A NOTE ON DERIVATIONS OF ORDERED Γ -SEMIRINGS

KYUNG HO KIM

ABSTRACT. In this paper, we consider derivation of an ordered Γ -semiring and introduce the notion of reverse derivation on ordered Γ -semiring. Also, we obtain some interesting related properties. Let I be a nonzero ideal of prime ordered Γ -semiring M and let d be a nonzero derivation of M. If Γ -semiring M is negatively ordered, then d is nonzero on I.

1. Introduction

A semiring is an algebraic structure with two binary operations called addition and multiplication where one of them distributive over the other. A semiring is a common generalization of rings and distributive lattices and was first introduced by Vandiver([10)] 1934 but nontrivial examples of semiring have appeared in the earlier studies on the theory of commutative ideals of rings by Richard Dedekind 19th centrary The notion of a Γ -ring was introduced by Nobusawa([7)] as a generalization of ring 1981. Sen([9]) introduced the concept of a Γ semigroup in 1981. In 1995, M. K. Rao([4, 5]) introduced the notion of Γ -semiring which is a generalization Γ -ring, ring and semiring. Over the last few decades serval authors have investigates the relationship between the commutativity of ring R and the existence of certain specified derivation of R. The first result in this relation is due to Posner([8)] in 1957. In the 1990,

Received July 16, 2019. Revised August 5, 2019. Accepted August 6, 2019. 2010 Mathematics Subject Classification: 16Y30, 06B35, 06B99.

Key words and phrases: Semiring, ordered Γ -semiring, reverse derivation, positively ordered, idempotent, $Fix_d(M)$.

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Bresar and Vukman([1]) established that a prime ring must be commutative if it admits a nonzero left derivation. Kim([2, 3]) studied right derivations and generalized right derivations of incline algebras. M. K. Rao([6]) introduced the notion of right derivation in ordered Γ -semirings and generalized right derivations of ordered Γ -semirings. In this paper, we consider derivations of ordered Γ -semirings and introduced the notion of reverse derivations on ordered Γ -semirings. Also, we obtain some interesting related properties. Let I be a nonzero ideal of prime ordered Γ -semiring M and let d be a nonzero derivation of M. If Γ -semigroup M is negatively ordered, then d is nonzero on I.

2. Preliminaries

DEFINITION 2.1. A set S together with two associative binary operations called addition and multiplication (denoted by + and \cdot respectively) will be called a *semiring* if

- (1):(S,+) is commutative.
- (2): x(y+z) = xy + xz and (x+y)z = xz + yz for all $x, y, z \in S$
- (3): there exists $0 \in S$ such that x + 0 = x and x + 0 = x and $x \cdot 0 = 0 \cdot x = 0$ for all $x \in S$.

DEFINITION 2.2. Let (M, +) and $(\Gamma, +)$ be commutative semigroups. Then M is called a Γ -semiring if there exists a mapping $M \times \Gamma \times M \to M$, where $(x, \alpha, y) = x\alpha y$ such that it satisfies the following axioms for any $x, y, z \in M$ and $\alpha, \beta \in \Gamma$,

- $(1): x\alpha(y+z) = x\alpha y + x\alpha z$
- $(2): (x+y)\alpha z = x\alpha z + y\alpha z$
- $(3): x(\alpha + \beta)y = x\alpha y + x\beta y$
- $(4): x\alpha(y\beta z) = (x\alpha y)\beta z.$

Every semiring S is a Γ -semiring with $\Gamma = S$, where the ternary operation is the usual semiring multiplication.

EXAMPLE 2.3. Let S be a semiring and $M_{p,q}(S)$ denote the addition abelian semigroup of all $p \times q$ matrices with identity element whose entries are from S. Then $M_{p,q}(S)$ is a Γ -semiring with $\Gamma = M_{p,q}(S)$. A ternary operation is defined by $x\alpha z = x(\alpha^t)z$ as the usual matrix multiplication, where α^t denotes the transpose of the matrix α , for all x, y and $\alpha \in \Gamma$.

