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IHARA ZETA FUNCTION OF FINITE GRAPHS WITH
CIRCUIT RANK TWO

SANGHOON KwoON' AND SEUNGMIN LEE

ABSTRACT. In this paper, we give an explicit formula as a rational
function for the Thara zeta function of every finite connected graph
without degree one vertices whose circuit rank is two.

1. Introduction

Ihara zeta function is a zeta function associated with graphs that re-
sembles the Selberg’s dynamical zeta function for a geodesic flow on a
Riemannian manifold. In the Selberg’s dynamical zeta function of a Rie-
mannian manifold, primitive closed orbits (the primitive periodic points
of the geodesic flow) of the geodesic flow play the role of primes in the
Riemann’s zeta function ([6]). Ihara investigated the p-adic analogue of
the Riemann surfaces and found the similar idea of Selberg’s zeta func-
tion can be adapted to the p-adic and positive-characteristic cases. He
also showed that one can compute the zeta function effectively, via a
product of polynomials and the determinant of a certain matrix ([2]).

As Serre remarked, a biregular tree is a p-adic analogue of Riemann
surfaces in the sense that an F-points of a rank one semisimple algebraic
group over an ultrametric local field F' acts on the tree ([7]). Thus, we
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may interpret [hara’s zeta function and the determinant formula purely
in terms of graphs. For instance, the zeta function of tree lattices are
studied by many authors including [1] and [5]. Recently, a new weighted
zeta function for a graph is also introduce in [3]. The explicit form,
however, as a rational function of the zeta function of finite graphs are
rarely known, although we have the determinant formula. The purpose
of this paper is to provide explicit formulas of the IThara zeta function
of finite connected graphs which have circuit rank two, without degree
one vertices. The circuit rank of an undirected graph is the minimum
number of edges that must be removed from the graph to break all its
cycles, making it into a tree. It follows directly from the definition that
the circuit rank r of a connected graph (V, E) is equal to |E|—|V|+1. Up
to homeomorphism, there are three types of graphs with circuit rank two
which we call a dumbbell graph (Figure 1), a figure eight graph (Figure 2),
and a bicyclic graph (Figure 3).

FIGURE 1. Dumbbell graph, n,m >3, £ >0

Let us recall the definition of the Ihara’s zeta function of a finite
graph following [8]. In order to define the zeta function of graphs, we
need to figure out what primes in graphs are. Let G = (V5, Eg) be a
finite, connected, and undirected graph with a set Vg of vertices and
a set Eg of edges. If G is any undirected finite connected graph with
unorient edges set E/ and vertex set /', we orient its edges arbitrarily and
obtain 2|E| oriented edges labelled by €1, €, - ,€n, €ni1 = €11, nyo =
eyt ean = e, where n = |E|. Let C' = (e, ey, ,€,) be a primitive
cycle without backtracking. That is, e;;1 # e;l, es # e+ for all 4 and
C # D/ for f > 1 and a closed path D in G. We say two primitive cycles
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F1GURE 3. Bicyclic graph, n,m > 2, >0

are equivalent if we can get one from the other by changing the starting
vertex. A prime in the graph G is an equivalence class [C'] of primitive
cycles. The length of the path C' is the number s of edges in C', denoted
by v(C).

DEFINITION 1.1. The Thara zeta function of graph G is defined at a
complex number u, for which |u| is sufficiently small, by

Zo(u) =] [ = uw®))™
[P]

where the product is over all primes [P] in G.
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If G = (Vg, Eg), then recall that the circuit rank r of G is equal to
|Eg| — |Vg| + 1. Let Vg = {vy,--- ,v,}. If G is a simple graph (a graph
without loops and multiple edges), then the adjacency matriz A of G
is the square matrix such that a;; = 1 if v; and v; are adjacent and
a;; = 0 otherwise. Let D be the diagonal matrix with d;; = degg v; and

Q=D-1I

THEOREM 1.2 ( [1] (see also [2], Theorem 2)). Let G be a connected
graph (Vg, E¢), and let r be the circuit rank of G. Then, the zeta function
of G is given by

1
(1 —u2)" " det (I — Au + Qu2)’

We are ready to state our main results. We denote by D, ,,, the
dumbbell graph of type (n,m,¥), which consists of two vertex-disjoint
cycles Cy,,C,, and a path P, (n,m > 1,/ > 0) joining those cycles. It has
n + m + ¢ number of vertices and n +m + ¢ + 1 number of edges.

