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GENERALIZED COHN FUNCTIONS ON GALOIS

RINGS

Young Ho Jang

Abstract. Let Fq be the finite field with q = pm elements. A
complex valued Cohn function defined on Fq is introduced in [1]. In
this paper we define generalized Cohn functions on Galois rings and
investigate their properties.

1. Introduction

Throughout this paper, p will denote a fixed prime number and
n,m positive integers. We set q = pm. Let Z, C, C1, a, Fq and Zpn be
the ring of integers, the field of complex numbers, the unit circle in the
complex plane, the complex conjugate of a ∈ C, the finite field of order
q and the ring of integers modulo pn, respectively.

In [1], a function f : Fq → C is said to be a Cohn function if f(0) = 0,
|f(x)| = 1 for all x ∈ F∗q = Fq\{0} and

(1.1)
∑
x∈Fq

f(x)f(x+ a) =

{
−1 if a 6= 0,
q − 1 if a = 0.

For example, if f = θχ, where θ ∈ C1 and χ is a nontrivial multiplicative
character of Fq (with χ(0) := 0), then f is a Cohn function. In this case
the sum in (1.1) is a well known Jacobi sum.

In this paper we define generalized Cohn functions on Galois rings
and investigate their properties.
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We conclude this section by recalling some basic properties of Galois
rings. These have been well documented in [4, 5, 9]. Galois rings consti-
tute a very important family of finite chain rings. They can be defined
as follows: If f(x) is a primitive irreducible polynomial of degree m over
Fp, then Fp[x]/〈f(x)〉 is a finite field Fq of order q = pm. Hensel’s lemma
states that there is a unique primitive irreducible polynomial f(x) over
Zpn so that f(x) ≡ f(x) mod p and with a root ξ of f(x) satisfying
ξq−1 = 1. The quotient ring

R = GR(pn,m) = Zpn [x]/〈f(x)〉 ∼= Zpn [ξ]

= {z0 + z1ξ + · · ·+ zm−1ξ
m−1 : zi ∈ Zpn}(1.2)

is called a Galois ring of characteristic pn and cardinality pmn = qn. The
modulo p reduction mapping

µ : Zpn −→ Fp, a (mod pn) 7−→ a ≡ a (mod p)

can be naturally extended the following homomorphism of rings

µ : R = GR(pn,m) =
Zpn [x]

〈f(x)〉
∼= Zpn [ξ] −→ Fq =

Fp[x]

〈f(x)〉
∼= Fp[ξ].

Some basic facts about Galois ring R = GR(pn,m) are given as fol-
lows.

(Fact 1) R is a local commutative ring with the unique maximal ideal
M = kerµ = pR, |M| = qn−1 and the residue class field R/M ∼= Fq.
Also, R is a finite chain ring of length n, its ideals piR with qn−i elements
are linearly ordered by inclusion,

{0} = pnR ⊂ pn−1R ⊂ · · · ⊂ M = pR ⊂ R.

(Fact 2) The group R∗ = R\M of units has the direct decomposition
(see [4, Theorem XVIII.2]):

(1.3) R∗ = T ∗ × (1 +M)

where T ∗ = 〈ξ〉 is the cyclic group of order q−1 and 1+M is the multi-
plicative p-group of order qn−1. Define T = T ∗∪{0} = {0, 1, ξ, · · · , ξq−2},
which is referred to as the Teichmüller set. Then T = Fq and every ele-
ment z ∈ R has a unique p-adic representation

(1.4) z = z0 + z1p+ · · ·+ zn−1p
n−1, zi ∈ T .

Note that the p-adic representation is not preserved under addition.
From (1.4), z ∈ M if and only if z0 = 0 and z ∈ R∗ if and only if
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z0 ∈ T ∗. An arbitrary element u of R∗ is uniquely represented as

u = uc + um, uc ∈ T ∗, um ∈M
= ξkx = ξk(1 + py), x ∈ 1 +M, y ∈ GR(pn−1,m), 0 ≤ k ≤ q − 2.