A Γ -semiring M is said to have a zero element if there exists an element $0 \in M$ such that 0 + x = x + 0 = x and $0\alpha x = x\alpha 0 = 0$ for all $x \in M$ and $\alpha \in \Gamma$. A Γ -semiring M is said to be commutative if $x\alpha y = y\alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$. An element $a \in M$ is said to be idempotent if there exists $\alpha \in \Gamma$ such that $a = a\alpha a$ and a + a = a. If every element of M is an idempotent of M, then M is called an idempotent Γ -semiring. An element $1 \in M$ is said to be unity if for each $x \in M$, there exists $\alpha \in \Gamma$ such that $x\alpha 1 = 1\alpha x = x$.

Definition 2.4. Let M be an ordered Γ -semiring.

- (1): (M, +) is positively ordered if a + b > a, b for all $a, b \in M$
- (2): (M, +) is negatively ordered if $a + b \le a, b$ for all $a, b \in M$
- (3) : A Γ -semigroup M is positively ordered if $a\alpha b \geq a, b$ for all $a, b \in M$ and $\alpha \in \Gamma$
- (4) : A Γ -semigroup M is negatively ordered if $a\alpha b \leq a, b$ for all $a, b \in M$ and $\alpha \in \Gamma$.

DEFINITION 2.5. An Γ -semiring M is called an *ordered* Γ -semiring if it admits a compatible relation \leq , that is, \leq is a partial ordering on M which satisfies the following conditions,

- (1): If $a \leq b$ and $c \leq d$, then $a + c \leq b + d$
- (2): If $a \leq b$ and $c \leq d$, then $a\alpha c \leq b\alpha d$
- (3): If $a \leq b$ and $c \leq d$, then $c\alpha a \leq d\alpha b$, for all $a, b, c \in M$ and $\alpha \in \Gamma$

EXAMPLE 2.6. Let $M = [0, 1], \Gamma = N, x + y = \max\{x, y\}$ and $x\alpha y = \min\{x, \alpha, y\}$ for all $x, y \in M$ and $\alpha \in \Gamma$. Then M is an ordered Γ -semiring with respect to the usual ordering (see[6]).

DEFINITION 2.7. A nonempty subset A of ordered Γ -semiring M is called a Γ -subsemiring if (A, +) is a subsemigroup of (M, +) and $a\alpha b \in A$ for all $a, b \in A$ and $\alpha \in \Gamma$. A nonempty subset I of ordered Γ -semiring M is called a left ideal (right ideal) of M if for any $a \in M$ and $b \in I$,

- (1): I is closed under addition
- $(2): M\Gamma I \subset I(A\Gamma M \subset I)$
- (3): $a \le b$ and $b \in I$ implies $a \in I$.

A nonempty subset I of ordered Γ -semiring M is called *ideal* of M if it is both a left ideal and a right ideal of M. A nonempty subset I of ordered Γ -semiring M is called k-ideal of M if I is an ideal and $x+y\in I$ and $y\in I$ implies $x\in I$ for any $x\in M$.

Definition 2.8. Let M be an ordered Γ -semiring. A Γ -subsemiring P of M is said to be prime ideal of M if

(1): $a \leq b$ and $b \in P$ implies $a \in P$ for any $a \in M$

(2): $a\alpha b \in P$ implies $a \in P$ or $b \in P$ for all $a, b \in M$ and $\alpha \in \Gamma$.

DEFINITION 2.9. Let M be an ordered Γ -semiring. An element $a \in M$ is said to be additively left cancellative if for all $b, c \in M$, $a+b=a+c \Rightarrow b=c$. An element $a \in M$ is said to be additively right cancellative if for all $b, c \in M$, $b+a=c+a \Rightarrow b=c$. It is said to be additively cancellative if it is both left and right cancellative. If every element of M is additively left cancellative, it is said to be additively left cancellative. If every element of M is additively right cancellative, it is said to be additively right cancellative.

