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SOME SEQUENCE SPACES OVER n-NORMED SPACES DEFINED
BY FRACTIONAL DIFFERENCE OPERATOR AND
MUSIELAK-ORLICZ FUNCTION

M. MURSALEEN*, SUNIL K. SHARMA, AND QAMARUDDIN

ABSTRACT. In the present paper we introduce some sequence spaces over n-normed
spaces defined by fractional difference operator and Musielak-Orlicz function M =
(§:). We also study some topological properties and prove some inclusion relations
between these spaces.

1. Introduction and Preliminaries

A function § which is continuous, non-decreasing and convex with §(0) = 0, §(z) >
0 for z > 0 and §(x) — oo as * — o0, is called an Orlicz function (see [12]);
and a sequence M = (§;) of Orlicz function is called a Musielak-Orlicz function
(see [15], [26]). By a lacunary sequence § = (6,), we mean a sequence of positive
integers such that 6y = 0,0 < 6, < 6,,7 and ¢, =6, — 0,1 — co as r — co. The
intervals determined by 6 will be denoted by J,. = (0,_1,0,) and ¢, = 99;. The space

of lacunary strongly convergent sequences Ny was defined by Freedman et al. [5] as:

Ngz{f—( hm—Z]fk—l] 0, for some l}.

Parashar and Choudhary [26] defined and studied some sequence spaces by using an
Orlicz function §, which generalized the well-known Orlicz sequence spaces [C, 1, p),
[C, 1, plo and [C, 1, ploo (see [13], [14]).

The basic definition of of 2-normed space was given by Géahler [6], and for n-normed
space one can see Misiak [19]. A sequence (&) in a n-normed space (X, ||, -+ ,-||) is
said to converge to some L € X if

lim ||§ — L, 21, ,2p_1]] =0 for every xq,--- 2,1 € X.
k—o0
A sequence (&) in a n-normed space (X, ||, ---,-||) is said to be Cauchy if
lim |[|& — &, 21, , 21| =0 for every xy,--- 2,01 € X.
(0.9}
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If every Cauchy sequence in X converges to some L € X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach
space.

Lateron this concept was studied by several authors, e.g. see Gunawan ( [7], [8]) and
Gunawan and Mashadi [9].

The notion of difference sequence spaces was introduced by Kizmaz [10], who stud-
ied the difference sequence spaces l(A), c(A) and c¢o(A). The notion was fur-
ther generalized by Et and Colak [4] by introducing the spaces [ (A"), ¢(A™) and
co(A™). Subsequently, difference sequence spaces have been discussed by several au-
thors (see [1], [13], [11], [16], [17], 18], [20], [21], [22], [23], [24], [27], [28]).

In [2] Baliarsingh defined the fractional difference operator as follows:

Let # = () € w and « be a real number, then the fractional difference operator A
is defined by

« i —
AE )f = E ( k')kéi—ka
k=0 ’

where (—a);, denotes the Pochhammer symbol defined as:

1, ifa=0 or k=0,
(=), =

ala+ 1) (a+2)...(a+k—1), otherwise.

Let M = (§;) be a Musielak-Orlicz function, ¢ = (¢;) be a bounded sequence of pos-
itive real numbers. Then we define the following sequence spaces in the present paper:

wg(M:S7A(a)7Q7 ”a 7”) -
g: g’L €w: lim — Zlisgi[ Z7x7”'axnf :07
{e=@) Hoo@; I== i
p >0, 820},
wG(M,S,A(O‘),q, ||’ ’||> —
1 A — L G
§=(&) €w: lim — i_83i|: 5 L1, s T :| =0,
{e=(&) Hoo@; |=—— = !
for some L, p >0, 520}
and
wzo(M73,A(a);q, ||7 ’H) —
1 ) A(a) qi
{g = (g’b) cw: SUp—ZZ_SSi[|| : 57 Ly, 7xn—1||i| < 09,
" ¢Tiej,~ P
p >0, 320}.

