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C∗-ALGEBRA VALUED SYMMETRIC SPACES AND

FIXED POINT RESULTS WITH AN APPLICATION

Mohammad Asim∗ and Mohammad Imdad

Abstract. In this paper, we firstly introduce the class of C∗-algebra
valued symmetric spaces and utilize the same to prove our fixed point
results. We furnish an example to highlight the utility of our main
result. Finally, we apply our result to examine the existence and
uniqueness of a solution for a system of Fredholm integral equations.

1. Introduction

In the context of fixed point theory, Banach [6] proved an effective
and powerful tool in nonlinear analysis known as the Banach contraction
principle. This principle has been extended and generalized in numerous
different directions (see [1–4,7, 10, 13,16]). Most recently, researchers of
the fixed point theory come across situations wherein all the metric con-
ditions are not needed (see [9, 11, 12, 17]). Inspired by this fact, many
researchers established fixed point results in semi-metric spaces [19] (or
symmetric spaces). A mapping d on X 6= ∅ is called symmetric if
d(a, b) = d(b, a) and d(a, b) = 0 if and only if a = b, for all a, b ∈ X. The
pair (X, d) is called symmetric space. Due to the absence of triangular
inequality, the function ‘d’ is not continuous in general so the uniqueness
of the limit of the sequence is not guaranteed. To overcome the earlier
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mentioned difficulties, Wilson [19] suggested several related weaker con-
ditions. Such weaker conditions are adopting our setting which will be
stated in preliminaries soon.

Very recently, Asim et al. [5] enlarged the class of symmetric spaces
and partial metric spaces by introducing the class of partial symmetric
spaces and utilized the same to prove fixed point results for singlevalued
mappings as well as multivalued mappings. On the other hand, in 2014,
Ma et al. [14] established the notion of C∗-algebra valued metric spaces
(in short C∗-avMS) by replacing the range set R with a unital C∗-algebra
which is more general class than the class of metric spaces and gave some
fixed point results in such spaces. In 2015, Ma et al. [15], introduced
the notion of C∗-algebra valued b-metric spaces as a generalization of
C∗-avMS and proved some fixed point results also used their results
as an application for an integral type operator. In the recent past,
Chandok [8], generalized the class of C∗-avMS by introducing the class
of C∗-algebra valued partial metric spaces and utilized the same to prove
some fixed point theorems. Later on, many researchers worked on C∗-av
metric and proved numerous fixed point theorems also used their results
as applications for integral type operators.

Inspired by the ideas of symmetric spaces and C∗-avMS, we introduce
the notion of C∗-av symmetric spaces and prove some fixed point results.
We also furnish some examples which demonstrate the utility of our
main result. Moreover, we apply one of our main results to examine the
existence and uniqueness of a solution for the system of integral type
operators.

2. Preliminaries

Throughout the paper, we denote A by a unital (i.e., unity element I)
C∗-algebra with linear involution ∗ such that for all a, b ∈ A, (ab)∗ = b∗a∗

and a∗∗ = a. A positive element a ∈ A is denoted by 0A 4 a, if a = a∗

and σ(a) = {λ ∈ R : λI − a is non-invertible } ⊆ [0,∞), where 0A is a
zero element in A. Also, A+ = {a ∈ A; a < 0A}. The partial ordering
on A can be defined as follows: a 4 b if and only if 0A 4 b−a. The pair
(A, ∗) is said to be an unital ∗-algebra, if it contains the unity element
I. A unital ∗-algebra (A, ∗) is called a Banach ∗-algebra, if it satisfies
‖a∗‖ = ‖a‖ along with a complete sub-multiplicative norm. A Banach
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C∗-algebra satisfying ‖a∗a‖ = ‖a‖2, for all a ∈ A is called a C∗-algebra.

The following definition is introduced by Ma et al. [14]:

Definition 2.1. Let A 6= ∅. The mapping d : A × A → A is called
a C∗-av metric on A, if it satisfies the following (for all a, b, c ∈ A):

1. d(a, b) < 0A and d(a, b) = 0A iff a = b;
2. d(a, b) = d(b, a);
3. d(a, b) 4 d(a, c) + d(c, b).