3. Derivations in ordered Γ -semirings

In what follows, let M denote an ordered Γ -semiring unless otherwise specified.

Definition 3.1. Let M be an ordered Γ -semiring. If the mapping $d: M \to M$ satisfies the following conditions

(1): d(x + y) = d(x) + d(y)

 $(2): d(x\alpha y) = d(x)\alpha y + x\alpha d(y)$

(2): If $x \leq y$, then $d(x) \leq d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$, then d is called a *derivation* on M.

EXAMPLE 3.2. Let $M = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in Q \right\}$, where Q is the set

of rational numbers and $\Gamma = \left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} : a, b, c \in N \right\}$, where N is the

set of natural numbers. Then M and Γ are additive abelian semigroups with respect to the usual matrix addition of 2×2 matrices and a ternary operation, which is defined as $M \times \Gamma \times M$ by $(x, \alpha, y) \to x\alpha y$ using the usual matrix multiplication for all $x, y \in M$ and $\alpha \in \Gamma$. Let $A = (a_{ij})$ and $B = (b_{ij}) \in M$, we define $A \leq B \Leftrightarrow a_{ij} \leq b_{ij}$ for all i, j. Then M is an ordered Γ -semiring. Define a map $d: M \to M$ given by

$$d\left(\left(\begin{array}{cc}a&0\\b&c\end{array}\right)\right) = \left(\begin{array}{cc}0&0\\b&0\end{array}\right)$$

Then d is a derivation on M.

PROPOSITION 3.3. Let M be a commutative ordered Γ -semiring. If M is additive idempotent, then for a fixed $a \in M$ and $\alpha \in \Gamma$, the mapping $d_a : M \to M$ given by $d_a(x) = x \circ a$ for all $x \in M$, where $x \circ a = x\alpha a + a\alpha x$ is a derivation of M.

Proof. Let M be a commutative ordered Γ -semiring. Then for a fixed $a \in M$ and $\alpha \in \Gamma$,

$$d_a(x+y) = (x+y) \circ a = (x+y)\alpha a + a\alpha(x+y)$$

$$= x\alpha a + y\alpha a + (x+y)\alpha a$$

$$= x\alpha a + y\alpha a + x\alpha a + y\alpha a$$

$$= x\alpha a + y\alpha a + a\alpha x + a\alpha y$$

$$= (x\alpha a + a\alpha x) + (y\alpha a + a\alpha y)$$

$$= x \circ a + y \circ a$$

$$= d_a(x) + d_a(y)$$

for all $x, y \in M$. Also we have for all $x, y \in M$ and $\alpha \in \Gamma$,

$$d_a(x\alpha y) = (x\alpha y) \circ a = (x\alpha y)\alpha a + a\alpha(x\alpha y)$$
$$= (x\alpha y)\alpha a + (x\alpha y)\alpha a$$
$$= (x\alpha y)\alpha a + (x\alpha y)\alpha a = (x\alpha y)\alpha a$$

and

$$d_{a}(x)\alpha y + x\alpha d_{a}(y) = (x\alpha a + a\alpha x)y + x\alpha(y\alpha a + \alpha ay)$$

$$= (x\alpha a + a\alpha x)\alpha y + (y\alpha a + a\alpha y)\alpha x$$

$$= (x\alpha a)\alpha y + (a\alpha x)\alpha y + (y\alpha a)\alpha x + (a\alpha y)\alpha x$$

$$= (x\alpha y)\alpha a + (x\alpha y)\alpha a + (x\alpha y)\alpha a + (x\alpha y)\alpha a,$$

$$= (x\alpha y)\alpha a,$$

which implies $d_a(x\alpha y) = d_a(x)\alpha y + x\alpha d_a(y)$.