(1.5)

Any element of R\{0} is either a unit or a zero divisor. Since the zero
divisors in R are those elements divisible by p, any element z ∈ R\{0}
can be written as

(1.6) z = plu = plξkx, u ∈ R∗, x ∈ 1+M, 0 ≤ l ≤ n−1, 0 ≤ k ≤ q−2.

(Fact 3) R/Zpn is a Galois extension of rings with Galois group
Gal(R/Zpn) = 〈σ〉, where σ is the Frobenius map from R to R given
by:

σ : z = (z0+pz1+· · ·+pn−1zn−1) 7−→ zp0+pzp1+· · ·+pn−1zpn−1, for zi ∈ T .
Define the additive trace from R to Zpn by:
(1.7)

Tr

(
z =

n−1∑
i=0

zip
i

)
= z + zσ + · · ·+ zσ

m−1

=
n−1∑
i=0

(zi + zpi + · · ·+ zp
m−1

i )pi.

Tr is an epimorphism of Zpn-modules and Tr can be reduced by µ to the
trace mapping tr : Fq → Fp of finite fields. Then we have µ(Trn(z)) =
tr(µ(z)) for all z ∈ R.

2. Characters of Galois rings

In this section, we give a few basic facts on the additive and multi-
plicative characters of Galois rings. Also, we give some simple but useful
propositions which we will use later.

An additive character of R is a homomorphism from the additive
group of R to C1. Using (1.7), for any x, y ∈ R, the additive characters
of R are given by

(2.1) ψx(y) = e2πiTr(xy)/pn ,

different x’s affording different additive characters. In fact, {ψx}x∈R
consists of all additive characters of R in [7, Lemma 6]. ψ0 is the trivial
additive character of R and ψ = ψ1 is called the generating additive

character of R. Let R̂+ denote the additive characters group.
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Proposition 2.1 ( [6, Lemma 2.1, 2.2, 2.3]). For any x ∈ R we have

(2.2)
∑
y∈R

ψx(y) =

{
qn if x = 0
0 if x 6= 0

;

(2.3)
∑
y∈M

ψx(y) =

{
qn−1 if x ∈ pn−1R
0 if x ∈ R\pn−1R ;

(2.4)
∑
y∈R∗

ψx(y) =

 (q − 1)qn−1 if x = 0,
−qn−1 if x ∈ pn−1R\{0},
0 if x ∈ R\pn−1R.

Proposition 2.2 ( [7, Lemma 8]). For any x ∈ R we have

(2.5)
∑
y∈T

ψx(p
n−1y) =

{
q if x ∈M,
0 if x ∈ R∗.

Proposition 2.3 ( [2, Proposition 2.3, 2.4]). (1) If ψx ∈ R̂+ is non-
trivial on M, then

(2.6)
∑
y∈R∗

ψx(y) = −
∑
y∈M

ψx(y) = 0.

(2) If ψ ∈ R̂+ is trivial on M, then

(2.7)
∑
y∈R∗

ψx(y) =
∑
y∈R∗

ψ(xy) =

{
−qn−1 if x ∈ R∗,
(q − 1)qn−1 if x ∈M.

A multiplicative character χ of R∗ is defined by χ(xy) = χ(x)χ(y) for
x, y ∈ R∗, and each value of χ(x) is a (q − 1)qn−1-th root of unity. We
extend χ as the character of R by defining χ(x) = 0 for all x ∈M. We
call this the multiplicative character of R. The trivial character χ0 of R
is defined by χ0(x) = 1 for all x ∈ R∗.

Since R∗ = T ∗ × (1 +M), there are several types of multiplicative
characters of R (cf. [2]). In this paper, we treat multiplicative characters
χ of R that vanish on 1 +M (i.e. χ(1 + x) = 1 for all x ∈ M), which
are in one-to-one correspondence with multiplicative characters ηj of T ∗
defined by

(2.8) ηj(ξ
k) = e2πi(jk)/q−1 for 0 ≤ j, k ≤ q − 2.