The triplet (A,A, d) is called a C∗-avMS.

In 2015, again Ma et al. [15] introduced the notion of C∗-av b-metric
space as follows:

Definition 2.2. Suppose A is a non-empty set and s ∈ A such that
s < I. The mapping d : A× A → A is called a C∗-av b-metric on A, if
it satisfies the following for all a, b, c ∈ A:

(i) d(a, b) < 0A and d(a, b) = 0A iff a = b;
(ii) d(a, b) = d(b, a);

(iii) d(a, b) 4 s[d(a, c) + d(c, b)].

The triplet (A,A, d) is called a C∗-avbMS.

Remark 2.3. Clearly, if s = I then a C∗-avbMS reduces to a C∗-
avMS.

Now, we recall the definition of C∗-algebra valued partial metric space
introduced by Chandok et al. [8].

Definition 2.4. Let A 6= ∅. The mapping d : A×A→ A is called a
C∗-av partial metric on A, if it satisfies the following for all a, b, c ∈ A:

(i) d(a, b) < 0A and d(a, a) = d(b, b) = d(a, b) iff a = b;
(ii) d(a, a) 4 d(a, b);

(iii) d(a, b) = d(b, a);
(iv) d(a, b) 4 d(a, c) + d(c, b)− d(c, c).

The triplet (A,A, d) is called a C∗-avPMS.

Remark 2.5. Obviously, if d(a, a) = 0A for all a ∈ A, then (A, d) is
a C∗-avMS.

Now, we introduce the C∗-algebra valued symmetric space as follows:
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Definition 2.6. Suppose A is a non-empty set. The mapping d :
A×A→ A is called a C∗-av symmetric on A, if it satisfies the following
for all a, b ∈ A:

(i) d(a, b) < 0A and d(a, b) = 0A iff a = b;
(ii) d(a, b) = d(b, a).

The triplet (A,A, d) is called a C∗-av symmetric space.

A C∗-av symmetric space (A,P) reduces to a symmetric space if A =
R. Obviously, every symmetric space is a C∗-av symmetric space but
not conversely.

Definition 2.7. A sequence {an} in (A,A, d) is called convergent to
a ∈ A (with respect to A), if

lim
n→∞

d(an, a) = 0A.

Definition 2.8. A sequence {an} in (A,A, d) is called Cauchy se-
quence (with respect to A), if

lim
n,m→∞

d(an, am) = 0A.

Definition 2.9. The triplet (A,A, d) is called complete C∗-av sym-
metric space if every Cauchy sequence in A is convergent to some point
a ∈ A.

Now, we furnish some examples in support of our newly introduced
C∗-av metric space as follows:

Example 2.10. Let E be a Lebesgue measurable set, H = L2(E) a
Hilbert space, L(H) the set of all bounded and linear operators on H.
Obviously, L(H) is a C∗-algebra with the usual norm. Let A = L∞(E)
and define d : A× A→ L(H) by (for all a, b ∈ A and p, q ≥ 1):

d(a, b) = π|a−b|p + π|a−b|q ,

where πu : H → H is the multiplicative operator defined by:

πu(ψ) = u.ψ, for all ψ ∈ H.

Then (A,L(H), d) is C∗-av symmetric space. For completeness, we take
a Cauchy sequence {fn} in A, that is, for each ε > 0, there exists N ∈ N,
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such that (for all n,m ≥ N)

‖d(fn, fm)‖ = ‖π|fn−fm|p + π|fn−fm|q‖
≤ ‖π|fn−fm|p‖+ ‖π|fn−fm|q‖
= ‖fn − fm‖p∞ + ‖fn − fm‖q∞
< ε.

Thus, there exists f ∈ A and N ∈ N such that ‖fn − f‖p∞ < ε. Then we
have

‖d(fn, f)‖ = ‖π|fn−f |p + π|fn−f |q‖
≤ ‖π|fn−f |p‖+ ‖π|fn−f |q‖
= ‖fn − f‖p∞ + ‖fn − f‖q∞
< ε.