Finally, let $x, y \in M$ be such that $x \leq y$. Then we have for any $\alpha \in \Gamma$, we have

$$x \le y \Rightarrow x\alpha a \le y\alpha a$$
$$\Rightarrow x\alpha a + x\alpha a \le y\alpha a + y\alpha a$$
$$\Rightarrow x\alpha a + a\alpha x \le y\alpha a + a\alpha y$$
$$\Rightarrow d_a(x) \le d_a(y).$$

Hence d_a is a derivation of M.

PROPOSITION 3.4. Let M be a commutative ordered Γ -semiring. Then $d_{a+b} = d_a + d_b$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Proof. Let M be a commutative ordered Γ -semiring and $a, b \in M$. Then for all $c \in M$ and $\alpha \in \Gamma$, we have

$$d_{a+b}(c) = (a+b) \circ c = (a+b)\alpha c + c\alpha(a+b)$$

$$= (a+b)\alpha c + (a+b)\alpha c = a\alpha c + b\alpha c + a\alpha c + b\alpha c$$

$$= a\alpha c + b\alpha c + c\alpha a + c\alpha b = (a\alpha c + c\alpha a) + (b\alpha c + c\alpha b)$$

$$= (a \circ c) + (b \circ c) = d_a(c) + d_b(c)$$

$$= (d_a + d_b)(c).$$

PROPOSITION 3.5. Let M be an ordered Γ -semiring. If d is a derivation of M, then we have d(0) = 0.

Proof. Let M be an ordered Γ -semiring. For any $\alpha \in \Gamma$, we have

$$d(0) = d(0\alpha 0) = d(0)\alpha 0 + 0\alpha d(0) = 0 + 0 = 0.$$

This completes the proof.

PROPOSITION 3.6. Let M be a commutative ordered Γ -semiring. A sum of two derivations of M is again a derivation of M.

Proof. Let d_1 and d_2 be two derivations of M, respectively. Then we have for all $a, b \in M$ and $\alpha \in \Gamma$,

$$(d_1 + d_2)(a + b) = d_1(a + b) + d_2(a + b)$$

$$= d_1(a) + d_1(b) + d_2(a) + d_2(b)$$

$$= (d_1(a) + d_2(a)) + (d_1(b) + d_2(b))$$

$$= (d_1 + d_2)(a) + (d_1 + d_2)(b)$$

and

$$(d_1 + d_2)(a\alpha b) = d_1(a\alpha b) + d_2(a\alpha b)$$

$$= d_1(a)\alpha b + a\alpha d_1(b) + d_2(a)\alpha b + a\alpha d_2(b)$$

$$= d_1(a)\alpha b + d_2(a)\alpha b + a\alpha d_1(b) + a\alpha d_2(b)$$

$$= (d_1 + d_2)(a)\alpha b + a\alpha (d_1 + d_2)(b).$$

Clearly, $x \leq y$ implies $(d_1 + d_2)(x) \leq (d_1 + d_2)(y)$ for any $x, y \in M$. This completes the proof.

THEOREM 3.7. Let M be a commutative ordered Γ -semiring let d_1, d_2 be derivations of M, respectively. Define $d_1d_2(x) = d_1(d_2(x))$ for all $x \in K$. If $d_1d_2 = 0$, then d_2d_1 is a derivation of M.

Proof. Let $d_1d_2=0$. For every $x,y\in M$ and $\alpha\in\Gamma$, then we have

$$0 = d_1 d_2(x \alpha y) = d_1 (d_2(x) \alpha y + x \alpha d_2(y))$$

= $d_1 d_2(x) \alpha y + d_2(x) \alpha d_1(y) + d_1(x) \alpha d_2(y) + x \alpha d_1(d_2(y))$
= $d_2(x) \alpha d_1(y) + d_1(x) \alpha d_2(y)$.

Then

$$d_2d_1(x\alpha y) = d_2(d_1(x)\alpha y + x\alpha d_1(y))$$

= $d_2d_1(x)\alpha y + d_1(x)\alpha d_2(y) + d_2(x)\alpha d_1(y) + x\alpha d_2(d_1(y))$
= $d_2d_1(x)\alpha y + x\alpha d_2d_1(y)$.