We have the following Proposition 2.4 known as the orthogonality
relations for characters.
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Proposition 2.4. For any j and k (0 ≤ j, k ≤ q − 2) we have

(2.9)

q−2∑
k=0

ηj(ξ
k) =

{
q − 1 if j = 0,
0 if j 6= 0.

3. The Fourier transform over Galois rings

In this section, using Fourier analysis on finite groups (see [8]), we
give a few basic facts on the Fourier transform on functions with domain
R = GR(pn,m). Also, we give some simple but useful propositions which
we will use later.

Denote by CR the vector space over C of all functions from the Galois
ringR to C. This is an inner product space with Hermitian inner product
〈 , 〉 defined for f, g ∈ CR by

〈f, g〉 =
∑
x∈R

f(x)g(x).

The vector space CR has the additional structure of an algebra under
either of the following two definitions of multiplication:

(a) the pointwise product f · g of f, g ∈ CR, defined for x ∈ R by
f · g(x) = f(x)g(x)

(b) the convolution f ∗ g of f, g ∈ CR, defined for x ∈ R by

(3.1) f ∗ g(x) =
∑
y∈R

f(y)g(x− y)

The set {1x | x ∈ R} of indicator functions defined by

(3.2) 1x(y) =

{
1 y = x,
0 y 6= x,

form an orthonormal basis for CR, with 〈1x, 1y〉 = 1x(y). The additive
characters ψx of R defined by (2.1) are also orthogonal in this inner
product space,
(3.3)

〈ψx, ψy〉 =
∑
s∈R

ψx(s)ψy(s) =
∑
s∈R

ψx−y(s) =

{
qn if x = y
0 if x 6= y

(by (2.2))

and form an orthogonal basis for CR.
The Fourier transform on functions with domain R seeks to express

them in terms of the additive characters of R.
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Definition 3.1. For f ∈ CR the Fourier transform (the Walsh trans-

form) f̂ ∈ CR̂+
is defined for y ∈ R by

(3.4) f̂(y) = 〈f, ψy〉 =
∑
x∈R

f(x)ψy(−x).

The Fourier transform maps the basis of indicator functions to the
basis of additive characters: 1̂y = ψ−y. The Fourier inversion formulâ̂
f(x) = qnf(−x), gives the inverse transform

(3.5) f(x) =
1

qn
〈f̂ , ψ−x〉 =

1

qn

∑
y∈R

f̂(y)ψx(y).

Proposition 3.1. For the trivial character χ0 of R, we have
(1) χ̂0(x) =

∑
y∈R χ0(y)ψx(−y) =

∑
y∈R∗ ψx(−y)

=

 (q − 1)qn−1 if x = 0,
−qn−1 if x ∈ pn−1R\{0},
0 if x ∈ R\pn−1R.

(2) if ψ ∈ R̂+ is trivial on M, then

χ̂0(x) =
∑
y∈R

χ0(y)ψx(−y) =
∑
y∈R∗

ψ(−xy) =

{
−qn−1 if x ∈ R∗,
(q − 1)qn−1 if x ∈M.

Proof. By (2.4) in Proposition 2.1 and (2.7) in Proposition 2.3, it is
trivial.

Suppose g is a translation of f , i.e., g(x) = f(x − z) for fixed z and

all x ∈ R. Then ĝ(x) = f̂ ·ψ−z(x) is a modulation of f̂(x). Now suppose
g is a dilation of f by an invertible element of R, i.e., g(x) = f(ux) for

fixed unit u ∈ R∗ and all x ∈ R. Then ĝ(x) = f̂(u−1x) is a dilation

of f̂ by u−1. The orthogonality of characters (3.3) yields Plancherel’s

identity 〈f, g〉 = 1
qn
〈f̂ , ĝ〉.

The Fourier transform gives an isomorphism of the algebra CR with
multiplication pointwise product with the algebra CR with multiplica-
tion convolution: for y ∈ R we have

(3.6) f̂ ∗ g(y) = f̂ · ĝ(y) and f̂ · g(y) =
1

qn
f̂ ∗ ĝ(y).

If f τ is the function defined for x ∈ R by

(3.7) f τ (x) = f(−x),
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then

(3.8) f̂ τ = f̂ .

