SOME SEQUENCE SPACES OVER *n*-NORMED SPACES DEFINED BY FRACTIONAL DIFFERENCE OPERATOR AND MUSIELAK-ORLICZ FUNCTION

M. Mursaleen*, Sunil K. Sharma, and Qamaruddin

ABSTRACT. In the present paper we introduce some sequence spaces over n-normed spaces defined by fractional difference operator and Musielak-Orlicz function $\mathcal{M} = (\mathfrak{F}_i)$. We also study some topological properties and prove some inclusion relations between these spaces.

1. Introduction and Preliminaries

A function \mathfrak{F} which is continuous, non-decreasing and convex with $\mathfrak{F}(0) = 0$, $\mathfrak{F}(x) > 0$ for x > 0 and $\mathfrak{F}(x) \longrightarrow \infty$ as $x \longrightarrow \infty$, is called an Orlicz function (see [12]); and a sequence $\mathcal{M} = (\mathfrak{F}_i)$ of Orlicz function is called a Musielak-Orlicz function (see [15], [26]). By a lacunary sequence $\theta = (\theta_r)$, we mean a sequence of positive integers such that $\theta_0 = 0$, $0 < \theta_r < \theta_{r+1}$ and $\phi_r = \theta_r - \theta_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $J_r = (\theta_{r-1}, \theta_r)$ and $t_r = \frac{\theta_r}{\theta_{r-1}}$. The space of lacunary strongly convergent sequences N_θ was defined by Freedman et al. [5] as:

$$N_{\theta} = \left\{ \xi = (\xi_k) : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{k \in J_r} |\xi_k - l| = 0, \text{ for some } l \right\}.$$

Parashar and Choudhary [26] defined and studied some sequence spaces by using an Orlicz function \mathfrak{F} , which generalized the well-known Orlicz sequence spaces [C, 1, p], $[C, 1, p]_0$ and $[C, 1, p]_{\infty}$ (see [13], [14]).

The basic definition of of 2-normed space was given by Gähler [6], and for n-normed space one can see Misiak [19]. A sequence (ξ_k) in a n-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||\xi_k - L, x_1, \dots, x_{n-1}|| = 0 \text{ for every } x_1, \dots, x_{n-1} \in X.$$

A sequence (ξ_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be Cauchy if

$$\lim_{k, p \to \infty} ||\xi_k - \xi_p, x_1, \cdots, x_{n-1}|| = 0 \text{ for every } x_1, \cdots, x_{n-1} \in X.$$

Received December 8, 2019. Revised March 8, 2021. Accepted March 28, 2021.

2010 Mathematics Subject Classification: 40A05, 40C05, 46A45, 46A30.

Key words and phrases: Orlicz function, Musielak-Orlicz function, Lacunary sequence, n-normed spaces, paranorm space, fractional difference operator.

* Corresponding author.

© The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Lateron this concept was studied by several authors, e.g. see Gunawan ([7], [8]) and Gunawan and Mashadi [9].

The notion of difference sequence spaces was introduced by Kızmaz [10], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [4] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Subsequently, difference sequence spaces have been discussed by several authors (see [1], [13], [11], [16], [17], [18], [20], [21], [22], [23], [24], [27], [28]).

In [2] Baliarsingh defined the fractional difference operator as follows:

Let $x = (\xi_i) \in w$ and α be a real number, then the fractional difference operator $\Delta^{(\alpha)}$ is defined by

$$\Delta_i^{(\alpha)}\xi = \sum_{k=0}^i \frac{(-\alpha)_k}{k!} \xi_{i-k},$$

where $(-\alpha)_k$ denotes the Pochhammer symbol defined as:

$$(-\alpha)_k = \begin{cases} 1, & \text{if } \alpha = 0 \text{ or } k = 0, \\ \\ \alpha(\alpha + 1)(\alpha + 2)...(\alpha + k - 1), & \text{otherwise.} \end{cases}$$

Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function, $q = (q_i)$ be a bounded sequence of positive real numbers. Then we define the following sequence spaces in the present paper:

$$w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|) = \begin{cases} \xi = (\xi_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} \xi_i}{\rho}, x_1, \dots, x_{n-1} \right\| \right]^{q_i} = 0, \\ \rho > 0, s \ge 0 \end{cases},$$

$$w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|) =$$

$$\left\{ \xi = (\xi_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)} \xi_i - L}{\rho}, \ x_1, \cdots, x_{n-1} \| \right]^{q_i} = 0, \right.$$

for some
$$L$$
, $\rho > 0$, $s \ge 0$

 $w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$

$$\left\{ \xi = (\xi_i) \in w : \sup_{r} \frac{1}{\phi_r} \sum_{i \in I} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta_i^{(\alpha)} \xi}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} < \infty, \right.$$