Also, for all $x, y \in K$, we get

$$d_2d_1(x+y) = d_2(d_1(x) + d_1(y)) = d_2d_1(x) + d_2d_1(y).$$

Finally, $x \leq y$ implies $d_2(d_1(x)) \leq d_2(d_1(x))$. This implies that d_2d_1 is a derivation of M.

PROPOSITION 3.8. Let d be a derivation of the idempotent commutative ordered Γ -semiring M. If M is negatively ordered, then $d(x) \leq x$ for all $x \in M$.

Proof. Let d be a derivation of the idempotent commutative ordered Γ -semiring M. Then we have

$$d(x) = d(x\alpha x) = d(x)\alpha x + x\alpha d(x)$$
$$= d(x)\alpha x + d(x)\alpha x = d(x)\alpha x \le x$$

for all $x \in M$ and $\alpha \in \Gamma$.

PROPOSITION 3.9. Let d be a derivation of a prime ordered Γ -semiring M and $a \in M$. If $a\alpha d(x) = 0$ for all $x \in M$ and $\alpha \in \Gamma$, then either a = 0 or d(x) = 0.

Proof. Let $a\alpha d(x) = 0$ for all $x \in M$ and $\alpha \in \Gamma$. Replacing x by $x\alpha y$, then we have

$$0 = a\alpha d(x\alpha y) = a\alpha(d(x)\alpha y + x\alpha d(y))$$
$$= a\alpha d(x)\alpha y + a\alpha x\alpha d(y)$$
$$= a\alpha x\alpha d(y)$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Since M is prime, if $d(y) \neq 0$ for some $y \in M$, we have a = 0.

PROPOSITION 3.10. Let M be an idempotent prime ordered Γ -semiring and let d be a derivation on M. Define $d^2(x) = d(d(x))$ for all $x \in M$. If $d^2 = 0$, then d is zero.

Proof. Let $x, y \in M$ and $\alpha \in \Gamma$. Then we have

$$0 = d^{2}(x\alpha y) = d(d(x)\alpha y + x\alpha d(y))$$

$$= d^{2}(x)\alpha y + d(x)\alpha d(y) + d(x)\alpha d(y) + x\alpha d^{2}(y)$$

$$= d(x)\alpha d(y) + d(x)\alpha d(y)$$

$$= d(x)\alpha d(y)$$

By Proposition 3.9, we have d = 0.

PROPOSITION 3.11. Let M be an additively cancellative ordered Γ semiring and let d_1 and d_2 be derivations of M. Define $d_1d_2(x) = d_1(d_2(x))$ for all $x \in M$. If d_1d_2 is also a derivation of M, then

$$d_2(x)d_1(y) + d_1(x)d_2(y) = 0$$

for all $x, y \in M$ and $\alpha \in \Gamma$.

Proof. Since d_1 and d_2 are derivations of M, we have for all $x, y \in M$ and $\alpha \in \Gamma$,

(1)
$$d_1 d_2(x \alpha y) = d_1(d_2(x \alpha y))$$

 $= d_1(d_2(x)\alpha y + x\alpha d_2(y))$
 $= d_1 d_2(x)\alpha y + d_2(x)\alpha d_1(y) + d_1(x)\alpha d_2(y) + x\alpha d_1 d_2(y).$

Since d_1d_2 is also a derivation of M, we have

(2)
$$d_1d_2(x\alpha y) = d_1d_2(x)\alpha y + x\alpha d_1d_2(y).$$

Combining (1) and (2) yields

$$d_2(x)\alpha d_1(y) + d_1(x)\alpha d_2(y) = 0$$

for all $x, y \in M$ and $\alpha \in \Gamma$.

PROPOSITION 3.12. Let I be a nonzero ideal of prime ordered Γ -semiring M and let d be a nonzero derivation of M. If an Γ -semigroup M is negatively ordered, then d is nonzero on I.