Thus, the sequence {fn} converges to f in X. (A,L(H), d) is complete
C∗-av symmetric space.

Example 2.11. Let A = R and A = M3(R). Define d : A × A → A
by (for all a, b ∈ A and p, q ≥ 1):

d(a, b) =

|a− b|p 0 0
0 |a− b|p 0
0 0 k|a− b|p

+

|a− b|q 0 0
0 |a− b|q 0
0 0 k|a− b|q


where, k ≥ 0. Observe that, d is C∗-av symmetric and (A,A, d) is a
complete C∗-av symmetric space with the coefficient s = 2p−1.

Let (A,A, d) be a C∗-av symmetric space. Then, the open ball of
center a ∈ A and radius 0A ≺ ε ∈ A is defined by:

Bd(a, ε) = {b ∈ A : d(a, b) ≺ ε}.

Similarly, the closed ball with center a ∈ A and radius ε � 0A is defined
by:

Bd[a, ε] = {b ∈ A : d(a, b) 4 ε}.
The family of the open balls (for all a ∈ A and ε � 0A)

Ud = {Bd(a, ε) : a ∈ A, ε � 0A},

forms a basis of some topology τd on A.
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Lemma 2.12. Let (A, τd) be a topological space and f : A→ A. If f
is continuous then every sequence {an} ⊆ A such that an → a implies
fan → fa. The converse holds if A is metrizable.

Next, we adopt some definitions from symmetric spaces to the setting
of C∗-av symmetric space:

Definition 2.13. Let (A,A, d) be a C∗-av symmetric space. Then

(AC1) lim
n→∞

d(an, a) = 0A and lim
n→∞

d(an, b) = 0A imply a = b, where

{an} a sequence in X and a, b ∈ A.
(AC2) d is said to be 1-continuous if lim

n→∞
d(an, a) = 0A implies that

lim
n→∞

d(an, b) = d(a, b), where {an} a sequence in X and a, b ∈ A.
(AC3) d is said to be continuous if lim

n→∞
d(an, a) = 0A and lim

n→∞
d(an, b) =

d(a, b) imply that lim
n→∞

d(an, bn) = d(a, b), where {an} and {bn}
are sequences in A and a, b ∈ A.

(AC4) lim
n→∞

d(an, a) = 0A and lim
n→∞

d(an, bn) = 0A imply lim
n→∞

d(bn, a) =

0A, for sequences {an}, {bn} in A and a ∈ A.
(AC5) lim

n→∞
d(an, bn) = 0A and lim

n→∞
d(bn, cn) = 0A imply lim

n→∞
d(an, cn) =

0A, for sequences {an}, {bn}, {cn} in A.

Remark 2.14. From Definition 2.13, it is observed that (AC3) ⇒
(AC2), (AC4) ⇒ (AC1) and (AC2) ⇒ (AC1) but in general the con-
verse implications are not true.

3. Fixed point results

The following definition is used in our subsequent discussions.

Definition 3.1. The max function on A (C∗-algebra) with the par-
tial order relation ‘ 4′ is defined by (for all a, b ∈ A+):

max{a, b} = b⇔ a 4 b and ‖a‖ ≤ ‖b‖.

Now, we recall the definition of Kannan-Ćirić C∗-contraction condi-
tion [18]:

Definition 3.2. Let (A,A, d) be a C∗-av symmetric space. A map-

ping f : A→ A is said to be Kannan-Ćirić type C∗-contraction if there
exists ρ ∈ A with ‖ρ‖ < 1 such that (for all a, b ∈ A)

(1) d(fa, fb) 4 ρ∗max{d(a, fa), d(b, fb)}ρ.
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Next, we prove a fixed point result via C∗-av Kannan-Ćirić type con-
traction in the setting of C∗-av symmetric space:

Theorem 3.3. Let (A,A, d) be a complete C∗-av symmetric space
and f : A→ A. Suppose the following conditions hold:

(i) f satisfies condition (1),
(ii) f is continuous.