$$\rho > 0, \ s \ge 0 \Big\}.$$

If we take $\mathcal{M}(\xi) = \xi$, we get

$$w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ \xi = (\xi_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \left[\left\| \frac{\Delta_i^{(\alpha)} \xi}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} = 0, \right\}$$

$$\rho > 0, \ s \ge 0 \Big\},$$

$$w^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \left[\left\| \frac{\Delta_i^{(\alpha)} \xi - L}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} = 0, \right.$$

for some
$$L$$
, $\rho > 0$, $s \ge 0$

and

$$w_{\infty}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \sup_r \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \left[\left\| \frac{\Delta_i^{(\alpha)} \xi}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} < \infty, \right.$$

$$\rho > 0, \ s \ge 0 \Big\}.$$

If we take $q = (q_i) = 1$ for all $i \in \mathbb{N}$, we have

$$w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta_i^{(\alpha)} \xi}{\rho}, \ x_1, \cdots, x_{n-1} \| \right] = 0, \right\}$$

$$\rho > 0, \ s \ge 0 \Big\},$$

$$w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta_i^{(\alpha)} \xi - L}{\rho}, \ x_1, \cdots, x_{n-1} \| \right] = 0, \right\}$$

for some
$$L$$
, $\rho > 0$, $s \ge 0$

and

$$w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{x = (x_i) \in w : \sup_r \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} \xi}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right] < \infty, \right.$$

$$\rho > 0, \ s \ge 0 \Big\}.$$

If we take $\mathcal{M}(\xi) = \xi, s = 0$, then these spaces reduces to

$$w_0^{\theta}(\Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in I} \left[\left\| \frac{\Delta_i^{(\alpha)} \xi}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} = 0, \ \rho > 0 \right\},$$

$$w^{\theta}(\Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} \left[\left\| \frac{\Delta_i^{(\alpha)} \xi - L}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} = 0, \right.$$

for some
$$L$$
, $\rho > 0$

and

$$w^{\theta}_{\infty}(\Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ x = (x_i) \in w : \sup_r \frac{1}{\phi_r} \sum_{i \in I_r} \left[\left\| \frac{\Delta^{(\alpha)} \xi_i}{\rho}, \ x_1, \cdots, x_{n-1} \right\| \right]^{q_i} < \infty, \ \rho > 0 \right\}.$$

The following inequality will be used throughout the paper. If $0 \le q_i \le \sup q_i = H$, $K = \max(1, 2^{H-1})$ then

$$(1.1) |a_i + b_i|^{q_i} \le K\{|a_i|^{q_i} + |b_i|^{q_i}\}$$

for all i and $a_i, b_i \in \mathbb{C}$. Also $|a|^{q_i} \leq \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

In this paper we study some topological properties and prove some inclusion relations between the above defined sequence spaces.

2. Basic properties

THEOREM 2.1. Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function and $q = (q_i)$ be a bounded sequence of positive real numbers. Then the sequences $w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$, $w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ and $w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ are linear spaces over the field of complex number \mathbb{C} .

Proof. Let $x = (x_i), y = (y_i) \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ and $\beta, \gamma \in \mathbb{C}$. In order to prove the result we need to find some ρ_3 such that

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)}(\beta x_i + \gamma y_i)}{\rho_3}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} = 0.$$

Since $x = (x_i), y = (y_i) \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$, there exist positive numbers $\rho_1, \rho_2 > 0$ such that

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho_1}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} = 0$$

and

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)} y_i}{\rho_2}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} = 0.$$

Define $\rho_3 = \max(2|\beta|\rho_1, 2|\gamma|\rho_2)$. Since \mathfrak{F}_i is non-decreasing, convex function and so by using inequality (1.1), we have

$$\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)}(\beta x_i + \gamma y_i)}{\rho_3}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
\leq \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\beta \Delta^{(\alpha)} x_i}{\rho_3}, z_1, z_2, \cdots, z_{n-1} \right\| + \left\| \frac{\gamma \Delta^{(\alpha)} y_i}{\rho_3}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
\leq K \frac{1}{\phi_r} \sum_{i \in J_r} \frac{1}{2^{q_i}} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho_1}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
+ K \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} y_i}{\rho_2}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
\leq K \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} y_i}{\rho_1}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
+ K \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} y_i}{\rho_2}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
\to 0 \text{ as } r \to \infty.$$

Thus we have $\beta x + \gamma y \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. Hence $w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ is a linear space. On the similar lines, we can prove that $w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ and

$$w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$$
 are linear spaces.

