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A NOTE ON DERIVATIONS OF ORDERED
-SEMIRINGS

Kyung Ho Kim

ABSTRACT. In this paper, we consider derivation of an ordered T'-
semiring and introduce the notion of reverse derivation on ordered
I'-semiring. Also, we obtain some interesting related properties. Let
I be a nonzero ideal of prime ordered I'-semiring M and let d be
a nonzero derivation of M. If I'-semiring M is negatively ordered,
then d is nonzero on I.

1. Introduction

A semiring is an algebraic structure with two binary operations called
addition and multiplication where one of them distributive over the
other. A semiring is a common generalization of rings and distributive
lattices and was first introduced by Vandiver([10)] 1934 but nontrivial
examples of semiring have appeared in the earlier studies on the theory
of commutative ideals of rings by Richard Dedekind 19th centrary The
notion of a I'-ring was introduced by Nobusawa([7)] as a generalization
of ring 1981. Sen([9]) introduced the concept of a I' semigroup in 1981.
In 1995, M. K. Rao([4, 5]) introduced the notion of I'-semiring which
is a generalization I'-ring, ring and semiring. Over the last few decades
serval authors have investigates the relationship between the commuta-
tivity of ring R and the existence of certain specified derivation of R.
The first result in this relation is due to Posner([8)] in 1957. In the 1990,
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Bresar and Vukman([1]) established that a prime ring must be commu-
tative if it admits a nonzero left derivation. Kim([2, 3]) studied right
derivations and generalized right derivations of incline algebras. M. K.
Rao([6]) introduced the notion of right derivation in ordered I'-semirings
and generalized right derivations of ordered I'-semirings. In this paper,
we consider derivations of ordered I'-semirings and introduced the no-
tion of reverse derivations on ordered I'-semirings. Also, we obtain some
interesting related properties. Let I be a nonzero ideal of prime ordered
[-semiring M and let d be a nonzero derivation of M. If I"-semigroup M
is negatively ordered, then d is nonzero on 1.

2. Preliminaries

DEFINITION 2.1. A set S together with two associative binary opera-
tions called addition and multiplication (denoted by + and - respectively)
will be called a semiring if

(1) : (S,4+) is commutative.

(2) z(y+z2)=xy+axzand (r+y)z =zz+yz foral x,y,2 € S

(3) : there exists 0 € S such that x + 0 = z and 2 + 0 = 2z and
z-0=0-z=0forallz e S.

DEFINITION 2.2. Let (M, +) and (T, +) be commutative semigroups.
Then M is called a I'-semiring if there exists a mapping M xI'x M — M,
where (x, o, y) = xay such that it satisfies the following axioms for any
x,y,z € M and o, 8 € T,

(1) : za(y + 2) = zay + zaz
(2) : (x+y)az = zaz +yaz
(3) : z(a+ By = vay + zPy
(4) : za(yBz) = (zay)Bz.

Every semiring S is a I'-semiring with I' = S, where the ternary
operation is the usual semiring multiplication.

EXAMPLE 2.3. Let S be a semiring and M, ,(S) denote the addition
abelian semigroup of all p x ¢ matrices with identity element whose
entries are from S. Then M, ,(5) is a I'-semiring with I' = M, ,(5).
A ternary operation is defined by xaz = z(a')z as the usual matrix
multiplication, where o' denotes the transpose of the matrix «, for all
x,y and a € I'.
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A T-semiring M is said to have a zero element if there exists an
element 0 € M such that 0 +x = 2 +0 = x and Oaz = zal = 0 for
all z € M and a € I'. A I'-semiring M is said to be commutative if
xay = yax for all z,y € M and a € I'. An element a € M is said to be
tdempotent if there exists a € I" such that a = acaa and a+a = a. If every
element of M is an idempotent of M, then M is called an idempotent
['-semiring. An element 1 € M is said to be unity if for each x € M,
there exists a € I' such that zal = lax = .

DEFINITION 2.4. Let M be an ordered I'-semiring.
(1) : (M, +) is positively ordered if a +b > a,b for all a,b € M
(2) : (M, +) is negatively ordered if a +b < a,b for all a,b € M
(3) : A I'-semigroup M is positively ordered if aab > a,b for all a,b €
M and a € T’
(4) : A T'-semigroup M is negatively ordered if acb < a,b for all a,b €
M and o € T'.