Then f has a unique fixed point a ∈ A.

Proof. Take a0 ∈ A and construct an iterative sequence {an} by:

a1 = fa0, a2 = f 2a0, a3 = f 3a0, · · · , an = fna0, · · · .

Now, we assert that lim
n→∞

d(an, an+1) = 0A. On setting a = an and b =

an+1 in (1), we get

d(an, an+1) = d(fan−1, fan)

4 ρ∗max{d(an−1, fan−1), d(an, fan)}ρ
= ρ∗max{d(an−1, an), d(an, an+1)}ρ.(2)

Assume that max{d(an−1, an), d(an, an+1)} = d(an, an+1), then from (2),
we have

d(an, an+1) 4 ρ∗d(an, an+1)ρ,

yielding thereby

d(an, an+1) 4 ρ∗d(an, an+1)ρ

= ρ∗(d(an, an+1))
1
2 (d(an, an+1))

1
2ρ

=
(

(d(an, an+1)ρ)
1
2

)∗(
(d(an, an+1)ρ)

1
2

)
=

∥∥∥(d(an, an+1)ρ
) 1

2

∥∥∥2I
4 ‖ρ‖n‖d(an, an+1)‖I

a contradiction (since ‖ρ‖2 < 1). Thus, max{d(an−1, an), d(an, an+1)} =
d(an−1, an). Therefore, (2) gives rise

d(an, an+1) 4 ρ∗d(an−1, an)ρ n ∈ N.
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Thus, inductively we have

d(an, an+1) 4 (ρ∗)nd(a0, a1)ρ
n

= (ρ∗)n(d(a0, a1))
1
2 (d(a0, a1))

1
2ρn

=
(

(d(a0, a1)ρ
n)

1
2

)∗(
(d(a0, a1)ρ

n)
1
2

)
=

∥∥∥(d(a0, a1)ρ
n)

1
2

∥∥∥2I
4 ‖ρ‖n‖d(a0, a1)‖I.

On making limit as n→∞, we get

(3) lim
n→∞

d(an, an+1) = 0A.

Now, we assert that {an} is a Cauchy sequence. Form (1), we have (for
n,m ∈ N)

d(an, am) = d(fan−1, fam−1)

≤ ρ∗max{d(an−1, fan−1), d(am−1, fam−1)}ρ
≤ ρ∗max{d(an−1, an), d(am−1, am)}ρ.

By using (3), we have

(4) lim
n,m→∞

d(an, am) = 0A.

Hence, {an} is a Cauchy sequence. Since (A,A, d) is complete, there
exists a ∈ A, such that {an} converges to a. Now, we will show that
a ∈ A is a fixed point of f. By condition (ii), we have

a = lim
n→∞

an+1 = f( lim
n→∞

an) = fa.

Therefore, a is a fixed point of f . To prove the uniqueness of fixed point,
suppose that a, b ∈ A are such that fa = a and fb = b. Then from (1),
we have

d(a, b) = d(fa, fb)

4 ρ∗max{d(a, fa), d(b, fb)}ρ,
= ρ∗max{d(a, a), d(b, b)}ρ
= 0A.

Hence, above inequality implies that a = b. Therefore, a is a unique
fixed point of f . This completes the proof.
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Let (A,A, d) be a C∗-av symmetric space and f : A → A. Then for
every a ∈ A and for all i, j ∈ N, we define

(5) S(d, f, a) = sup{d(f ia, f ja) : i, j ∈ N}.

Definition 3.4. Let (A,A, d) be a C∗-av symmetric space. A map-
ping f : A → A is said to be C∗-contraction if there exists ρ ∈ A with
‖ρ‖ < 1 such that

(6) d(fa, fb) 4 ρ∗d(a, b)ρ, ∀ a, b ∈ A.