THEOREM 2.2. Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function and $q = (q_i)$ be a bounded sequence of positive real numbers. Then $w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ is a topological linear space paranormed by

$$g(x) = \inf \Big\{ \rho^{\frac{q_r}{H}} : \Big(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \Big[\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \Big]^{q_i} \Big)^{\frac{1}{H}} \le 1 \Big\},$$

where $H = \max_{i} (1, \sup_{i} q_{i}) < \infty$.

Proof. Clearly $g(x) \ge 0$ for $x = (x_i) \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. Since $M_i(0) = 0$ we get g(0) = 0. Again if g(x) = 0 then

$$\inf \left\{ \rho^{\frac{q_r}{H}} : \left(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \right)^{\frac{1}{H}} \le 1 \right\} = 0.$$

This implies that for a given $\epsilon > 0$ there exist some $\rho_{\epsilon}(0 < \rho_{\epsilon} < \epsilon)$ such that

$$\left(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho_{\epsilon}}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \right)^{\frac{1}{H}} \le 1.$$

Thus
$$\left(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\epsilon}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \right)^{\frac{1}{H}}$$

$$\leq \left(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho_{\epsilon}}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \right)^{\frac{1}{H}}.$$

Suppose $(x_i) \neq 0$ for each $i \in \mathbb{N}$. This implies that $\Delta^{(\alpha)}(x_i) \neq 0$ for each $i \in \mathbb{N}$. Let $\epsilon \to 0$ then

$$\left\|\frac{\Delta^{(\alpha)}x_i}{\epsilon}, z_1, z_2, \cdots, z_{n-1}\right\| \to \infty.$$

It follows that

$$\left(\frac{1}{\phi_r} \sum_{i \in L} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\epsilon}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \right)^{\frac{1}{H}} \to \infty,$$

which is a contradiction. Therefore $\Delta^{(\alpha)}(x_i) = 0$ for each i and thus $(x_i) = 0$ for each $i \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)} x_i}{\rho_1}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \right)^{\frac{1}{H}} \le 1$$

and

$$\left(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} y_i}{\rho_2}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \right)^{\frac{1}{H}} \le 1.$$

Let $\rho = \rho_1 + \rho_2$, then by using Minkowski's inequality, we have

$$\left(\frac{1}{\phi_{r}}\sum_{i\in J_{r}}i^{-s}\mathfrak{F}_{i}\left[\left\|\frac{\Delta^{(\alpha)}(x_{i}+y_{i})}{\rho},z_{1},z_{2},\cdots,z_{n-1}\right\|\right]^{q_{i}}\right)^{\frac{1}{H}}$$

$$\leq \left(\frac{1}{\phi_{r}}\sum_{i\in J_{r}}i^{-s}\mathfrak{F}_{i}\left[\left\|\frac{\Delta^{(\alpha)}x_{i}+\Delta^{(\alpha)}y_{i}}{\rho_{1}+\rho_{2}},z_{1},z_{2},\cdots,z_{n-1}\right\|\right]^{q_{i}}\right)^{\frac{1}{H}}$$

$$\leq \left(\frac{1}{\phi_{r}}\sum_{i\in J_{r}}i^{-s}\mathfrak{F}_{i}\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\left[\left\|\frac{\Delta^{(\alpha)}x_{i}}{\rho_{1}},z_{1},z_{2},\cdots,z_{n-1}\right\|\right]\right)^{q_{i}}\right)^{\frac{1}{H}}$$

$$+ \frac{\rho_{2}}{\rho_{1}+\rho_{2}}\left[\left\|\frac{\Delta^{(\alpha)}y_{i}}{\rho_{2}},z_{1},z_{2},\cdots,z_{n-1}\right\|\right]\right)^{q_{i}}\right)^{\frac{1}{H}}$$

$$\leq \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)\left(\frac{1}{\phi_{r}}\sum_{i\in J_{r}}i^{-s}\mathfrak{F}_{i}\left[\left\|\frac{\Delta^{(\alpha)}y_{i}}{\rho_{1}},z_{1},z_{2},\cdots,z_{n-1}\right\|\right]^{q_{i}}\right)^{\frac{1}{H}}$$

$$+ \left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right)\left(\frac{1}{\phi_{r}}\sum_{i\in J_{r}}i^{-s}\mathfrak{F}_{i}\left[\left\|\frac{\Delta^{(\alpha)}y_{i}}{\rho_{2}},z_{1},z_{2},\cdots,z_{n-1}\right\|\right]^{q_{i}}\right)^{\frac{1}{H}}$$

$$\leq 1.$$

Since ρ , ρ_1 and ρ_2 are non-negative, so we have g(x+y)

$$= \inf \left\{ \rho^{\frac{q_r}{H}} : \left(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)}(x_i + y_i)}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \right)^{\frac{1}{H}} \le 1 \right\}$$

$$\le \inf \left\{ (\rho_1)^{\frac{q_r}{H}} : \left(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)}x_i}{\rho_1}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \right)^{\frac{1}{H}} \le 1 \right\}$$

$$+ \inf \left\{ (\rho_2)^{\frac{q_r}{H}} : \left(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)}y_i}{\rho_2}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \right)^{\frac{1}{H}} \le 1 \right\}.$$

