L}$ of an analytic function f in U with respect to another entire function g are defined as:

$$
\left[\rho_{g}^{p}(f)\right]^{L}=\underset{r \rightarrow 1}{\limsup } \frac{\log ^{p} T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)}
$$

and

$$
\left[\lambda_{g}^{p}(f)\right]^{L}=\liminf _{r \rightarrow 1} \frac{\log ^{p} T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)}
$$

2. Lemmas

In this section we introduced some preliminary Lemmas which will be needed in the sequel.

Lemma 2.1. [1] Let g be an entire function which has the property (A). Then for any positive integer n and for all $\sigma>1, \lambda>0$,

$$
\left[G\left(\left(\frac{1}{1-r}\right)^{\lambda}\right)\right]^{n}<G\left(\left(\left(\frac{1}{1-r}\right)^{\lambda}\right)^{\sigma}\right)
$$

holds for all $r, 0<r<1$, sufficiently close to 1 .

Lemma 2.2. [1] If g is entire then

$$
T_{g}\left(\frac{1}{1-r}\right) \leq \log G\left(\frac{1}{1-r}\right) \leq 3 T_{g}\left(\frac{2}{1-r}\right)
$$

for all $r, 0<r<1$, sufficiently close to 1 .

3. Theorems

In this section we present the main results of the paper.
Theorem 3.1. Let f be analytic in U of generalised relative L order $\left[\rho_{g}^{p}(f)\right]^{L}$, where g is entire. Let $\epsilon>0$ is arbitrary then $T_{f}(r)=$ $O\left(\log G\left(\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left[\rho_{g}^{p}(f)\right]^{L}+\epsilon}\right)\right)$ holds for all $r, 0<r<1$, sufficiently close to 1. Conversely, if for an analytic f in U and entire g having the property (A), $T_{f}(r)=O\left(\log G\left(\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k+\epsilon}\right)\right)$ holds for all $r, 0<$ $r<1$, sufficiently close to 1 , and $T_{f}(r)=O\left(\log G\left(\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k-\epsilon}\right)\right)$ does not hold for all $r, 0<r<1$, sufficiently close to 1 , then $k=$ $\left[\rho_{g}^{p}(f)\right]^{L}$.

Proof. From the definition of relative L-order, we have

$$
\begin{aligned}
T_{f}(r) & \leq T_{g}\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left[\rho_{g}^{p}(f)\right]^{L}+\epsilon}\right], \text { for } 0<r_{0}<r<1 \\
& <\log G\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left[\rho_{g}^{p}(f)\right]^{L}+\epsilon}\right), \text { by Lemma2.2 }
\end{aligned}
$$

Therefore,

$$
\therefore T_{f}(r)=O\left(\log G\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left[\rho_{g}^{p}(f)\right]^{L}+\epsilon}\right)\right)
$$

Conversely, if $T_{f}(r)=O\left(\log G\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k+\epsilon}\right)\right)$ holds for all $r, 0<r<1$, sufficiently close to 1 , then

$$
\begin{gathered}
T_{f}(r)<[\alpha] \log G\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k+\epsilon}\right), \alpha>1 \\
=\frac{1}{3} \log \left(G\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k+\epsilon}\right)\right)^{3[\alpha]} \\
T_{f}(r) \leq T_{g}\left(2 \exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{(k+\epsilon)}\right)^{\sigma}, \text { by Lemma2.2 and } 2.1
\end{gathered}
$$

For any $\sigma>1$.

$$
\begin{aligned}
T_{g}^{-1} T_{f}(r) & \leq\left(2 \exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{(k+\epsilon)}\right)^{\sigma} \\
\log ^{p} T_{g}^{-1} T_{f}(r) & \leq \sigma \log ^{p} \exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k+\epsilon}+O(1) \\
& =\sigma(k+\epsilon) \log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)+O(1)
\end{aligned}
$$

So,

$$
\limsup _{r \rightarrow 1} \frac{\log ^{p} T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)} \leq \sigma(k+\epsilon)
$$

Since $\epsilon>0$ is arbitrary and let $\sigma \rightarrow 1+$ we get

$$
\begin{equation*}
\limsup _{r \rightarrow 1} \frac{\log ^{p} T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)} \leq k \tag{1}
\end{equation*}
$$