DEFINITION 2.5. An I'-semiring M is called an ordered I'-semiring if
it admits a compatible relation <, that is, < is a partial ordering on M
which satisfies the following conditions,

(1) : fa<band c<d,thena+c<b+d
(2) : If a < b and ¢ < d, then aac < bad
(3) : If a < band ¢ < d, then caa < dab, for all a,b,c € M and o € T’

EXAMPLE 2.6. Let M =[0,1],I' = N,z + y = max{z,y} and zay =
min{z, o, y} for all z,y € M and a € T. Then M is an ordered T'-
semiring with respect to the usual ordering (see[6]).

DEFINITION 2.7. A nonempty subset A of ordered I'-semiring M is
called a I'-subsemiring if (A, +) is a subsemigroup of (M, +) and aab €
Aforall a,b € A and o € I'. A nonempty subset I of ordered I'-semiring
M is called a left ideal (right ideal) of M if for any a € M and b € I,

(1) : I is closed under addition
(2) : MTI C I(ATM C I)
(3) : @ <bandbe I implies a € I.

A nonempty subset I of ordered I'-semiring M is called ideal of M if
it is both a left ideal and a right ideal of M. A nonempty subset I of
ordered I'-semiring M is called k-ideal of M if I is an ideal and x+y €
and y € I implies « € [ for any z € M.
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DEFINITION 2.8. Let M be an ordered I'-semiring. A I'-subsemiring
P of M is said to be prime ideal of M if

(1) : a<band b€ P implies a € P for any a € M
(2) : aab € P impliesa € Porb e P for all a,b € M and a € T

DEFINITION 2.9. Let M be an ordered I'-semiring. An element a € M
is said to be additively left cancellative if for all b,c € M, a+b=a+c =
b= c. An element a € M is said to be additively right cancellative if for
allb,c € M, b+a = c+a = b = c. It is said to be additively cancellative if
it is both left and right cancellative. If every element of M is additively
left cancellative, it is said to be additively left cancellative. If every
element of M is additively right cancellative, it is said to be additively
right cancellative.

3. Derivations in ordered ['-semirings

In what follows, let M denote an ordered I'-semiring unless otherwise
specified.

DEFINITION 3.1. Let M be an ordered I'-semiring. If the mapping
d: M — M satisfies the following conditions
(1) : d(z +y) = d(z) + d(y)
(2) : d(zay) = d(z)ay + xad(y)
(2) : If x <y, then d(x) < d(y) for all z,y € M and o € T,
then d is called a derivation on M.

EXAMPLE 3.2. Let M = {( Z 2 ) ta,b,ce Q}, where () is the set

Z 2) :a,b,cEN}, where N is the

set of natural numbers. Then M and I' are additive abelian semigroups
with respect to the usual matrix addition of 2 x 2 matrices and a ternary
operation, which is defined as M x I' x M by (z,«,y) — xay using the
usual matrix multiplication for all z,y € M and a € I'. Let A = (a;;)
and B = (b;;) € M, we define A < B < a;; < b;; for all 4, j. Then M is
an ordered ['-semiring. Define a map d : M — M given by

f((50))-(00)

of rational numbers and [ = (
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Then d is a derivation on M.

PROPOSITION 3.3. Let M be a commutative ordered I'-semiring. If
M is additive idempotent, then for a fixed a € M and o € I, the
mapping d, : M — M given by d,(x) = z o a for all z € M, where
x oa = xaa+ aax is a derivation of M.

Proof. Let M be a commutative ordered I'-semiring. Then for a fixed
a € Mand ael,

do(z+y)=(x+y)oa=(x+y)aa+ ax(x+y)
= zaa + yaa + (r + y)aa
= zaa + yoa + raa + yaa
= raa + yaa + acx + aoy
= (zaa + aax) + (yoa + aay)
=xoa+yoa
= dq(2) + da(y)
for all z,y € M. Also we have for all z,y € M and o € T,
do(zay) = (xay) o a = (xay)aa + aa(zay)
= (zay)aa + (zay)oa
= (zay)aa + (xay)aa = (zay)aa
and
do(z)oy + zad,(y) = (raa + aax)y + za(yaa + aay)
= (zaa + aax)oy + (yaa + aay)ax
= (zaa)ay + (aax)ay + (yaa)ax + (ay)ax
= (zay)aa + (vay)oa + (vay)oa + (vay)aa,
= (zay)aa,
which implies d,(zay) = d.(x)ay + xad,(y).
Finally, let =,y € M be such that < y. Then we have for any a € I,
we have

r <y=xaa < yoa
= zaa + raa < yaa + yaa
= zaa + aor < yaa + aqy
= dy(z) < da(y).
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Hence d, is a derivation of M. O

PROPOSITION 3.4. Let M be a commutative ordered I'-semiring.
Then dy.p = d, + dy, for all a,b € M and o € T'.