Therefore $g(x+y) \leq g(x) + g(y)$. Finally we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition

$$g(\lambda x) = \inf \Big\{ \rho^{\frac{q_r}{H}} : \Big(\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \Big[\| \frac{\Delta^{(\alpha)} \lambda x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \Big]^{q_i} \Big)^{\frac{1}{H}} \le 1 \Big\}.$$

Thus

$$g(\lambda x) = \inf \Big\{ (|\lambda|t)^{\frac{q_r}{H}} : \Big(\frac{1}{\phi_r} \sum_{i \in I} i^{-s} \mathfrak{F}_i \Big[\| \frac{\Delta^{(\alpha)} x_i}{t}, z_1, z_2, \cdots, z_{n-1} \| \Big]^{q_i} \Big)^{\frac{1}{H}} \le 1 \Big\},$$

where $\frac{1}{t} = \frac{\rho}{|\lambda|}$. Since $|\lambda|^{q_r} \leq \max(1, |\lambda|^{\sup q_r})$, we have

$$g(\lambda x) \le \max(1, |\lambda|^{\sup q_r}) \inf \left\{ t^{\frac{q_r}{H}} : \left(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)} x_i}{t}, \right. \right. \right.$$

$$|z_1, z_2, \cdots, z_{n-1}||^{q_i}$$
 ≤ 1 .

From above inequality it follows that scalar multiplication is continuous. This completes the proof of the theorem. \Box

3. Inclusion relations

THEOREM 3.1. Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function. If $\sup_i [\mathfrak{F}_i(x)]^{q_i} < \infty$ for all fixed x > 0, then

$$w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subseteq w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

Proof. Let $x = (x_i) \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$, then there exists positive number ρ_1 such that

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\| \frac{\Delta^{(\alpha)} x_i}{\rho_1}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} = 0.$$

Define $\rho = 2\rho_1$. Since \mathfrak{F}_i is non-decreasing, convex and so by using inequality (1.1), we have

$$\begin{split} \sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \mathfrak{F}_{i} \Big[\| \frac{\Delta^{(\alpha)} x_{i}}{\rho}, z_{1}, z_{2}, \cdots, z_{n-1} \| \Big]^{q_{i}} \\ &= \sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \mathfrak{F}_{i} \Big[\| \frac{\Delta^{(\alpha)} x_{i} + L - L}{\rho}, z_{1}, z_{2}, \cdots, z_{n-1} \| \Big]^{q_{i}} \\ &\leq K \sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \frac{1}{2^{q_{i}}} \mathfrak{F}_{i} \Big[\| \frac{\Delta^{(\alpha)} x_{i} - L}{\rho_{1}}, z_{1}, z_{2}, \cdots, z_{n-1} \| \Big]^{q_{i}} \\ &+ K \sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \mathfrak{F}_{i} \Big[\| \frac{L}{\rho_{1}}, z_{1}, z_{2}, \cdots, z_{n-1} \| \Big]^{q_{i}} \\ &\leq K \sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \mathfrak{F}_{i} \Big[\| \frac{\Delta^{(\alpha)} x_{i} - L}{\rho_{1}}, z_{1}, z_{2}, \cdots, z_{n-1} \| \Big]^{q_{i}} \\ &+ K \sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \mathfrak{F}_{i} \Big[\| \frac{L}{\rho_{1}}, z_{1}, z_{2}, \cdots, z_{n-1} \| \Big]^{q_{i}} \\ &< \infty. \end{split}$$

Hence $x = (x_i) \in w^{\theta}_{\infty}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$.

THEOREM 3.2. Let $0 < \inf q_i = h \le q_i \le \sup q_i = H < \infty$ and $\mathcal{M} = (\mathfrak{F}_i)$, $\mathcal{M}' = (\mathfrak{F}_i')$ be Musielak-Orlicz functions satisfying Δ_2 -condition, then we have

(i)
$$w_0^{\theta}(\mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_0^{\theta}(\mathcal{M} \circ \mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(ii)
$$w^{\theta}(\mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w^{\theta}(\mathcal{M} \circ \mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(iii)
$$w^{\theta}_{\infty}(\mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w^{\theta}_{\infty}(\mathcal{M} \circ \mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

Proof. Let $x = (x_i) \in w_0^{\theta}(\mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$ then we have