Z(;(’LL) =

THEOREM 1.3. Let D be the dumbbell graph D,, ,,, with n,m > 3
and { = 0. Then, the zeta function of D is given by

1
(1 _ un) (1 _ um) (1 —un — g 4 yntm 4un+m+2ﬁ+2)'

ZD(U) =

We remark that the formula for the cases n = 1, m =1 and n = 1,
m = 2 are given in [4].

The figure eight graph of type (n,m), denoted by E,,,, consists of
two circles C,, and (), with the same starting vertex. It has n + m — 1
number of vertices and n + m number of edges.

THEOREM 1.4. Let E be the figure eight graph E,, ,,, with n,m > 3.
Then, the zeta function of E is given by

1
(1—w) (1 —um)(1—u™—um— 3urtm)’

The bicyclic graph B, ¢ of type (n,m,{) consists of two cycles of
length n + ¢ + 1 and m + ¢ + 1 which shares ¢ + 2 vertices.

THEOREM 1.5. Let B be the bicyclic graph B,, , ¢ with n,m > 2 and
¢ = 0. Then, the zeta function Zg(u) of B is given by

-1
(2un+m+€+l — yntm — gynt+l+l _ gmt+e+1 4 1) (2un+m+€+l 4+ yntm 4 gntl+l pogmt+e+1l 1) :
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2. Determinants of some tridiagonal matrices

In this section, we define some tridiagonal matrices which are fre-
quently used in the proof of the theorems. Let

1+u? —u
—u  1+u? —u
A, = —u e —u ’
—u 1+ u? —Uu
—U 1+ 2u?
1+ 2u? —Uu
—Uu 1+u? —u
B, = —U —Uu ,
—u 14+u?> —u
—u 14+ u?
and
1+ u? —Uu
—u  14+u® —u
K, = —u e —u
—u 1+u? —u
—u 14+ u?

be n x n matrices defined for u.
The determinant of the above tridiagonal matrices are given by

det A, =det B, = 1+ 2u®> + 2u* + - - + 2™

and

1 — u2n+2

1 — u?

detKn:1+u2+u4+...+u2n:

Let us denote by f,(u) = 1 + u? + u* + -+ + u*" so that we have
det K,, = f,(u) and det A,, = det B,, = 2f,(u) — 1. In the sequel, we
write f,, for f,(u) for simplicity.

For n,m > 3 and ¢ > 0, let H,, ¢, Ane, and B, be the matrices
given by
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128
n
Hn,m,é =
m
n 1
An,ﬁ =
0 1
0
Bm,é =
m A

n m
1+u? —u
—Uu —UuU
—u  1+4+u? —u
—u 14 2u%—u -
—u —u
—u  1+u? —u |Bm |
—u |1+ 2u—u
—u 14u? —u
—Uu —Uu
—u 1+
y4
n Y4
TF+u? —u ]
—u —u
—u 1+ u? —u
—u 1+2u? —u
—Uu 1+ u? —u
—u —u
—u 1+ u?
l
1+ u? —u ]
—u —u
—u 1+ o2 —u
—u 1+ 2u —u
—u 1+ u? —U
—u —u

—U 1+ u?
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The determinant of the above matrices are given as follows.

LEMMA 2.1. Let A, ¢, By and H,, ,,, ¢ be the above matrices. Then,
we have

det A, = det K,,_1(1 — det K;) + det A,, det K
= fo1 (L= fo) + 2fa — D) fo,
deg By = det K1 (1 — det K) + det By, det K
= fm1 (L= fo) + 2f — 1) fo,
det Hy, n ¢ = det B, g det A, + det By, o1 (1 — det K,,)
=[fo-1 (L= fo) + 2fin — 1) fe] (2fn — 1)
+ [fno1 U= foer) + 2fn = 1) feer] U= fo).

Proof. Using row and column operations, we have det B, ¢10 = (1 +
u2) det By o011 — u? det B, ¢. It follows from the characteristic equation
of linear recurrence relations that we have

det By, ¢ = ¢1 + cou?t
for some constants ¢; and cs. Since
det By = (1 +u?) (14 2u® + -+ 2u*™) —u*(1 + u® + -+ + u*™7?)
and
det Bo = (1+u+ut) (14+2u+- -+ 2u”™) — (u? +u?) (T+u+- - +u2),

we have
L+u+ -+ u™
u?z —1

Cc1 =

and
U4(1 Lo ettty 2u2m—2)

Cy =
This yields

dot B —(1+u? 4+ +u?) + w1+ + a4 202m2)
€ ml =

=fm-1 (1= fo) + 2fm — 1) fr.