Proof. Let M be a commutative ordered I'-semiring and a,b € M.
Then for all c € M and a € T', we have

dosp(c) = (a+b)oc= (a+b)ac+ cala+b)
= (a+ b)ac+ (a + b)ac = aac + bac + acc + bac
= aac + bac + caa + cab = (aac + caa) + (bac + cab)
= (aoc)+ (boc)=d,(c)+ dy(c)
= (do + db)(c).
[

PROPOSITION 3.5. Let M be an ordered I'-semiring. If d is a deriva-
tion of M, then we have d(0) = 0.

Proof. Let M be an ordered I'-semiring. For any a € I', we have
d(0) = d(0a0) = d(0)a0 + 0ad(0) =0+ 0 = 0.
This completes the proof. n

PROPOSITION 3.6. Let M be a commutative ordered I'-semiring. A
sum of two derivations of M is again a derivation of M.

Proof. Let d; and dy be two derivations of M, respectively. Then we
have for all a,b € M and o € T,

(di +dy)(a+b) = di(a+b) + da(a +b)
= di(a) + di(b) + da(a) + d2(b)
= (& (@) + do(@)) + (ch (8) + (D))
= (dy + dy)(a) + (di + d2)(b)
and
(dy + do)(aad) = dy(aab) + da(aad)
= dy(a)ab + aad;(b) + da(a)ab + aady(b)
di(a)ab + do(a)ab + aady (b) + acds (D)
= (dy + ds)(a)ab + ac(d; + d2)(b).

Clearly, z <y implies (dy + ds)(z) < (dy +d2)(y) for any z,y € M. This
completes the proof. n
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THEOREM 3.7. Let M be a commutative ordered I'-semiring let dy, dy
be derivations of M, respectively. Define dydy(z) = dy(de(z)) for all
x € K. If didy, = 0, then dad; is a derivation of M.

Proof. Let didy = 0. For every z,y € M and « € I", then we have
0 = diday(zay) = di(da(z)ay + xads(y))
= dido(z)ay + da(x)ady (y) + di(2)ads(y) + zady (da(y))
= da(z)adi(y) + di(2)adz(y).
Then
dody (zay) = do(dy(z)ay + zad (y))
= dady (x)ay + di(z)ads(y) + do(z)ad; (y) + zada(di(y))
= dydy (z)ay + zadydy (y).
Also, for all x,y € K, we get
dadi(z +y) = do(dr(x) + di(y)) = dadi(x) + dadi (y).
Finally, x <y implies da(di(x)) < do(di(x)). This implies that dad; is a
derivation of M. m

PROPOSITION 3.8. Let d be a derivation of the idempotent commu-
tative ordered I'-semiring M. If M is negatively ordered, then d(z) < x
for all z € M.

Proof. Let d be a derivation of the idempotent commutative ordered
[-semiring M. Then we have

d(z) = d(zaz) = d(x)ax + zad(z)
=d(z)ar +d(x)ax = d(z)axr < x
forallz € M and a € T'. ]

PROPOSITION 3.9. Let d be a derivation of a prime ordered I"-semiring
M anda € M. If acd(x) = 0 for all x € M and o € ', then either a = 0
ord(z)=0.

Proof. Let aad(xz) =0 for all x € M and « € I'. Replacing = by zay,
then we have

0 = aad(zay) = aa(d(z)ay + rad(y))
= aad(x)ay + acxad(y)
= aazxad(y)
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for all x;y € M and a € T'. Since M is prime, if d(y) # 0 for some
y € M, we have a = 0. O]

PROPOSITION 3.10. Let M be an idempotent prime ordered I'-semiring
and let d be a derivation on M. Define d*(x) = d(d(x)) for all z € M. If
d? = 0, then d is zero.