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in I_r} i_i^{-s} \mathfrak{F}'_i \Big[\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \Big]^{q_i} = 0.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_i(t) < \epsilon$ for $0 \le t \le \delta$. Let $(y_i)^{q_i} = M_i' \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i}$ for all $i \in \mathbb{N}$. We can write

$$\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i[y_i]^{q_i} = \frac{1}{\phi_r} \sum_{i \in J_r, y_i < \delta} i^{-s} \mathfrak{F}_i[y_i]^{q_i} + \frac{1}{\phi_r} \sum_{i \in J_r, y_i > \delta} i^{-s} \mathfrak{F}_i[y_i]^{q_i}.$$

So we have

$$\frac{1}{\phi_r} \sum_{i \in J_r, u_i < \delta} i^{-s} \mathfrak{F}_i[y_i]^{q_i} \le [\mathfrak{F}_i(1)]^H \frac{1}{\phi_r} \sum_{i \in J_r, u_i < \delta} i^{-s} \mathfrak{F}_i[y_i]^{q_i}$$

$$(3.1) \leq \left[\mathfrak{F}_i(2)\right]^H \frac{1}{\phi_r} \sum_{i \in L, y_i \leq \delta} i^{-s} \mathfrak{F}_i[y_i]^{q_i}$$

For $y_i > \delta, y_i < \frac{y_i}{\delta} < 1 + \frac{y_i}{\delta}$. Since $\mathfrak{F}_i's$ are non-decreasing and convex, it follows that

$$\mathfrak{F}_k(y_i) < \mathfrak{F}_i(1 + \frac{y_i}{\delta}) < \frac{1}{2}\mathfrak{F}_i(2) + \frac{1}{2}\mathfrak{F}_i(\frac{2y_i}{\delta}).$$

Since $\mathcal{M} = (\mathfrak{F}_i)$ satisfies Δ_2 -condition, we can write

$$\mathfrak{F}_i(y_i) < \frac{1}{2}T\frac{y_i}{\delta}\mathfrak{F}_i(2) + \frac{1}{2}T\frac{y_i}{\delta}\mathfrak{F}_i(2) = T\frac{y_i}{\delta}\mathfrak{F}_i(2).$$

Hence,

(3.2)
$$\frac{1}{\phi_r} \sum_{i \in J_r, y_i \ge \delta} i^{-s} \mathfrak{F}_i[y_i]^{q_i} \le \max\left(1, (T\frac{\mathfrak{F}_i(2)}{\delta})^H\right) \frac{1}{\phi_r} \sum_{i \in J_r, y_i \le \delta} i^{-s} [y_i]^{q_i}$$

From equation (3.1) and (3.2), we have $x = (x_i) \in w_0^{\theta}(\mathcal{M} \circ \mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. This completes the proof of (i). Similarly we can prove that

$$w^{\theta}(\mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w^{\theta}(\mathcal{M} \circ \mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$$

and

$$w_{\infty}^{\theta}(\mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{\infty}^{\theta}(\mathcal{M} \circ \mathcal{M}', s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

THEOREM 3.3. Let $0 < h = \inf q_i = q_i < \sup q_i = H < \infty$. Then for a Musielak-Orlicz function $\mathcal{M} = (\mathfrak{F}_i)$ which satisfies Δ_2 -condition, we have

(i)
$$w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(ii)
$$w^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(iii)
$$w_{\infty}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

Proof. It is easy to prove so we omit the details.

THEOREM 3.4. Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function and $0 < h = \inf q_i$. Then $w^{\theta}_{\infty}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|) \subset w^{\theta}_{0}(s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$ if and only if

(3.3)
$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i(t)^{q_i} = \infty$$

for some t > 0.

Proof. Let $w^{\theta}_{\infty}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w^{\theta}_{0}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. Suppose that equation (2.3) does not hold. Therefore there are subinterval $I_{r(j)}$ of the set of interval I_{r} and a number $t_{0} > 0$, where

$$t_0 = \|\frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1}\| \text{ for all } i,$$

such that

(3.4)
$$\frac{1}{\phi_{r(j)}} = \sum_{i \in I_{r(j)}} i^{-s} \mathfrak{F}_i(t_0)^{q_i} \le K < \infty, m = 1, 2, 3, \dots$$

let us define $x = (x_i)$ as follows:

$$\Delta^{(\alpha)} x_i = \begin{cases} \rho t_0, & i \in I_{r(j)} \\ 0, & i \notin I_{r(j)} \end{cases}$$

Thus, by equation (3.4), $x \in w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. But $x \notin w_{\infty}^{0}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. Hence equation (2.3) must hold.