Again there exists a sequence $\left\{r_{n}\right\}$ of values r tending to 1 for which

$$
\begin{aligned}
T_{f}(r) & \geq \log G\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{(k-\epsilon)}\right) \\
& \geq T_{g}\left(\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{(k-\epsilon)}\right), \text { by Lemma2.2 }
\end{aligned}
$$

and so,

$$
\frac{\log ^{p} T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)} \geq k-\epsilon
$$

for $r=r_{n} \rightarrow 1$. Since $\epsilon>0$ is arbitrary then

$$
\begin{equation*}
\limsup _{r \rightarrow 1} \frac{\log ^{p} T_{g}^{-1} T_{f}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)} \geq k \tag{2}
\end{equation*}
$$

combining(1) and (2), we obtain,

$$
k=\left[\rho_{g}^{p}(f)\right]^{L}
$$

Corollary 3.2. Let f be analytic in U of relative L-order $\left[\rho_{g}(f)\right]^{L}$, where g is entire. Let $\epsilon>0$ is arbitrary then

$$
T_{f}(r)=O\left(\log G\left(\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left[\rho_{g}(f)\right]^{L}+\epsilon}\right)\right)
$$

holds for all $r, 0<r<1$, sufficiently close to 1 . Conversely, if for an analytic f in U and entire g having the property(A)

$$
, T_{f}(r)=O\left(\log G\left(\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k+\epsilon}\right)\right)
$$

holds for all $r, 0<r<1$, sufficiently close to 1 , and

$$
T_{f}(r)=O\left(\log G\left(\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{k-\epsilon}\right)\right)
$$

does not hold for all $r, 0<r<1$, sufficiently close to 1 , then $k=$ $\left[\rho_{g}(f)\right]^{L}$.

Theorem 3.3. Let f_{1} and f_{2} be analytic in U having generalised relative L-orders $\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L}$ and $\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$ respectively, where g is entire having the property (A). Then
(a) $\left[\rho_{g}^{p}\left(f_{1} \pm f_{2}\right)\right]^{L} \leq \max \left\{\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L},\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}\right\}$
and
(b) $\left[\rho_{g}^{p}\left(f_{1} \cdot f_{2}\right)\right]^{L} \leq \max \left\{\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L},\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}\right\}$.

The same inequality holds for the quotient. The equality holds in (b) if $\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L} \neq\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$.

Proof. Suppose that $\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L}$ and $\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$ both are finite, because if one of them or both are infinite, the inequalities are evident. Let $\rho_{1}=\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L}$ and $\rho_{2}=\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$ and $\rho_{1} \leq \rho_{2}$.

For arbitrary $\epsilon>0$ and for all $r, 0<r<1$, sufficiently close to 1 , we have

$$
\begin{aligned}
T_{f_{1}}(r) & <T_{g}\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{1}+\epsilon}\right] \\
& \leq \log G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{1}+\epsilon}\right] \\
T_{f_{2}}(r) & <T_{g}\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{2}+\epsilon}\right] \\
& \leq \log G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{2}+\epsilon}\right]
\end{aligned}
$$

Now for all $r, 0<r<1$, sufficiently close to 1 ,

$$
\begin{aligned}
T_{f_{1} \pm f_{2}}(r) \leq & T_{f_{1}}(r)+T_{f_{2}}(r)+O(1) \\
\leq & \log G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{1}+\epsilon}\right] \\
& +\log G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{2}+\epsilon}\right]+O(1) \\
\leq & 3 \log G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{2}+\epsilon}\right] \\
= & \frac{1}{3} \log \left(G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\rho_{2}+\epsilon}\right]\right)^{9} \\
\leq & \frac{1}{3} \log G\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left(\rho_{2}+\epsilon\right)}\right]^{\sigma}, \text { by Lemma2.1 }
\end{aligned}
$$

for any $\sigma>1$

$$
\leq T_{g}\left[2 \exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left(\rho_{2}+\epsilon\right)}\right]^{\sigma}, \text { by Lemma2.2 }
$$