Now, we prove an analogue of Banach contraction principle in the
setting of C∗-av symmetric space:

Theorem 3.5. Let (A,A, d) be a complete C∗-av symmetric space
and f : A→ A. Suppose the following conditions hold:

(i) f satisfies condition (6)
(ii) there exists a0 ∈ A such that S(d, f, a0) ≺ ∞,
(iii) either

(a) f is continuous or
(b) (A,A, d) enjoys the (AC1) property.

Then f has a unique fixed point a ∈ A.

Proof. Choose a0 ∈ A and construct an iterative sequence {an} by:

a1 = fa0, a2 = f 2a0, a3 = f 3a0, · · · , an = fna0, · · · .
Now, from (6), we have

d(fn+ia0, f
n+ja0) 4 ρ∗d(fn−1+ia0, f

n−1+ja0)ρ, ∀ i, j ∈ N.
Since, the above inequality holds for all i, j ∈ N, therefore by conditions
(ii) and (5), we have

S(d, f, fna0) ≤ ‖ρ‖2S(d, f, fn−1a0).

Repeating this procedure indefinitely, we get

(7) S(d, f, fna0) ≤ ‖ρ‖2nS(d, f, a0), ∀ n ∈ N.
Take n,m ∈ N such that m = n+ p (for some p ∈ N). On using (7), we
get

d(fna0, f
n+pa0) ≤ S(d, f, fna0) ≤ ‖ρ‖2nS(d, f, a0).

Since S(d, f, a0) ≺ ∞, then

lim
n,m→∞

d(an, am) = 0A,
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the sequence {an} is Cauchy in A. Since, (A,A, d) is complete, there
exists a ∈ A such that {an} converges to a. Now, we show that a ∈ A is
a fixed point of f.
Firstly, we take the continuity of f . Then

a = lim
n→∞

an+1 = f( lim
n→∞

an) = fa.

Alternately, we assume that (A,A, d) enjoys the (AC1) property. Now,
we get

d(an+1, fa) = d(fan, fa)

4 ρ∗d(an, a)ρ,

‖d(an+1, fa)‖ ≤ ‖ρ‖2‖d(an, a)‖
→ 0 as n→∞.

Hence, lim
n→∞

‖d(an+1, fa)‖ = 0. Thus, from the (A1) property, fa = a.

Therefore, a is a fixed point of f . For the uniqueness part, suppose
that a, b ∈ A such that fa = a and fb = b. Then, by the definition of
C∗-contraction, we have

d(a, b) = d(fa, fa) 4 ρ∗d(a, b)ρ,

so that

‖d(a, b)‖ = ‖d(fa, fb)‖
≤ ‖ρ∗d(a, b)ρ‖
≤ ‖ρ∗‖‖d(a, b)‖‖ρ‖
= ‖ρ‖2‖d(a, b)‖
< ‖d(a, b)‖

a contradiction. Hence, a = b, that is, f has a unique fixed point. This
completes the proof.

Now, we furnish the following example which illustrates Theorem 3.5.

Example 3.6. Let A = [0, 1], and A = M2(C) be the class of all
bounded and linear operators on the Hilbert space C2. Define d : A ×
A→ A by:

d(a, b) =

[
|a− b|p 0

0 k|a− b|p
]

+

[
|a− b|q 0

0 k|a− b|q
]

where k ≥ 0 and p, q ≥ 1. Then, (A,A, d) is a complete C∗-av symmetric
space.
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Define a map f : A→ A by:

fa =
a

4
, for all a ∈ A.

Observe that, d(fa, fb) 4 ρ∗d(a, b)ρ (for all a, b ∈ A) with

ρ =

[√
2
2

0

0
√
2
2

]
∈ A and ‖ρ‖ =

√
2

2
=

1√
2
< 1.

Thus, all the hypothesis of Theorem 3.5 are satisfied and a = 0 is unique
fixed point of f .