Conversely, suppose that equation (3.3) holds and that $x \in w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. Then for each r,

(3.5)
$$\frac{1}{\phi_r} \sum_{i \in L} i^{-s} M_i \left[\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \le K < \infty.$$

Suppose that $x \notin w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$. Then for some number $\epsilon > 0$, there is a number i_0 such that for a subinterval $J_{r(j)}$, of the set of interval J_r ,

$$\left\|\frac{\Delta^{(\alpha)}x_i}{\rho}, z_1, z_2, \cdots, z_{n-1}\right\| > \epsilon \text{ for } i \ge i_0.$$

From properties of sequence of Orlicz function, we obtain

$$\mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \ge M_i(\epsilon)^{q_i}$$

which contradicts equation (3.3), by using equation (2.5). Hence we get

$$w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{0}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

This completes the proof.

THEOREM 3.5. Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function. Then the following statements are equivalent:

(i)
$$w_{\infty}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(ii)
$$w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(iii)
$$\sup_{r} \frac{1}{\phi_r} \sum_{i \in I} i^{-s} \mathfrak{F}_i(t)^{q_i} < \infty \text{ for all } t > 0.$$

Proof. (i) \Rightarrow (ii). Let (i) holds. To verify (ii), it is enough to prove

$$w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

Let $x = (x_i) \in w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. Then for $\epsilon > 0$ there exists $r \geq 0$, such that

$$\frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \left[\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} < \epsilon.$$

Hence there exists K > 0 such that

$$\sup_{r} \frac{1}{\phi_{r}} \sum_{i \in J_{r}} i^{-s} \left[\left\| \frac{\Delta^{(\alpha)} x_{i}}{\rho}, z_{1}, z_{2}, \cdots, z_{n-1} \right\| \right]^{q_{i}} < K.$$

So we get $x = (x_i) \in w^{\theta}_{\infty}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$

(ii) \Rightarrow (iii). Let (ii) holds. Suppose (iii) does not hold. Then for some t > 0

$$\sup_{r} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} M_i(t)^{q_i} = \infty$$

and therefore we can find a subinterval $J_{r(j)}$, of the set of interval J_r such that

(3.6)
$$\frac{1}{\phi_{r(j)}} \sum_{i \in J_{r(j)}} i^{-s} M_i(\frac{1}{j})^{q_i} > j, \ j = 1, 2, 3, \dots$$

Let us define $x = (x_i)$ as follows:

$$\Delta^{(\alpha)} x_i = \left\{ \begin{array}{ll} \frac{\rho}{j}, & i \in I_{r(j)} \\ 0, & i \notin I_{r(j)} \end{array} \right..$$

Then $x = (x_i) \in w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. But by equation (2.6), $x \notin w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$, which contradicts (ii). Hence (iii) must holds.

(iii) \Rightarrow (i). Let (iii) holds and suppose $x = (x_i) \in w_{\infty}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$. Suppose that $x = (x_i) \notin w_{\infty}^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$, then

(3.7)
$$\sup_{r} \frac{1}{\phi_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} = \infty.$$

Let $t = \|\frac{\Delta^{(\alpha)}x_i}{\rho}, z_1, z_2, \cdots, z_{n-1}\|$ for each i, then by equation (2.7)

$$\sup_{r} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i(t)^{q_i} = \infty$$

which contradicts (iii). Hence (i) must holds.

THEOREM 3.6. Let $\mathcal{M} = (\mathfrak{F}_i)$ be a Musielak-Orlicz function. Then the following statements are equivalent:

(i)
$$w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(ii)
$$w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subset w_{\infty}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|);$$

(iii)
$$\inf_{r} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} \mathfrak{F}_i(t)^{q_i} > 0 \text{ for all } t > 0.$$

Proof. (i) \Rightarrow (ii). It is obvious.

 $(ii) \Rightarrow (iii)$. Let (ii) holds. Suppose that (iii) does not hold. Then

$$\inf_{r} \frac{1}{\phi_r} \sum_{i \in I} i^{-s} \mathfrak{F}_i(t)^{q_i} = 0 \text{ for some } t > 0,$$

and we can find a subinterval $J_{r(j)}$, of the set of interval J_r such that

(3.8)
$$\frac{1}{\phi_{r(j)}} \sum_{i \in J_{r(j)}} i^{-s} \mathfrak{F}_i(j)^{q_i} < \frac{1}{j}, \ j = 1, 2, 3, \cdots$$

Let us define $x = (x_i)$ as follows:

$$\Delta^{(\alpha)} x_i = \left\{ \begin{array}{ll} \rho j, & i \in J_{r(j)} \\ 0, & i \notin J_{r(j)} \end{array} \right..$$

Thus by equation $(3.8), x = (x_i) \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$ but $x = (x_i) \notin w_{\infty}^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$, which contradicts (ii). Hence (iii) must holds. (iii) \Rightarrow (i). Let (iii) holds. Suppose that $x = (x_i) \in w_0^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$. Then