Proof. Let d=0 be on I and $x\in I$. Then d(x)=0 for all $x\in I$. Also, let $y\in M$. Since $x\alpha y\leq x$ and I is an ideal of M, we have $x\alpha y\in I$, Therefore, $d(x\alpha y)=0$, that is,

$$0 = d(x\alpha y) = d(x)\alpha y + x\alpha d(y) = x\alpha d(y).$$

Since M is prime, we get x = 0 for all $x \in I$ or d(y) = 0 for all $y \in M$. Since $I \neq 0$, we have d(y) = 0 for all $y \in M$. This is a contradiction by hypothesis. So, d is nonzero on I.

THEOREM 3.13. Let M be an additively cancellative prime ordered Γ -semiring and let d be a nonzero derivation on M. If [a, d(M)] = (0), where $[a, x]_{\alpha} = a\alpha x - x\alpha a$ for all $x, a \in M$, then $a \in Z$, the center of M.

Proof. By hypothesis, we have $[a, d(x)]_{\alpha} = 0$ for all $x \in M$. Replacing x by $a\alpha x$ for all x and $\alpha \in \Gamma$, we have $[a, d(a\alpha x)] = 0$. Hence we get

(3)
$$0 = [a, d(a)\alpha x + a\alpha d(x)]_{\alpha}$$
$$= [a, d(a)\alpha x]_{\alpha} + [a, a\alpha d(x)]_{\alpha}$$
$$= d(a)\alpha [a, x]_{\alpha} + [a, d(a)]_{\alpha}\alpha x + a\alpha [a, d(x)]_{\alpha} + [a, a]_{\alpha}\alpha d(x).$$

By using the hypothesis and the fact that $[a,a]_{\alpha}=0$ for all $a\in M$, we have $d(a)\alpha[a,x]_{\alpha}=0$. Also, replacing x by $x\beta y$, we have $d(a)\Gamma M\Gamma[a,y]_{\alpha}=0$ for all $y\in M$. Since M is prime and $d\neq 0$, we have $[a,y]_{\alpha}=0$ for all $y\in M$. Hence we have $a\in Z$, the center of M.

THEOREM 3.14. Let M be an additively cancellative prime ordered Γ -semiring and let d be a nonzero derivation on M. Then M is commutative ordered Γ -semiring.

Proof. Let $a, b \in M$ and $\alpha \in \Gamma$. Then we have

(4)
$$d(a\alpha b\alpha a) = d(a)\alpha b\alpha a + a\alpha d(b\alpha a)$$
$$= d(a)\alpha b\alpha a + a\alpha (d(b)\alpha a + b\alpha d(a))$$
$$= d(a)\alpha b\alpha a + a\alpha d(b)\alpha a + b\alpha a\alpha d(a)$$

and

(5)
$$d(a\alpha b\alpha a) = d(a\alpha b)\alpha a + a\alpha b\alpha d(a)$$
$$= (d(a)\alpha b + a\alpha d(b))\alpha a + a\alpha b\alpha d(a)$$
$$= d(a)\alpha b\alpha a + a\alpha d(b)\alpha a + a\alpha b\alpha d(a)$$

From (4) and (5), we have $a\alpha b\alpha d(a) = b\alpha a\alpha d(a)$, that is, $[a,b]_{\alpha}\alpha d(a) = 0$. Also, replacing b by $c\alpha b$ in this relation, we have $[a,c]_{\alpha}\alpha b\alpha d(a) = 0$ for

all $a, b, c \in M$ and $\alpha \in \Gamma$. Since M is prime and $d \neq 0$, we get $[a, c]_{\alpha} = 0$. This implies that M is a commutative ordered Γ -semiring.