Theorem 3.1. For any function f ∈ CR,

(3.9) f ∗ f τ = χ̂0 on R.

if and only if

(3.10) |f̂ |2 = qnχ0 on R

Proof. From (3.4), for any x ∈ R, we have

̂̂χ0(x) =
∑
y∈R

χ̂0(y)ψx(−y)

= (q − 1)qn−1 − qn−1
∑

y∈pn−1R\{0}

ψx(−y) (by Proposition 3.1(1))

= (q − 1)qn−1 − qn−1
∑
a∈T ∗

ψx(p
n−1a)

(since y ∈ pn−1R\{0} if and only if y = pn−1a, a ∈ T ∗)

=

{
(q − 1)qn−1 − qn−1(0− 1) = qn if x ∈ R∗
(q − 1)qn−1 − qn−1(q − 1) = 0 if x ∈M

(by (2.5) in Proposition 2.2).

That is, ̂̂χ0 = qnχ0 on R. Also, from (3.8) and (3.6), we have for any
x ∈ R

|f̂(x)|2 = f̂(x)f̂(x) = f̂(x)f̂ τ (x) = f̂ ∗ f τ (x).

Assume (3.9) holds for any function f ∈ CR. Then for any x ∈ R

|f̂(x)|2 = f̂ ∗ f τ (x) = ̂̂χ0(x) = qnχ0(x).

So that (3.10) holds. Conversely, if (3.10) is true, then for any x ∈ R

f̂ ∗ f τ (x) = |f̂(x)|2 = qnχ0(x) = ̂̂χ0(x).

So that (3.9) holds.
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4. Dedekind determinant relation on Galois rings

In this section, we introduce Dedekind determinant relation (see [3,
p. 89]) on Galois rings.

We consider the (qn − 1)-dimensional subspace V of CR defined by

V =

{
f ∈ CR :

∑
x∈R

f(x) = 0

}
.

Proposition 4.1. The set {ψx | x ∈ R\{0}} is a basis for V .

Proof. First, {ψx | x ∈ R\{0}} ⊆ V since
∑

y∈R ψx(y) = 0 for any

x ∈ R\{0} by (2.2). If
∑

x∈R cxψx(y) = 0, then cx = 0 for all x ∈ R
since each value of ψx(y) is the principal pnth-root of the unity in C by
(2.1). Moreover, the set {ψx | x ∈ R\{0}} spans V because that for any
g ∈ V we have

g(y) =
1

qn

∑
x∈R

ĝ(x)ψx(y) (by the inverse transform (3.5))

=
1

qn
ĝ(0) +

1

qn

∑
x∈R\{0}

ĝ(x)ψx(y) =
1

qn

∑
x∈R\{0}

ĝ(x)ψx(y)

since ĝ(0) =
∑

x∈R g(x)ψ0(−x) =
∑

x∈R g(x) = 0.

Proposition 4.2. The set {1x − q−n | x ∈ R\{0}} is a basis for V ,
where 1x is an indicator function defined by (3.2).

Proof. First, {1x− q−n | x ∈ R\{0}} ⊆ V since
∑

y∈R(1x− q−n)(y) =∑
y∈R 1x(y) − 1 = 0 for any x ∈ R\{0}. Also, if

∑
x∈R\{0} cx(1x −

q−n)(y) = 0, then cx = 0 for all x ∈ R\{0} because that for y = 0 we
have

0 =
∑

x∈R\{0}

cx(1x−q−n)(0) =
∑

x∈R\{0}

cx1x(0)−q−n
∑

x∈R\{0}

cx = −q−n
∑

x∈R\{0}

cx

and for y ∈ R\{0} we have

0 =
∑

x∈R\{0}

cx(1x−q−n)(y) =
∑

x∈R\{0}

cx1x(y)−q−n
∑

x∈R\{0}

cx = cy−q−n
∑

x∈R\{0}

cx = cy.
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Moreover, the set {1x− q−n | x ∈ R\{0}} spans V because that for any
g ∈ V we have

g(y) = g(y)− q−n
∑
x∈R

g(x) =
∑
x∈R

g(x)
(
1x − q−n

)
(y)

=
∑

x∈R\{0}

g(x)
(
1x − q−n

)
(y) + g(0)

(
10 − q−n

)
(y),

and, since for y ∈ R∑
x∈R\{0}

(1x−q−n)(y) =
∑
x∈R

(1x−q−n)(y)−(10−q−n)(y) = −(10−q−n)(y),

we have

(4.1) g(y) =
∑

x∈R\{0}

(g(x)− g(0))
(
1x − q−n

)
(y).