(3.9)
$$\frac{1}{\phi_r} \sum_{i \in I} i^{-s} M_k \left[\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \| \right]^{q_i} \to 0 \text{ as } r \to \infty.$$

Again suppose that $x = (x_i) \notin w_0^{\theta}(s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. For some number $\epsilon > 0$ and a subinterval $J_{r(j)}$, of the set of interval J_r , we have

$$\left\|\frac{\Delta^{(\alpha)}x_i}{\rho}, z_1, z_2, \cdots, z_{n-1}\right\| \ge \epsilon \text{ for all } i.$$

Then from properties of the Orlicz function, we can write

$$\mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \ge M_i(\epsilon)^{q_i}.$$

consequently, by equation (2.9), we have

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in I} i^{-s} \mathfrak{F}_i(\epsilon)^{q_i} = 0$$

which contradicts (iii). Hence (i) must holds.

Theorem 3.7. Let $0 \le q_i \le p_i$ for all i and let $(\frac{p_i}{q_i})$ be bounded. Then

$$w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, p, \|\cdot, \cdots, \cdot\|) \subseteq w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

Proof. Let $x = (x_i) \in w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, p, \|\cdot, \cdots, \cdot\|)$, write

$$t_i = \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{p_i}$$

and $\mu_i = \frac{q_i}{p_i}$ for all $i \in \mathbb{N}$. Then $0 < \mu_i \le 1$ for all $i \in \mathbb{N}$. Take $0 < \mu \le \mu_i$ for $i \in \mathbb{N}$. Define sequences (u_i) and (v_i) as follows:

For $t_i \geq 1$, let $u_i = t_i$ and $v_i = 0$ and for $t_i < 1$, let $u_i = 0$ and $v_i = t_i$. Then clearly for all $i \in \mathbb{N}$, we have

$$t_i = u_i + v_i, t_i^{\mu_i} = u_i^{\mu_i} + v_i^{\mu_i}$$

Now it follows that $u_i^{\mu_i} \leq u_i \leq t_i$ and $v_i^{\mu_i} \leq v_i^{\mu}$. Therefore,

$$\frac{1}{\phi_r} \sum_{i \in J_r} t_i^{\mu_i} = \frac{1}{\phi_r} \sum_{i \in J_r} (u_i^{\mu_i} + v_i^{\mu_i})
\leq \frac{1}{\phi_r} \sum_{i \in J_r} t_i + \frac{1}{\phi_r} \sum_{i \in J_r} v_i^{\mu}.$$

Now for each i,

$$\frac{1}{\phi_r} \sum_{i \in J_r} v_i^{\mu} = \sum_{i \in J_r} \left(\frac{1}{\phi_r} v_i\right)^{\mu} \left(\frac{1}{\phi_r}\right)^{1-\mu} \\
\leq \left(\sum_{i \in I_r} \left[\left(\frac{1}{\phi_r} v_i\right)^{\mu}\right]^{\frac{1}{\mu}}\right)^{\mu} \left(\sum_{i \in I_r} \left[\left(\frac{1}{\phi_r}\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}\right)^{1-\mu} \\
= \left(\frac{1}{\phi_r} \sum_{i \in J_r} v_i\right)^{\mu}$$

and so

$$\frac{1}{\phi_r} \sum_{i \in J_r} v_i^{\mu} \le \frac{1}{\phi_r} \sum_{i \in J_r} t_i + \left(\frac{1}{\phi_r} \sum_{i \in J_r} v_i\right)^{\mu}.$$

Hence $x = (x_i) \in w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$. This completes the proof of the theorem.

THEOREM 3.8. (i) If $0 < \inf q_i < q_i < 1$ for all $i \in \mathbb{N}$, then

$$w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subseteq w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|).$$

(ii) If
$$1 \leq q_i \leq \sup q_i = H < \infty$$
, for all $i \in \mathbb{N}$, then
$$w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|) \subseteq w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|).$$

Proof. (i) Let
$$x = (x_i) \in w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|)$$
, then
$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \dots, z_{n-1} \right\| \right]^{q_i} = 0.$$

Since $0 < \inf q_i \le q_i \le 1$. This implies that

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]$$

$$\leq \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i},$$

therefore,

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in I} i^{-s} \mathfrak{F}_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right] = 0.$$

Therefore

$$w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|) \subseteq w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|).$$

(ii) Let $q_i \geq 1$ for each i and $\sup q_i < \infty$. Let $x = (x_i) \in w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|)$, then for each $\rho > 0$, we have

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} M_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} = 0 < 1.$$

Since $1 \le q_i \le \sup q_i < \infty$, we have

$$\lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} M_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right]^{q_i} \\
\leq \lim_{r \to \infty} \frac{1}{\phi_r} \sum_{i \in J_r} i^{-s} M_i \left[\left\| \frac{\Delta^{(\alpha)} x_i - L}{\rho}, z_1, z_2, \cdots, z_{n-1} \right\| \right] \\
= 0 \\
< 1.$$

Therefore $x = (x_i) \in w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$, for each $\rho > 0$. Hence $w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \cdots, \cdot\|) \subset w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \cdots, \cdot\|)$.

