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ON SOME CLASSES OF SPIRAL-LIKE FUNCTIONS

DEFINED BY THE SALAGEAN OPERATOR

Mohammad Mehdi Shabani and Saeed Hashemi Sababe∗

Abstract. In this paper, we introduce two subclasses of analytic
and Spiral-like functions and investigate convolution properties, the
necessary and sufficient condition, coefficient estimates and inclusion
properties for these classes.

1. Introduction

In recent times, the study of analytic functions has been useful in
solving many problems in mechanics, Laplace equation, electrostatics,
etc. An analytic function is said to be univalent in a domain if it does
not take the same value twice in that domain. Let us denote the family
of all meromorphic functions f with no poles in the unit disk U := {z ∈
C : |z| < 1} of the form

f(z) = z + a2z
2 + a3z

3 + · · · = z +
∞∑
k=2

akz
k, (1)

by A. Clearly, functions in A are analytic in U and the set of all uni-
valent functions f ∈ A is denoted by S. Functions in S are of interest
because they appear in the Riemann mapping theorem and several other
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situation in many different contexts. In 1983, Salagean [16] introduced
differential operator Dk : A → A defined by

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),

Dnf(z) = D(Dn−1f(z)) = z(Dn−1f(z))′, n ∈ N = {1, 2, 3, . . . }.
In this way

Dnf(z) = z +
∞∑
k=2

knakz
k, n ∈ N0 = {0} ∪ N. (2)

For functions f given by (1) and g given by

g(z) = z + b2z
2 + b3z

3 + · · · = z +
∞∑
k=2

bkz
k,

the Hadamard product or convolution of f(z) and g(z) is defined by

f(z) ∗ g(z) = z +
∞∑
k=2

akbkz
k.

In this paper, we investigate convolution properties of Sαn [A,B] and
Kαn[A,B] associated with Salagean differential operator. Using convolu-
tion properties, we find the necessary and sufficient condition, coefficient
estimates and inclusion properties for these classes. More recent works
can be found on [2, 5, 12,14,20].

2. Preliminaries

We start with some useful definitions, theorems and lemmas.

Definition. A function f ∈ S is said to be starlike in U if the image
f(U) is starlike with respect to 0. It is well known that a function f is
starlike if and only if

Re
(zf ′(z)

f(z)

)
> 0, z ∈ U.

We denote by S∗ the class of all functions in S which are starlike in U.
A function f ∈ S is said to be convex in U if the image f(U) is convex.
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Lemma 2.1. The function f is convex in U if and only if

Re
(

1 +
zf ′′(z)

f ′(z)

)
> 0, z ∈ U.

We denote by K the class of all functions in S which are convex in U.
It is easy to see that, K ⊂ S∗ ⊂ S ⊂ A.

Definition. For analytic functions g and h in U, g is said to be
subordinate to h if there exists an analytic function w such that

w(0) = 0, |w(z)| < 1, and g(z) = h(w(z)), z ∈ U.

This subordination will be denoted here by

g ≺ h,

or, conventionally, by

g(z) ≺ h(z),

In particular, when h is univalent in U,

g ≺ h ⇐⇒ g(0) = h(0), and g(U) ⊂ h(U), z ∈ U.
Making use of the principal of subordination and Salagean differential
operator between analytic functions, we introduce the following classes

of analytic functions for n ∈ N0, |α| <
π

2
and −1 ≤ B < A ≤ 1:

Sαn [A,B] =

{
f ∈ S : eiα

z(Dnf(z))′

Dnf(z)
≺ cosα

(1 + Az

1 +Bz

)
+ i sinα, z ∈ U

}
,

(3)

and

Kαn [A,B] =

{
f ∈ S : eiα

(
1 +

z(Dnf(z))′′

(Dnf(z))′

)
≺ cosα

(1 +Az

1 +Bz

)
+ i sinα, z ∈ U

}
,

Note that

f(z) ∈ Kαn[A,B] ⇐⇒ zf ′(z) ∈ Sαn [A,B]. (4)

By specializing the parameters, we have the following know subclasses
studied by various researchers.