Lemma 4.1. Let f ∈ V . Then

(4.2) diag{f̂(−x)}x∈R\{0} ∼ [f(x− y)− f(x)]x,y∈R\{0},

and consequently

(4.3)
∏

x∈R\{0}

f̂(−x) = qn · det[f(x− y)]x,y∈R\{0}.

Proof. For x ∈ R let Tx : V → V be defined by Txf(y) = f(y+x) for
y ∈ R. For a fixed element f ∈ V , let

Tf =
∑
x∈R

f(x)Tx.

Then for any g ∈ V we have∑
y∈R

Tfg(y) =
∑
y∈R

∑
x∈R

f(x)Txg(y) =
∑
x∈R

f(x)
∑
y∈R

g(y + x) = 0

since adding x ∈ R to all y ∈ R permutes R. Thus the function Tf is a
linear map on V . From Proposition 4.1 and Proposition 4.2, the space V
has two bases A = {ψx | x ∈ R\{0}} and B = {1x − q−n | x ∈ R\{0}}.



250 Young Ho Jang

For ψx ∈ A we have

Tfψx(z) =
∑
y∈R

f(y)Tyψx(z) =
∑
y∈R

f(y)ψx(z + y)

= ψx(z)
∑
y∈R

f(y)ψx(y) = ψx(z)f̂(−x),

that is, Tfψx = f̂(−x)ψx. This means that ψx is an eigenvector of Tf
with eigenvalue f̂(−x). Therefore, the matrix for Tf with respect to the

basis A is the diagonal matrix diag{f̂(−x)}x∈R\{0}. On the other hand,
we look at the effect of Tf on the other basis B. Now, since f ∈ V it
follows that Tf applied to any constant function is just zero. Thus for
any x ∈ R\{0},

Tf (1x − q−n)(z) = Tf1x(z) =
∑
y∈R

f(y)Ty1x(z) =
∑
y∈R

f(y)1x(z + y)

= f(x− z) =
∑

y∈R\{0}

(f(x− y)− f(x))(1y − q−n)(z)

by (4.1), and so the matrix for Tf with respect to the basis B is [f(x−
y)− f(x)]x,y∈R\{0} (indexing the rows by y and the columns by x). We
obtain the similarity relationship in (4.2). Next, we have∑
y∈R\{0}

{f(x−y)−f(x)} =
∑

y∈R\{0}

f(x−y)−(qn−1)f(x) =
∑
y∈R

f(x−y)−qnf(x),

and, since adding x ∈ R\{0} to all −y ∈ R permutes R and f ∈ V , we
have

0 =
∑
y∈R

f(x− y) =
∑

y∈R\{0}

f(x− y) + f(x)

and so ∑
y∈R\{0}

{f(x− y)− f(x)} = qn
∑

y∈R\{0}

f(x− y).

From elementary row operations, we obtain

det[f(x− y)− f(x)]x,y∈R\{0} = qn · det[f(x− y)]x,y∈R\{0},

and so we have (4.3).
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5. Generalized Cohn functions on Galois rings

In this section, we define generalized Cohn functions on Galois
rings and investigate their properties.

Definition 5.1. We say that a complex valued function f defined
on the Galois ring R = GR(pn,m) is a generalized Cohn function if
f(x) = 0 for all x ∈M, |f(x)| = 1 for all x ∈ R∗, and f satisfies either

(5.1)
∑
x∈R

f(x)f(x+ y) =

{
−qn−1 if y ∈ R∗,
(q − 1)qn−1 if y ∈M.

or

(5.2)
∑
x∈R

f(x)f(x+ y) =

 (q − 1)qn−1 if x = 0,
−qn−1 if x ∈ pn−1R\{0},
0 if x ∈ R\pn−1R.