Proof. Let x,y € M and o € I'. Then we have
0 = d*(zay) = d(d(x)ay + zad(y))
= d*(v)ay + d(z)ad(y) + d(x)ad(y) + vad*(y)
= d(z)ad(y) + d(z)ad(y)
= d(z)ad(y)
By Proposition 3.9, we have d = 0. O

PropPoOSITION 3.11. Let M be an additively cancellative ordered I'-
semiring and let d; and dy be derivations of M. Define dyds(x) = dy(ds(z))
for all x € M. If dyds is also a derivation of M, then

da(x)d1(y) + di(x)da(y) = 0
for all x,y € M and a € T.

Proof. Since dy and ds are derivations of M, we have for all z,y € M
and a € T,

(1) dida(zay) = di(dz(zoy))

= di(dz2(z)ay + zads(y))

= dldg(:v)ay + dz(l’)adl (y) + dl (JT)OJCZQ(Z/) + IL‘OédldQ(y).
Since dyds is also a derivation of M, we have
(2) dldQ(xozy) = d1d2($)04y + xadldg(y).
Combining (1) and (2) yields

da(z)oudy (y) + di(z)ouda(y) = 0

for all z,y € M and a € T". O]

PROPOSITION 3.12. Let I be a nonzero ideal of prime ordered I'-
semiring M and let d be a nonzero derivation of M. If an I'-semigroup
M is negatively ordered, then d is nonzero on I.
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Proof. Let d = 0 be on I and « € I. Then d(z) = 0 for all z € I.
Also, let y € M. Since zay < x and [ is an ideal of M, we have zay € I,
Therefore, d(zay) = 0, that is,

0 =d(zay) = d(z)ay + zad(y) = zad(y).

Since M is prime, we get © = 0 for all z € I or d(y) = 0 for all y € M.
Since I # 0, we have d(y) = 0 for all y € M. This is a contradiction by
hypothesis. So, d is nonzero on I. m

THEOREM 3.13. Let M be an additively cancellative prime ordered
I'-semiring and let d be a nonzero derivation on M. If [a,d(M)] = (0),
where [a, x|, = acx — xaa for all z,a € M, then a € Z, the center of M.

Proof. By hypothesis, we have [a, d(x)], = 0 for all x € M. Replacing
z by aax for all x and o € I', we have [a, d(acx)] = 0. Hence we get

(3)  0=[a,d(a)ax + aad(z)]s
= [a,d(a)ax], + [a, acd(z)]q
= d(a)ala, x]o + [a, d(a)]wax + aala, d(x)]s + [a, a]od(x).

By using the hypothesis and the fact that [a,al, = 0 for all a € M, we
have d(a)a[a, z], = 0. Also, replacing = by xSy, we have d(a)I' MT[a, y|, =
(0) for all y € M. Since M is prime and d # 0, we have [a,y|, = 0 for
all y € M. Hence we have a € Z, the center of M. ]

THEOREM 3.14. Let M be an additively cancellative prime ordered I'-
semiring and let d be a nonzero derivation on M. Then M is commutative
ordered I'-semiring.

Proof. Let a,b € M and o € I'. Then we have

(4) d(aabaa) = d(a)abaa + acd(baa)
= d(a)abaa + aa(d(b)aa + bad(a))
= d(a)abaa + aad(b)aa + baaad(a)

and

(5) d(aabaa) = d(aab)aa + acbad(a)
= (d(a)ab + aad(b))aa + aabad(a)
= d(a)abaa + aad(b)aa + aabad(a)

From (4) and (5), we have aabad(a) = baaad(a), that is, [a, b],ad(a) =
0. Also, replacing b by cab in this relation, we have [a, ¢]oabad(a) = 0 for
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all a,b,c € M and o € T'. Since M is prime and d # 0, we get [a, ], = 0.
This implies that M is a commutative ordered ['-semiring. ]

4. Reverse derivations in ordered ['-semirings

DEFINITION 4.1. Let M be an ordered I'-semiring. If the mapping
d: M — M satisfies the following conditions

(1) = d(z +y) = d(z) + d(y)
(2) : d(zay) = d(y)ax + yad(z)
(3) : If z <y, then d(z) < d(y) for all z,y € M and o € T,

then d is a reverse derivation of M.