• The class

S0
0 [A,B] = S[A,B], and K0

0[A,B] = K[A,B],

where the classes S[A,B] and K[A,B] are introduced and studied
by many authors in [1, 6, 10, 11,18].
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• The class

S0
0 [1− 2β,−1] = S∗(β), and K0

0[1− 2β,−1] = K(β),

where the classes S∗(β) and K(β) are introduced and studied in [7].
• The class

S0
0 [
b2 − a2 + b

b
,
1− b
a

] = S(a, b), and K0
0[
b2 − a2 + b

b
,
1− b
a

] = K(a, b),

where the classes S(a, b),K(a, b) are introduced and studied by
in [18,19].
• The class

Sα0 [A,B] = Sα[A,B], and Kα0 [A,B] = Kα[A,B] = Sα1 [A,B],

where the classes Sα[A,B], Kα[A,B] are introduced and studied
in [3, 4, 13].
• The class

S0
0 [A,B] = R0[A,B], and K0

0[A,B] = R1[A,B],

where the classes R0[A,B] and R1[A,B] are introduced and stud-
ied in [1].

3. Convolution Properties

In this section, we study some of the properties of foresaid convo-
lution. Unless otherwise mentioned, we assume throughout this paper

that −1 ≤ B < A ≤ 1, |α| < π

2
, |ξ| = 1 and Dnf(z) is defined by (2).

To prove our convolution properties, we shall need the following lemmas
due to Silverman and Silvia [18].

Lemma 3.1. [18] The function f(z) defined by (1) is in the class
S∗[A,B] if and only if for all z in U and all ξ, |ξ| = 1,

1

z

[
f ∗

z +
ξ − A
A−B

z2

(1− z)2

]
6= 0. (5)

Lemma 3.2. The function f(z) defined by (1) is in the class Sαn [A,B]
if and only if for all z in U and all ξ, |ξ| = 1,

1

z

[
f ∗
(
z +

∞∑
k=2

(
k − ψ
1− ψ

)knzk
)]
6= 0, (6)
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where

ψ =
eiα + (A cosα + iB sinα)ζ

eiα(1 +Bζ)
. (7)

Proof. An application of lemma 3.1 exhibits that f ∈ Sαn [A,B] if and
only if

eiα
z(Dnf(z))′

Dnf(z)
6= cosα

(1 +Aζ

1 +Bζ

)
+ i sinα z ∈ U, |ξ| = 1

⇐⇒ z(Dnf(z))′ −Dnf(z)
(eiα + (A cosα+ iB sinα)ζ

eiα(1 +Bζ)

)
6= 0 z ∈ U, |ξ| = 1.

(8)
Since

zf ′ = f ∗ z

(1− z)2
, and f = f ∗ z

1− z
.

we can write

Dnf(z) = f(z) ∗ h(z) ∗ z

1− z
,

z(Dnf(z))′ = f(z) ∗ h(z) ∗ z

(1− z)2
,

where h(z) = z +
∞∑
k=2

knz
k and Substituting

ψ :=
eiα + (A cosα + iB sinα)ζ

eiα(1 +Bζ)
,

relation (8) is equivalent to

f(z) ∗ h(z) ∗
( z

(1− z)2
− ψz

1− z

)
6= 0, z ∈ U. (9)

On the other hand, by extension
z

(1− z)2
and

z

1− z
, we have

z

(1− z)2
− ψz

1− z
= z +

∞∑
k=2

(
k − ψ
1− ψ

)zk. (10)

By substituting (10) in (9), the proof is complete.
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Theorem 3.3. A necessary and sufficient condition for the function
f defined by (1) to be in the class of Sαn [A,B] is that

1−
∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
knakz

k−1 6= 0. (11)

Proof. Notice that

k − ψ
1− ψ

= −(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
, (12)

where ψ was defined in (7). Using (12), we can write (6) as

1

z

[
z −

∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
knakz

k
]
6= 0.

(13)

Simplifying relation (13), we obtain (11) and the proof is complete.

Lemma 3.4. The function f(z) defined by (1) is in the class ofKαn[A,B]
if and only if for all z in U and all ξ, |ξ| = 1,

1

z

[
f ∗ (z +

∞∑
k=2

(
k − ψ
1− ψ

)kn+1zk)
]
6= 0, (14)

where ψ was defined in (7).

Proof. Set

g ≺ h ⇐⇒ g(0) = h(0), and g(U) ⊂ h(U), z ∈ U.

Note that

zg′(z) = z +
∞∑
k=2

(
k − ψ
1− ψ

)kn+1zk. (15)

From the identity zf ∗ g = f ∗ zg′ and the fact that

f ∈ Kαn[A,B] ⇐⇒ zf ′ ∈ Sαn [A,B],

from lemma 3.1 we have

1

z

[
zf ′(z) ∗ g(z)

]
6= 0 ⇐⇒ 1

z

[
f(z) ∗ zg′(z)

]
6= 0. (16)

By substituting relation (15) in (16), we have obtain (14) and the proof
is complete.
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In a similar way of theorem 3.3 and using lemma 3.4, we can prove the
following theorem.