This completes the proof of the theorem.

THEOREM 3.9. If $0 < \inf q_i \le q_i \le \sup q_i = H < \infty$, for all $i \in \mathbb{N}$, then $w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, q, \|\cdot, \dots, \cdot\|) = w^{\theta}(\mathcal{M}, s, \Delta^{(\alpha)}, \|\cdot, \dots, \cdot\|)$.

Proof. It is easy to prove so we omit the details.

Conclusion

We have introduced here some new sequence spaces defined by fractional difference operator and Musielak-Orlicz function. We have studied their topological properties and proved some inclusion relations between these newly defined spaces.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

References

- [1] A.H.A. Bataineh, On some difference sequences defined by a sequence of Orlicz functions, Soo-chow J. Math., **33** (2007), 761–769.
- [2] P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput., **219** (2013), 9737–9742.
- [3] T. Bilgin, Some new difference sequences spaces defined by an Orlicz function, Filomat, 17 (2003), 1–8.
- [4] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow. J. Math., 21 (1995),377–386.
- [5] A. R. Freedman, J. J. Sember and M. Raphael, *Some Cesàro-type summability spaces*, Proc. London Math. Soc., **37** (1978), 508–520.
- [6] S. Gähler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1–43.
- [7] H. Gunawan, On n-inner product, n-norms, and the cauchy-schwartz inequality, Scientiae Math. Jpn, 5 (2001), 47–54.
- [8] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., **64** (2001), 137–147.
- [9] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631–639.
- [10] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169–176.
- [11] K. Raj, S.A. Mohiuddine and M. Ayman Mursaleen, Some generalized sequence spaces of Invariant means de ned by ideal and modulus functions in n-normed space, Italian Jour. Pure Appl. Math., 39 (2018).
- [12] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379–390.
- [13] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345–355.
- [14] I. J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc., 85 (1979), 345–350.
- [15] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [16] E. Malkowsky and V. Veličković, Topologies of some new sequence spaces, their duals, and the graphical representations of neighbourhoods, Topology Appl., 158 (2011), 1369–1380.
- [17] E. Malkowsky and V. Veličković, Some new sequence spaces, their duals and a connection with Wulff's crystal, Match Commun. Math. Comput. Chem., 67 (2012), 589–607.
- [18] E. Malkowsky, M. Mursaleen and S. Suantai, *The dual spaces of sets of difference sequences of order m and matrix transformations*, Acta Math. Sin. (Engl. Ser.) **23** (2007), 521–532.
- [19] A. Misiak, n-inner product spaces, Math. Nachr., **140** (1989), 299–319.

- [20] M. Ayman Mursaleen, On σ -convergence by de la Vallée Poussin mean and matrix transformations, Jour. Inequ. Special Functions, 8(3) (2017) 119–124.
- [21] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl., 203 (1996), 738–745.
- [22] M. Mursaleen and S. K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, Iranian Journal of Science and Technology, **38** (2014), 105–109.
- [23] M. Mursaleen, A. Alotaibi and S. K. Sharma, New classes of generalized seminormed difference sequence spaces, Abstract and Applied Analysis, 2014, 11 pages.
- [24] M. Mursaleen, A. Alotaibi and S. K. Sharma, Some new lacunary strong convergent vector-valued sequence spaces, Abstract and Applied Analysis, 2014, 9 pages.
- [25] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- [26] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25 (1994), 419–428.
- [27] K. Raj and S. K. Sharma, A new sequence space defined by a sequence of Orlicz functions over n- normed spaces, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, **51** (2012), 89–100.
- [28] K. Raj and S. K. Sharma, So me multiplier generalized difference sequence spaces over n-normed spaces defined by a Musielak-Orlicz function, Siberian Advances in Mathematics, 24 (2014), 193–203.
- [29] A. Wilansky, Summability through functional analysis, North-Holland Math. Stud. 85 (1984).

M. Mursaleen

Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan *E-mail*: mursaleenm@gmail.com

Sunil K. Sharma

Department of Mathematics, Cluster University of Jammu -180001, J & K, India. E-mail: sunilksharma420gmail.com

Qamaruddin

Department of mathematics, College of Arts & Science, Al-Abyar, Benghazi University, Libya

E-mail: qamar.uddin@uob.edu.ly