The result for A, , can be obtained analogously.
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For the case of H,, ¢, we have det Hy, 1o m o = (14 2u?) det Hyyy 1m0 —
u?det H, ,, ¢ and hence det H,, ,, » = c3 + c,u®" for some constants c3 and
c4. Since

detHLmj
(14202 (= +ul 4 ) a1 T 4 2022
= U
u? —1
o (—(T+u? 4+ u®) + 221+ u? 4 - 2t 4 2022
—u
uZ —1
and
detHQ’mj
— 1+u2+...+u2m)+u2€+4(1+u2+._.+u2m74+2u2m72)
=(1 2 2 2 4 (
(1+2u®+ u)< s
( 2y 4) *(1+U2+---+u2m)+u2£+2(1+u2+,,,+u2m—4+2u2m72)
— U u
U2—1 )
we have

—u2(1+u? + -+ ) + (=14 20 (1 + u? + - a4 2uPm2)
(u? —1)2

Cqy =

and

(T4+u?+ -+ u?™) —u2F0(1 4 u? + - w4 202m2)
(@ =17 |

C3 = bl — C4u2 =

It follows that the determinant of the matrix H,, ., is equal to

(1 _ u2n+2)(1 + u2 4+t u?m) + u2€+4(2u2n+2 _ u2n _ UQ)(]. + ’LL2 4+t u2m—4 + 2u2m—2)

(@ =17
= Ut (1= f) + @f = D @fn = D+ Unoa (L= fen) + @fm = 1) fia) (1= fo).

This completes the proof of lemma. n

3. Proof of theorem 1.3

Let D = D, ¢ be a dumbbell graph with n,m > 3 and ¢ > 0. We
use the Thara’s determinant formula (Theorem 1.2). Let us denote by
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Rp the matrix I — Au + Qu? for D given as follows.

—u —u 1+ 2u%—u
—u  14+u? —u
RD = —u —u Y
—u  14+u? —u
—u |14 2u—u —u
—u 14u? —u
m
—u —u
—u —u 14+

¢
To show the Theorem 1.3, it is enough to calculate the determinant of
Rp. Using the row and column operation we have

det Rp
=u'det H, gm0 — (1 +u®)det H, 9, 10— u*(1 + u?)det Hy 12
+ (1 +u?)det Hy 114 + 4u™ " det Ky + 2u™"? det Ky det K, o
+ 2u™*? det Ky det K,,_5 + u* det Ky det K,,_pdet K, o + 2u™"?det A, o4
—u*(1 +u?)det K,,_pdet A, o
+utdet Ky, _gdet A, oy — 2u™(1 + u®)det A, o0 + 2u" " det By, o4
+ utdet K,,_5 det B2y
—2u"(1 4+ u?)det B,,_1 0 — u*(1 + u*) det K,,_odet B,, 1.

Replacing the determinants of H,, 1, ¢, Ky, An ¢, Bny by fr in the above
expression, we have

det Rp = u [(fin—3 (1 — fo) + 2fm—2 — 1) fo) (2fn-2—1)
+ (fms (1= foo1) + 2fm2 = 1) fo1) (1 = fu2)]
— (1 + ) [(fna (L= fo) + 2fn1 = 1) fr) (2fn2 — 1)
+ (frna (L= foo1) + 2fm1 = 1) fr1) (1= fu2) ]
—w*(1+ ) [(fm-s (1= fo) + 2fm—2—1) fo) 2fu1—1)
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+ (fn-s (1 = fr—1) + (2fim—2 — 1) fe-1) (1 = fu-1)]
+ (14 u?) [(fn2 (1= fo) + (2fm1 = 1) fo) (2fn1 — 1)
+ (fr2 (1= fro1) + @fner = 1) feo1) (1= fua)]
AU fy 4 20" fo e+ 20" fo o + Ut fofaoa 2
+ 20" [ fros (1= fo) + (2fn-2 — 1) fo]
— (1 +0®) froa [faa (1= fo) + (2fnr = 1) fo]
+ Ut frnea [fams (L= fo) + (2fu—2 — 1) f2]
—2u" (1 +4?) [foa (1= fo) + 2fu1 — 1) fi]
+ 20" (fres (L= fo) + (2fm—2— 1) f2)
U fuo [fns (1= fo) + (2fm—2 — 1) fi]
—2u"(1+0®) [fm2 (1= fo) + 2fma — 1) fo]
— (1 +0®) faa [fna (1= fo) + 2fm1 — 1) fol.
Expanding the whole equation, we get
det Rp = 2u™ 2 g — 2u™ frn_o — 20" 2 froo + 2™ 2 f g + Ul frn o fus
+ 20 g — 20" frmg — 202 fr o — U frna fa—2 — 3u” fru—a fa2
— W foo1 = U fact + freafao1 + 207 frnma fact + U fra2 fat
— fo1 (1 —u? + (1 + 3u2) fm_o—2 (1 + uQ) fm_l) (1 + U fo_s
— (1 +u?) fac1) + fe[1 —u? +2u™ + 20" — 2u™? 4+ 4u™ "
— 2" a4 33Ul f_o — But fuo 4+ 2" fr_o + SUTT2 s
— 2fny 22Ut o — AU ey — AU
—2 (1 + u2) fn-1 (1 +2u" + 3ulfr_y — 2 (1 + u2) fn,l)
+ frneo{—u* fu_s + u? (4 + 13u2) fr_2
(L aa?) (L4 20" —2(1+ ) fu)}].