4. Reverse derivations in ordered Γ -semirings

DEFINITION 4.1. Let M be an ordered Γ -semiring. If the mapping $d: M \to M$ satisfies the following conditions

- (1): d(x+y) = d(x) + d(y)
- $(2): d(x\alpha y) = d(y)\alpha x + y\alpha d(x)$
- (3): If $x \leq y$, then $d(x) \leq d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$,

then d is a reverse derivation of M.

EXAMPLE 4.2. Let
$$M = \left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} : a, b \in Q \right\}$$
, where Q is the set

of rational numbers and $\Gamma = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in N \right\}$, where N is the

set of natural numbers. Then M and Γ are additive abelian semigroups with respect to the usual matrix addition of 2×2 matrices and a ternary operation, which is defined as $M \times \Gamma \times M$ by $(x, \alpha, y) \to x\alpha y$ using the usual matrix multiplication for all $x, y \in M$ and $\alpha \in \Gamma$. Let $A = (a_{ij})$ and $B = (b_{ij}) \in M$, we define $A \leq B \Leftrightarrow a_{ij} \leq b_{ij}$ for all i, j. Then M is an ordered Γ -semiring. Define a map $d: M \to M$ given by

$$d\left(\left(\begin{array}{cc}a&0\\b&c\end{array}\right)\right) = \left(\begin{array}{cc}0&0\\b&0\end{array}\right)$$

Then d is a reverse derivation on M.

Example 4.3. Let
$$M = \left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} : a, b \in Q \right\}$$
, where Q is the set

of rational numbers and $\Gamma = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a \in N \right\}$, where N is the

set of natural numbers. Then M and Γ are additive abelian semigroups with respect to the usual matrix addition of 2×2 matrices and a ternary operation, which is defined as $M \times \Gamma \times M$ by $(x, \alpha, y) \to x\alpha y$ using the usual matrix multiplication for all $x, y \in M$ and $\alpha \in \Gamma$. Let $A = (a_{ij})$

and $B = (b_{ij}) \in M$, we define $A \leq B \Leftrightarrow a_{ij} \leq b_{ij}$ for all i, j. Then M is an ordered Γ -semiring. Define a map $d: M \to M$ given by

$$d\left(\left(\begin{array}{cc}a&0\\b&c\end{array}\right)\right) = \left(\begin{array}{cc}0&0\\b&0\end{array}\right)$$

Then d is a derivation on M but not a reverse derivation of M.

THEOREM 4.4. Let d be a reverse derivation of M. If M is of characteristic 2, then d^2 is a derivation of M.

Proof. Let d be a reverse derivation of M and let M is of characteristic 2. For any $x, y \in M$ and $\alpha \in \Gamma$, we have

$$d^{2}(x\alpha y) = d(d(x\alpha y)) = d(d(y)\alpha x + y\alpha d(x))$$

= $d(x)\alpha d(y) + x\alpha d^{2}(y) + d^{2}(x)\alpha y + d(x)\alpha d(y)$
= $d^{2}(x)\alpha y + x\alpha d^{2}(y)$.

Hence d^2 is a derivation of M.

PROPOSITION 4.5. Let M be an idempotent ordered Γ -semiring and additively cancellative. If d is a reverse derivation of M, then $a\alpha d(a)\alpha a = 0$ for all $\alpha \in \Gamma$.

Proof. Let M be an idempotent ordered Γ-semiring and additively cancellative. Hence $a\alpha a=a$ for any $a\in M$ and $\alpha\in \Gamma$. Since d is a reverse derivation of M, we have $d(a)\alpha a+a\alpha d(a)=d(a)$. Premultiplying by a, we have $a\alpha d(a)\alpha a+a\alpha a\alpha d(a)=a\alpha d(a)$. That is, $a\alpha d(a)\alpha a+a\alpha d(a)=a\alpha d(a)+0$. Since M is additively cancellative, we get $a\alpha d(a)\alpha a=0$.

PROPOSITION 4.6. Let d be a reverse derivation of an ordered Γ semiring and $a \in M$. If a is a commuting idempotent element, then d(a) = 0.