In the case of n = 1, both (5.1) and (5.2) is just (1.1), that is, f is a
Cohn function on the finite field Fq.

Proposition 5.1. If f ∈ CR is a generalized Cohn function satisfying
(5.1) (resp., (5.2)), then

∑
x∈R f(x) = 0.

Proof. Since adding x ∈ R to all y ∈ R permutes R, for any general-
ized Cohn function f ∈ CR satisfying (5.1), we have

∣∣∣∣∣∑
x∈R

f(x)

∣∣∣∣∣
2

=
∑
x∈R

f(x)
∑
y∈R

f(x+ y) =
∑
y∈R

∑
x∈R

f(x)f(x+ y)

=
∑
y∈M

∑
x∈R

f(x)f(x+ y) +
∑
y∈ R∗

∑
x∈R

f(x)f(x+ y)

= qn−1(q − 1)qn−1 + (q − 1)qn−1(−qn−1) = 0 (by (5.1)),
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and for any generalized Cohn function f ∈ CR satisfying (5.2), we have∣∣∣∣∣∑
x∈R

f(x)

∣∣∣∣∣
2

=
∑
x∈R

f(x)
∑
y∈R

f(x+ y) =
∑
y∈R

∑
x∈R

f(x)f(x+ y)

=
∑
x∈R

f(x)f(x+ 0) +
∑

y∈pn−1R\{0}

∑
x∈R

f(x)f(x+ y)

+
∑

y∈ R\pn−1R

∑
x∈R

f(x)f(x+ y)

= |R∗| − qn−1|pn−1R\{0}|+ 0|R\pn−1R| (by f(M) = 0 and (5.2))

= (q − 1)qn−1 − qn−1(qn−(n−1) − 1) + 0 = 0.

Thus
∑

x∈R f(x) = 0.

Let ∆ ∈ CR be the function defined by

(5.3) ∆(y) =

{
1− q if y ∈ R∗,
1 if y ∈M.

Proposition 5.2. Let f ∈ CR. If the autocorrelation condition

(5.4)
∑
x∈R

f(bx)f(x+ y) =
1

∆(y)

∑
x∈R

f(bx)f(x)

holds for all b ∈ R∗ and for all y ∈ R, then
∑

x∈R f(x) = 0.

Proof. Assume that (5.4) holds for all b ∈ R∗ and for all y ∈ R. Since
multiplying b ∈ R∗ by all x ∈ R permutes R and adding x ∈ R to all
y ∈ R permutes R, we have∣∣∣∣∣∑
x∈R

f(x)

∣∣∣∣∣
2

=
∑
x∈R

f(x)
∑
x∈R

f(x) =
∑
x∈R

f(bx)
∑
y∈R

f(x+ y)

=
∑
y∈R

∑
x∈R

f(bx)f(x+ y) =
∑
y∈R

1

∆(y)

∑
x∈R

f(bx)f(x) (by (5.4))

= 0

since∑
y∈R

1

∆(y)
=
∑
y∈M

1

∆(y)
+
∑
y∈R∗

1

∆(y)
= qn−1 +

1

1− q
(q − 1)qn−1 = 0,
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and so
∑

x∈R f(x) = 0.

Theorem 5.1. Let f = θχ, where θ ∈ C1 and χ is a nontrivial
multiplicative character of R that vanishes on 1 +M. Then

(i) f is a generalized Cohn function satisfying (5.1).
(ii) f satisfies the autocorrelation condition (5.4) for all b ∈ R∗ and

for all y ∈ R.