$$
\begin{aligned}
& \log ^{p} T_{g}^{-1} T_{f_{1} \pm f_{2}}(r) \leq \sigma \log ^{p}\left[\exp ^{p-1}\left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)^{\left(\rho_{2}+\epsilon\right)}\right]+O(1) \\
& =\sigma\left(\rho_{2}+\epsilon\right) \log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)+O(1) \\
& \therefore\left[\rho_{g}^{p}\left(f_{1} \pm f_{2}\right)\right]^{L}=\limsup _{r \rightarrow 1} \frac{\log ^{p} T_{g}^{-1} T_{f_{1} \pm f_{2}}(r)}{\log \left(\frac{1}{1-r} L\left(\frac{1}{1-r}\right)\right)} \leq\left(\sigma \rho_{2}+\sigma \epsilon\right)
\end{aligned}
$$

since $\epsilon>0$ is arbitrary, we obtain by letting $\sigma \rightarrow 1+$

$$
\left[\rho_{g}^{p}\left(f_{1} \pm f_{2}\right)\right]^{L} \leq \rho_{2}=\max \left\{\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L},\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}\right\}
$$

which proves (a).
For (b), since

$$
T_{f_{1} \cdot f_{2}}(r) \leq T_{f_{1}}(r)+T_{f_{2}}(r) .
$$

We obtain similarly as above,

$$
\left[\rho_{g}^{p}\left(f_{1} \cdot f_{2}\right)\right]^{L} \leq \max \left\{\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L},\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}\right\}
$$

Let $f=f_{1} \cdot f_{2}$ and $\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L} \leq\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$.
Then applying (b), $\left[\rho_{g}^{p}(f)\right]^{L} \leq\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$.
Again since $f_{2}=f / f_{1}$, applying the first part of (b), we have

$$
\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L} \leq \max \left\{\left[\rho_{g}^{p}(f)\right]^{L},\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L}\right\} .
$$

Since $\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L} \leq\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$, we have

$$
\left[\rho_{g}^{p}(f)\right]^{L}=\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}=\max \left\{\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L},\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}\right\}
$$

when $\left[\rho_{g}^{p}\left(f_{1}\right)\right]^{L} \neq\left[\rho_{g}^{p}\left(f_{2}\right)\right]^{L}$. This proves the theorem.
Corollary 3.4. Let f_{1} and f_{2} be analytic in U having relative L orders $\left[\rho_{g}\left(f_{1}\right)\right]^{L}$ and $\left[\rho_{g}\left(f_{2}\right)\right]^{L}$ respectively, where g is entire having the property (A). Then

$$
\text { (a) }\left[\rho_{g}\left(f_{1} \pm f_{2}\right)\right]^{L} \leq \max \left\{\left[\rho_{g}\left(f_{1}\right)\right]^{L},\left[\rho_{g}\left(f_{2}\right)\right]^{L}\right\}
$$

and

$$
\text { (b) }\left[\rho_{g}\left(f_{1} \cdot f_{2}\right)\right]^{L} \leq \max \left\{\left[\rho_{g}\left(f_{1}\right)\right]^{L},\left[\rho_{g}\left(f_{2}\right)\right]^{L}\right\} \text {. }
$$

The same inequality holds for the quotient. The equality holds in (b) if $\left[\rho_{g}\left(f_{1}\right)\right]^{L} \neq\left[\rho_{g}\left(f_{2}\right)\right]^{L}$.

References

[1] D. Banerjee and R. K. Dutta, Relative order of functions analytic in the unit disc, Bull. Cal. Math. Soc. 101 (1) (2009), 95-104.
[2] R. K. Dutta, Generalised relative order of functions analytic in the unit disc, Konuralp Journal Of Mathematics 1 (2) (2013), 50-56.
[3] O. P. Juneja and G. P. Kapoor, Analytic functions growth aspects, Pitman Advanced Publishing Program 01 (1985).
[4] D. Somasundaram and R. Thamizharasi, A note on the entire functions of Lbounded index and L-type, Indian J. Pure Appl. Math. 19 (3) (1988), 284-293.

Chinmay Ghosh

Department of Mathematics, Kazi Nazrul University
Nazrul Road, P.O.- Kalla C.H., Asansol-713340, West Bengal, India
E-mail: chinmayarp@gmail.com

Sutapa Mondal

Department of Mathematics, Kazi Nazrul University
Nazrul Road, P.O.- Kalla C.H., Asansol-713340, West Bengal, India
E-mail: sutapapinku92@gmail.com