Proof. Let $a \in M$ be a commuting idempotent element. That is, $b\alpha a = a\alpha b$ for all $b \in M$ and $\alpha \in \Gamma$. In particular, $a\alpha d(a) = d(a)\alpha a$. Postmultiplying by a, we have $a\alpha d(a)\alpha a = d(a)\alpha a\alpha = d(a)\alpha a$. By Proposition 4.5, we get $d(a)\alpha a = 0$. Therefore,

$$d(a) = d(d(a\alpha a)) = d(a)\alpha a + a\alpha d(a)$$
$$= d(a)\alpha a + d(a)\alpha a = d(a)\alpha a = 0$$

That is, d(a) = 0.

THEOREM 4.7. Let d be a reverse derivation of an additively cancellative commutative idempotent ordered Γ -semiring M in which (M, +) is positively ordered. Define a set $Fix_d(M)$ by

$$Fix_d(M) = \{x \in M | d(x) = x\}.$$

Then $Fix_d(M)$ is an ideal of M.

Proof. Let $x, y \in Fix_d(M)$ and $\alpha \in \Gamma$. Then we have d(x) = x and d(y) = y, which implies d(x + y) = d(x) + d(y) = x + y. That is, $x + y \in Fix_d(M)$. Also, $d(x\alpha y) = d(y)\alpha x + y\alpha d(x) = y\alpha x + y\alpha x = y\alpha x = x\alpha y$. Therefore, $x\alpha y \in Fix_d(M)$. So, $Fix_d(M)$ is a ordered Γ -subsemiring of M. Let $x \leq y$ and $y \in Fix_d(M)$. Then $x \leq y$ implies $x + y \leq y + y$, so $x + y \leq y \leq x + y$, which means x + y = y. Hence d(x + y) = x + y implies d(x) + d(y) = x + y, that is, d(x) + y = x + y. Since M is additively cancellative, we have d(x) = x. This completes the proof.

COROLLARY 4.8. Let d be a reverse derivation of an additively cancellative commutative idempotent ordered Γ -semiring M in which (M, +) is positively ordered. Then $Fix_d(M)$ is an k-ideal of M.

Proof. Let $x+y \in Fix_d(M)$ and $y \in Fix_d(M)$. Then d(x+y) = x+y and d(y) = y. So, d(x)+d(y) = x+y implies d(x)+y = x+y. Therefore, d(x) = x. By Theorem 4.7, $Fix_d(M)$ is an ideal of M. Hence $Fix_d(M)$ is a k-ideal of M.

References

- [1] M. Bresar and J. Vuckman, On the left derivations and related mappings, Proc. Math Soc 10 (1990), 7–16
- [2] K. H. Kim On right derivations of incline algebras, J. Chungcheong Math Soc **26** (2013), 683–690.
- [3] K. H. Kim, On generalized right derivations of incline algebras, Gulf J. Math 3 (2015), 127–132.
- [4] M. Murali Krishna Rao, Γ -semiring-I, Southeast Asian Bull Math 19 (1995), 45–54.
- [5] M. Murali Krishna Rao, Γ -semiring-II, Southeast Asian Bull Math **21** (1997), 45-54
- [6] M. Murali Krishna Rao, Right derivation of ordered Γ-semirings, Dicussiones Mathematicea, General Algebra and Application **36** (2016), 209–221.
- [7] N. Nobusawa, On generalization of the ring theory, Osaka J. Math 1 (1964), 81–89.
- [8] E. C. Posner, Derivations in prime rings, Proc. Math Soc 8 (1957), 1093–1100.

- [9] M. K. Sen, $On\ \Gamma$ -semigroup, Proc. of International Conference of algebraic its Applications, Decker Publication (Ed(s)), New York, 1981, 301–308.
- [10] H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math 40 (1934), 14–21.

Kyung Ho Kim

Department of Mathematics Korea National University of Transportation Chungju 27469, Korea E-mail: ghkim@ut.ac.kr