4. Application

As an application of Theorem 3.5 on complete C∗-av symmetric space,
we find the existence and uniqueness results for a type of following inte-
gral equation:

(8) a(µ) =

∫
E

G(µ, ν, a(ν))dν + h(µ), µ, ν ∈ E,

where E is a measurable set, G : E × E × R→ R and h ∈ L∞(E).
Let A = L∞(E), H = L2(E) and L(H) = A. Define d : A × A → A

by (for all a, b ∈ A, p, q ≥ 1 and ‖ρ‖ = k < 1):

d(a, b) = π|a−b|p + π|a−b|q ,

where πu : H → H is the multiplicative operator defined by:

πu(ψ) = u.ψ, for all ψ ∈ H.

Now, we state and prove our result as follows:

Theorem 4.1. Suppose that (for all a, b ∈ A)

(1) there exists a continuous function ψ : E × E → R and k ∈ (0, 1)
such that

| G(µ, ν, a(ν))−G(µ, ν, b(ν)) |≤ k | ψ(µ, ν) || a(ν)− b(ν) |,

for all µ, ν ∈ E.
(2) supµ∈E

∫
E
| ψ(µ, ν) | dν ≤ 1.

Then the integral equation (8) has a unique solution in A.
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Proof. Define f : A→ A by:

fa(µ) =

∫
E

G(µ, ν, a(ν))dν + h(µ), ∀ µ, ν ∈ E.

Set ρ = kI, then ρ ∈ A. For any u ∈ H and p, q ≥ 1, we have

‖d(fa, fb)‖ = sup
‖u‖=1

(π|fa−fb|pu, u) + sup
‖u‖=1

(π|fa−fb|qu, u)

= sup
‖u‖=1

∫
E

[∣∣∣∣ ∫
E

G(µ, ν, a(ν))−G(µ, ν, b(ν))dν

∣∣∣∣p]u(µ) ¯u(µ)dµ

+ sup
‖u‖=1

∫
E

[∣∣∣∣ ∫
E

G(µ, ν, a(ν))−G(µ, ν, b(ν))dν

∣∣∣∣q]u(µ) ¯u(µ)dµ

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣G(µ, ν, a(ν))−G(µ, ν, b(ν))
∣∣dν]p|u(µ)|2dµ

+ sup
‖u‖=1

∫
E

[ ∫
E

∣∣G(µ, ν, a(ν))−G(µ, ν, b(ν))
∣∣dν]q|u(µ)|2dµ

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣kψ(µ, ν)(a(ν)− b(ν))
∣∣dν]p|u(µ)|2dµ

+ sup
‖u‖=1

∫
E

[ ∫
E

∣∣kψ(µ, ν)(a(ν)− a(ν))
∣∣dν]q|u(µ)|2dν

≤ kp sup
‖u‖=1

∫
E

[ ∫
E

|ψ(µ, ν)|dν
]p
|u(µ)|2dµ‖a− b‖p∞

+kp sup
‖u‖=1

∫
E

[ ∫
E

|ψ(µ, ν)|dν
]q
|u(µ)|2dµ‖a− b‖q∞

≤ k sup
µ∈E

∫
E

|ψ(µ, ν)|dν sup
‖u‖=1

∫
E

|u(µ)|2dµ‖a− b‖p∞

+k sup
µ∈E

∫
E

|ψ(µ, ν)|dν sup
‖u‖=1

∫
E

|u(µ)|2dµ‖a− b‖q∞

≤ k‖a− b‖p∞ + k‖a− b‖q∞
= ‖ρ‖ ‖d(a, b)‖.

Since, ‖ρ‖ < 1, so it is verified that the mapping f satisfies all the
conditions of Theorem 3.5. Hence, f has a unique fixed point, means
that the Fredholm integral Equation (8) has a unique solution.
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5. Conclusion

Firstly, we enlarged the class of C∗-avMS to the class of C∗-av sym-
metric space wherein we proved several fixed point results which include
an analog of Banach contraction principle and Kannan-Ćirić fixed the-
orem in such spaces. We also furnished some examples exhibiting the
utility of our newly established results. We further used one of our main
results to examine the existence and uniqueness of a solution for the
system of Fredholm integral equations.
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