Theorem 3.5. A necessary and sufficient condition for the function
f defined by (1) to be in the class of Kαn[A,B] is that

1−
∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
kn+1akz

k−1 6= 0.

4. Coefficient Estimates

In the following, as an applications of Theorems 3.3 and 3.5, we de-
termine coefficient estimates and inclusion properties for a function of
the form (1) to be in the classes Sαn [A,B] and Kαn[A,B].

Theorem 4.1. If the function f(z) defined by (1) belongs to Sαn [A,B],
then

∞∑
k=2

(
|k(B + 1)− 1|+ | cosα + iB sinα|

)
kn|ak| ≤ (A−B) cosα.

Proof. Since we have∣∣∣1− ∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
knak

∣∣∣
≥ 1−

∞∑
k=2

∣∣∣(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα

∣∣∣kn|ak|,
and ∣∣∣(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα

∣∣∣
=
|(k − 1)(eiα + iB sinα)− (A− kB) cosα|

(A−B) cosα

≤ |k(B + 1)− 1|+ |A cosα + iB sinα|
(A−B) cosα

.

The result follows from Theorem 3.3.

Similarly, we can prove the following theorem.
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Theorem 4.2. If the function f(z) defined by (1) belongs toKαn[A,B],
then

∞∑
k=2

(
|k(B + 1)− 1|+ | cosα + iB sinα|

)
kn+1|ak| ≤ (A−B) cosα.

5. Containment Properties

In this section, we study the containment properties of the mentioned
classes.

Theorem 5.1. Sαn+1[A,B] ⊂ Sαn [A,B] for all n ∈ N.

Proof. If f ∈ Sαn+1[A,B], By the lemma 3.2, we have

1

z

[
f ∗ (z +

∞∑
k=2

(
k − ψ
1− ψ

)kn+1zk)
]
6= 0, z ∈ U,

where ψ is given by (7). Note that we can write

z +
∞∑
k=2

(
k − ψ
1− ψ

)kn+1zk =
(
z +

∞∑
k=2

kzk
)
∗
(
z +

∞∑
k=2

(
k − ψ
1− ψ

)knzk
)
.

(17)

But

1

z

[
(z +

∞∑
k=2

kzk) ∗ (z +
∞∑
k=2

k−1zk)
]

= 1 +
∞∑
k=2

zk−1 =
1

1− z
6= 0, z ∈ U.

Thus it follows from (17) that

f ∗
(
z +

∞∑
k=2

(
k − ψ
1− ψ

)knzk
)
6= 0, z ∈ U,

and we conclude that f ∈ Sαn [A,B].

Similarly, we can prove the following theorem and corollaries.

Theorem 5.2. Kαn+1[A,B] ⊂ Kαn[A,B] for all n ∈ N.

Corollary 5.3. Sαn [A,B] ⊂ Sα[A,B] for all n ∈ N.

Corollary 5.4. Kαn[A,B] ⊂ Kα[A,B] for all n ∈ N.
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Remark 5.5. In particular, it follows from corollary 5.3 and 5.4 that

Kα[A,B] ⊂ Sα[A,B].

Theorem 5.6. If f ∈ Sαn [A,B] and ϕ ∈ K, then

f ∗ ϕ ∈ Sαn [A,B] for all n ∈ N.
Proof. Let .

F :=
z(Dnf(z))′

Dnf(z)
.

If f ∈ Sαn [A,B], then eiαF ≺ h, where

h(z) = cosα
(1 + Az

1 +Bz

)
+ i sinα.

Now

G(z) =
z(ϕ ∗ Dnf(z))′

ϕ ∗ Dnf(z)
=
z(ϕ ∗ (Dnf(z))′)

ϕ ∗ Dnf(z)

=
ϕ ∗ (z(Dnf(z))′)

ϕ ∗ Dnf(z)
=
ϕ ∗ (F · (Dnf(z)))

ϕ ∗ Dnf(z)
.

On the other hand, f ∈ Sαn [A,B], Dnf(z) ∈ S∗. It follows from [17,
Theorem 2.1], that

ϕ ∗ (F · (Dnf(z)))

ϕ ∗ Dnf(z)
,

lies in convex hall of F (U). But eiαF ≺ h and h is convex, so the convex
hall of eiαF (U) is subset of h(U), Therefore

eiαG(U) ⊂ h(U), and eiαG(0) = h(0).