EXAMPLE 4.2. Let M = {( z 2 > ta,b e Q}, where () is the set

¢ O):aGN , where N is the
0 a

set of natural numbers. Then M and I' are additive abelian semigroups
with respect to the usual matrix addition of 2 x 2 matrices and a ternary
operation, which is defined as M x I' x M by (z,«,y) — xay using the
usual matrix multiplication for all z,y € M and a € I'. Let A = (a;;)
and B = (b;;) € M, we define A < B < a;; < b;; for all 7, j. Then M is
an ordered I'-semiring. Define a map d : M — M given by

()0

Then d is a reverse derivation on M.

of rational numbers and I' = (

EXAMPLE 4.3. Let M = {< Z 2 ) ta,b e Q}, where () is the set

a 0
0 b

set of natural numbers. Then M and I' are additive abelian semigroups
with respect to the usual matrix addition of 2 x 2 matrices and a ternary
operation, which is defined as M x I' x M by (z,«,y) — xay using the
usual matrix multiplication for all z,y € M and a € I'. Let A = (a;;)

of rational numbers and I" = < ) :a € N p, where N is the
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and B = (b;;) € M, we define A < B < a;; < b;; for all 7, j. Then M is
an ordered I'-semiring. Define a map d : M — M given by

a 0 00
d((b c>>_(b o)
Then d is a derivation on M but not a reverse derivation of M.

THEOREM 4.4. Let d be a reverse derivation of M. If M is of charac-
teristic 2, then d? is a derivation of M.

Proof. Let d be a reverse derivation of M and let M is of characteristic
2. For any z,y € M and o € I', we have

d*(zay) = d(d(zay)) = d(d(y)az + yad(z))
= d(z)ad(y) + rad*(y) + d*(z)oy + d(z)ad(y)
= d*(z)ay + zad*(y).
Hence d? is a derivation of M. O

PROPOSITION 4.5. Let M be an idempotent ordered I'-semiring and
additively cancellative. If d is a reverse derivation of M, then acd(a)aa =

0 forallael.

Proof. Let M be an idempotent ordered ['-semiring and additively
cancellative. Hence aca = a for any a € M and o € I'. Since d
is a reverse derivation of M, we have d(a)aa + aad(a) = d(a). Pre-
multiplying by a, we have aad(a)aa + aaaad(a) = aad(a). That is,
aad(a)aa + aad(a) = aad(a) + 0. Since M is additively cancellative, we
get aad(a)aa = 0. O

PROPOSITION 4.6. Let d be a reverse derivation of an ordered I'-

semiring and a € M. If a is a commuting idempotent element, then
d(a) = 0.

Proof. Let a € M be a commuting idempotent element. That is,
baa = aab for all b € M and « € T'. In particular, aad(a) = d(a)aa.
Postmultiplying by a, we have aad(a)aa = d(a)aaca = d(a)aa. By
Proposition 4.5, we get d(a)aa = 0. Therefore,

d(a) = d(d(aaa)) = d(a)aa + aad(a)
= d(a)aa + d(a)aa = d(a)aa =0
That is, d(a) = 0. O
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THEOREM 4.7. Let d be a reverse derivation of an additively cancella-
tive commutative idempotent ordered I'-semiring M in which (M, +) is
positively ordered. Define a set Fixq,(M) by

Fizg(M) ={z € M|d(z) = z}.
Then Fizy(M) is an ideal of M.

Proof. Let x,y € Fixqg(M) and o € I'. Then we have d(z) = x and
d(y) =y, which implies d(z +y) = d(x) + d(y) = x +y. That is, x +y €
Fixqa(M). Also, d(zay) = d(y)az + yad(z) = yazr + yaxr = yar = zay.
Therefore, zay € Fizy(M). So, Fixg(M) is a ordered I'-subsemiring of
M. Let z <y and y € Fixg(M). Then z <y implies x +y < y + y, so
r+y <y < x4y, which means z+y = y. Hence d(x+y) = z+y implies
d(z) +d(y) = x +y, that is, d(z) + y = = + y. Since M is additively
cancellative, we have d(z) = z. This completes the proof. O

COROLLARY 4.8. Let d be a reverse derivation of an additively can-
cellative commutative idempotent ordered I'-semiring M in which (M, +)
is positively ordered. Then Fixq(M) is an k-ideal of M.

Proof. Let x+y € Fizy(M) and y € Fizg(M). Then d(x+vy) = z+y
and d(y) = y. So, d(x)+d(y) = x+y implies d(x) +y = x+y. Therefore,
d(x) = x. By Theorem 4.7, Fixqy(M) is an ideal of M. Hence Fizy(M)
is a k-ideal of M. ]
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