This can by factored as
det Rp = (™ —1) (u" —1) (4u”+m+2€+2 —u" " " — 1) /(u? —1)
which yields

1
(1 _ un) (1 _ um) (1 — " — ym 4 gntm 4un+m+2€+2) :

ZD(’U,) =
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by the Thara’s determinant formula.

4. Proof of theorem 1.4

Let E, ,, be the figure eight graph with n,m > 3. Let us define the
(n4+m—1) x (n+m — 1) square matrix H,_,, by

Using the row and column expansion, the determinant of H, ,, is given

by

det H,, ,,, = (1 + 3u2) det K,,_; det K,,,_1
+u?det K,,_odet K1 + u®det K,,_1 det K,,,_o
= (1 + 3U2) foctfne1 + @ oo fme1 + U fact frns

Let Rg be the matrix I — Au + Qu? for E given as follows.

RE —u —u  14+3u?—u —u
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The determinant of R is given by

det Rp = (1 +u?)?det Hy 11 — (1 +u?)udet H, o
— (I +u®)u™det Ky — (1 + u?)u™ det K,,_5
— (1 +u*)u®det K,,_pdet K,,, 5 — (1 + u*)u*det H, 9,1
+utdet Hy 9 o +u™det K, 3
+u™? det K,,_5 + u' det K,,_5 det K,,,_
— (1 +u®)u"det Ko +u"?det K, _3
— (1 +u?)det K,p_ou™™? + u" " det K,,_3 — u® det K,,_p det K,,,_;.

As in the case of dumbbell graphs, we replace all the determinants by
the functions of u and use the Thara’s determinant formula to get

1

2l = T = @ = a3

This completes the proof of Theorem 1.4.

5. Proof of Theorem 1.5

Let B, ¢ be the bicyclic graph with n,m > 2 and ¢ > 0. Similarly,
let us denote by Rp the matrix I — Au + Qu? for B.

n m
14+ u? —u —u
—-u e —u
n 2
—-u  1l4+u* —u
—u 14 2u’—u —u
—u  1+u? —u
RB = —u - —u ¢
—u 1+u? —u
—u —u |14 2u’~u
—u 1+u? —u
m
—u e —u
—u —u 1+
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It follows that
det Rp = (1 +u?)’*det H, 110 — (1 +u*)u®det H, 120
+ (1 + u?)u™  det K,y — (1 + u?)u™ ™ det K,
— (1 +u*)udet K,,_pdet By, 1
— (1 +uP)uPdet Hy g 10+ U Hy om og +u™ 3 det K, 3
+ ™3 det K, _g 4+ ut det K,,_sdet By, — (1 + u*)u" ™ det K,,,_o
+u" 3 det Kpy_g — u" T det Ky — (1 4+ u?)u™ T det Ko
+u" 3 det K,y _g — u" ™ det Ky — (1 + u?)u® det A,y ¢det Ky, o
+ ut det A, _1pdet Ky 3 + utdet K,,_o det Ky det K,,,_».

Expanding the whole polynomial and applying the Thara’s determinant
formula, we obtain that Zp(u) is equal to

1
(2un+m+ﬁ+l _ un+m _ un+l+1 _ um+l+1 + 1) (2un+m+£+l + un+m + un+[+1 + um+l+1 _ 1) :
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