Hence eiαG(z) ≺ h(z) and this completes the proof.

Theorem 5.7. If f, g ∈ Sαn [A,B]. then f ∗g ∈ Sαn [A,B] for all n ≥ 1.

Proof. If ϕ ∈ Sαn [A,B], then theorem 5.1 provides

Sαn [A,B] ⊂ Sα1 [A,B] = Kα0 [A,B].

On the other hand

Kα0 [A,B] ⊂ Kα[1,−1] ⊂ K.
Therefore ϕ ∈ K. Now by theorem 5.6,

f ∗ ϕ ∈ Sαn [A,B],

whenever f ∈ Sαn [A,B]. This completes the proof.
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Finally, it suggests to the researchers to study these properties on repro-
ducing kernel spaces which have been basically studied before in [8,9,15].

Acknowledgments

The first author appreciates professor Ahmad Zireh for his sugges-
tions. A part of this research was carried out while the second author
was visiting the University of Alberta. The author is grateful to pro-
fessor Anthony Lau and other colleagues on department of mathematics
for their kind hosting.

References

[1] O. P. Ahuja, Families of analytic functions related to Ruscheweyh derivatives
and subordinate to convex functions, Yokohama Math. J. 41 (1993), 39–50.

[2] V. Arora, S. Ponnusami, and S.K. Sahoo, Successive coefficients for spirallike
and related functions, arXiv:1903.10232 [math.CV] 2019.

[3] S.S. Bhoosnurmath and M.V. Devadas, Subclasses of spirallike functions defined
by subordination, J. of Analysis Madras 4 (1996), 173–183.

[4] S.S. Bhoosnurmath and M.V. Devadas, Subclasses of spirallike functions defined
by Ruschweyh derivatives, Tamkang J. Math. 28 (1997), 59–65.

[5] J.H Choi, Applications for certain classes of spirallike functions defined by the
Srivastava-Attiya operator, APM 8 (6) (2018), 615–623.

[6] R. M. Goel and B. S. Mehrok, On the coefficients of a subclass of starlike func-
tions, Indian J. Pure Appl. Math. 12 (1981), 634–647.

[7] A.W.Goodman, Univalent Functions Vol. I Vol. II Polygonal Oublishing House,
Washington, FI, (1983).

[8] S. Hashemi Sababe and A. Ebadian, Some properties of reproducing kernel Ba-
nach and Hilbert spaces, SCMA, 12 (1) (2018), 167–177.

[9] S. Hashemi Sababe, A. Ebadian and Sh. Najafzadeh, On 2-inner product spaces
and reproducing kernel property, TKJM, 49 (2) (2018), 143–153.

[10] W. Janowski, Some extremal problems for certain families of analytic functions,
Bull. Polish Acad. Sci. 21 (1973), 17–25.

[11] W. Janowski, Some extremal problems for certain families of analytic functions,
Annl. Polon. Math. 28 (1973), 297–326.

[12] N. Khan, A. Khan, Q.Z. Ahmad, and B. Khan, Study of multivalent spirallike
Bazilevic functions, AIMS Mathematics 3 (3) (2018), 353–364.

[13] S.V. Nikitin, A class of regular functions, current problems in function theory
(Russian) 188, 143–147, Rostov-Gos. Univ. Rostov-on-Don, (1987).

[14] K.I. Noor and Z.H. Bukhari, Some subclasses of analytic and spiral-like func-
tions of complex order involving the Srivastava–Attiya integral operator, IN-
TEGR Trans F SPEC F,1013, 21 (2010), 907–916.



On Some Classes of Spiral-like Functions Defined by the . . . 147

[15] J.A. Rosenfeld, B. Russo and W.E. Dixon The Mittag Leffler reproducing kernel
Hilbert spaces of entire and analytic functions, J. Math, Anal. Appl. 463 (2)
(2018), 576–592.

[16] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math.,
Springer, Berlin,1013, 362–372, (1983).

[17] T.N. Shanmugam, Convolution And Differential Subordination, Internat. J.
Math. Sci. 12, (1989) 333–340.

[18] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to
convex functions, Canad. J. Math. 1 (1985), 48–61.

[19] H. Silverman, Subclasses of starlike functions, Rev. Roumaine. Math. Pures
Appl, 231 (1978), 1093–1099.
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