Proof. (i) By definition of multiplicative character of R, χ(x) = 0
for all x ∈ M and so f(x) = 0 for all x ∈ M. Since χ is a nontrivial
multiplicative character of R that vanishes on 1 +M, χ’s are in one-to-
one correspondence with multiplicative characters ηj of T ∗, which are
defined by (2.8). Thus |f(x)| = |ηj(ξk)| = 1 for all x = ξk(1 + x) ∈
R∗ = T ∗ × (1 +M) (0 ≤ j, k ≤ q − 2). We show that (5.1) holds. Let

F =
∑

x∈R f(x)f(x+ y). Then

F =
∑
x∈R∗

χ(x)χ(x+ y) =
∑
x∈R∗

χ(1 + x−1y).

If y ∈ M, then F = (q − 1)qn−1 because that x−1y ∈ M for all x ∈ R∗
and χ(1 + x−1y) = 1. Let y ∈ R∗. Since multiplying y by x−1 for all
x ∈ R∗ permutes R∗, by setting u = x−1y ∈ R∗ we have

F =
∑
u∈R∗

χ(1 + u) =
∑
u∈R

χ(1 + u)−
∑
u∈M

χ(1 + u)

=
∑
u∈R

χ(1 + u)− qn−1 (by χ(1 +M) = 1)

=
∑
v∈R∗

χ(v)− qn−1 (by setting v = 1 + u and χ(x) = 0 for all x ∈M)

=

q−2∑
k=0

η(ξk)− qn−1 (by setting v = ξky, where y ∈ 1 +M and χ(y) = 1)

= −qn−1 (by (2.9)).

Thus (5.1) holds, i.e., f is a generalized Cohn function satisfying (5.1).
(ii) Since bx ∈ M for all b ∈ R∗ and for all x ∈ M, we have f(bx) =
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χ(bx) = 0. Thus for all b ∈ R∗ and for all y ∈ R we have

RHS of (5.4)

=
1

∆(y)

∑
x∈R∗

f(bx)f(x) =
1

∆(y)
χ(b)

∑
x∈R∗

1

=
1

∆(y)
χ(b)(q − 1)qn−1 =

{
−χ(b)qn−1 if y ∈ R∗
χ(b)(q − 1)qn−1 if y ∈M (by (5.3))

and

LHS of (5.4) =
∑
x∈R∗

f(bx)f(x+ y) = χ(b)
∑
x∈R∗

χ(x)χ(x+ y)

=

{
−χ(b)qn−1 if y ∈ R∗
χ(b)(q − 1)qn−1 if y ∈M

by (5.1) (since χ ∈ CR is a generalized Cohn function satisfying (5.1)).
Thus the autocorrelation condition (5.4) holds for all b ∈ R∗ and for all
y ∈ R.

From Proposition 3.1, Theorem 3.2 and Lemma 4.1, the following
corollaries are now immediate.

Corollary 5.1. f ∈ CR is a generalized Cohn function satisfying

(5.2) if and only if |f | = χ0 and |f̂ | = q
n
2χ0.

Corollary 5.2. If f ∈ CR is a generalized Cohn function satisfying
(5.2), then the matrix

[f(x− y)]x,y∈R\{0}
is nonsingular.

Theorem 5.2. If f ∈ CR is a generalized Cohn function satisfying

|f̂(x)| 6= 0 for all x ∈ R\{0}, then the matrix

[f(x− y)]x,y∈R\{0}

is nonsingular.

Proof. Since f is a generalized Cohn function satisfying either (5.1)
or (5.2), by Proposition 5.1,

∑
x∈R f(x) = 0, that is, f ∈ V = {f ∈

CR|
∑

x∈R f(x) = 0}. From (4.3), (3.10) and assumption |f̂(x)| 6= 0 for
all x ∈ R\{0}, we have∣∣det[f(x− y)]x,y∈R\{0}

∣∣ = q−n
∏

x∈R\{0}

∣∣∣f̂(−x)
∣∣∣ 6= 0.
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Thus the matrix [f(x− y)]x,y∈R\{0} is nonsingular.

Question 1: Is there an example of generalized Cohn functions satisfy-
ing (5.2)?

Question 2: For n = 1, i.e., in the case of finite fields, the converse
of the Proposition 5.2 holds. For n ≥ 2, what are the conditions under
which the converse of the Proposition 5.2 will be established?
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