If we take M(&) = &, we get
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wg(st(a)7Q7 ||7 o 7”) =
1 — 1, Al @
{e=@ew:tm =37 172 ol =0,
i€,
p>0,s5> 0},
we(s,A(a),q, |-, =
A(a) — L qi
{x— (7;) e w: lim —Zz_s[ L) Ty, 7xn71H:| =0,
e TleJr p
for some L, p >0, s> 0}
and
wgo<S7A(a)7Q7 H7 7H) =

{:17—( i) Ew: sup ¢TZ _S[HAgpa)g, Ty, ,xn_lﬂqi < 00,

p>0, s> 0}.
If we take ¢ = (¢;) = 1 for all i € N, we have
wg(M,S,A(O‘),H-,--- D)=
(04)5
{x—( ;) € w: lim —ZZ’S&[H N APRRE 7xn71H:| =0,
oo er 1€Jy
p>aszo}
we(MvsyA(a)7 ||7 7||) =
AL
{LE = (xz) cw: Tli)rgo_%;'lsgz[ %7 PR 7':C7L*1Hj| = 07
for some L, p>0, s> 0}
and
wgo(M’SuA(a)a “’ 7“) =
Al@)
{:p—( ) Ew: Sup¢ Z _S&[H 6, Ty, 7$n—1||i| < 00,
p>0, s> 0}.

If we take M(&) = &, s = 0, then these spaces reduces to
wg(A(a),q, ||7 cee ||) —

1 AlW¢ @
{x—(xi)Ew.rlirélo(ﬁ—Z[|] . 736’1,"',%71”] =0, p>0},

T ied,
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we(A(a 4, || ) ) ||) =
1 A(a)f’—L 4
r=(x;) €Ew: lim — [H : y L1, 7$n—1||] =0,
{ T qsrzeZJ,« P
for some L, p > O}
and
wgo(A(a),q’ ||’ ’”) —
1 A(a) i qi
{:L‘: (x;) Ew:supgb—z [H pg , Tp,c - ,$n—1H] < 00, p>0}.

" iedy,

The following inequality will be used throughout the paper. If 0 < ¢; < supq; = H,
K = max(1,2771) then

for all 7 and a;,b; € C. Also |a

qi S K{|CL1

%+ |b,

Qi}

% < max(1,|alf) for all a € C.

In this paper we study some topological properties and prove some inclusion rela-
tions between the above defined sequence spaces.

2. Basic properties

THEOREM 2.1. Let M = (§;) be a Musielak-Orlicz function and q = (g;) be a
bounded sequence of positive real numbers. Then the sequences wi(M, s, A g |-~ ,-|),
w? (M, s, A g ||-,--- ,-||) and wl (M, s, A g |-, --- ,-|) are linear spaces over the
field of complex number C.

P?“OOf. Let . = (xz)ay = (yl) € wg(M>S7A(a)aQ7 Hv e 7H) and 577 € C. In order
to prove the result we need to find some p3 such that

1 s A (B, + vy;) e
Tlirgoazz &’[H p» L2152y >Zn—1||} =0.

i€Jr

Since x = (2;),y = (;) € wS(M, s, A q,|-,---,-||), there exist positive numbers
p1, p2 > 0 such that

1 A(O‘)ZE' q;
lim — z"s&[u—l,zl,zm--- ,zn—lﬂ =0
r—00 ¢r zGZJ:r P1
and

1 . Ay, &
lim —ZZ 88’2' [||p—y,21,22,"' 72‘/71—1"} = 0.
2

Define p3 = max(2|5|p1, 2|7|p2). Since §; is non-decreasing, convex function and so
by using inequality (1.1), we have
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1 L A(a) BI'Z + i qi
|
"iedy Ps
| Al Ay, .
= _SSZ[Hﬂ ) R1y 22y 7 " 7Zn—1||+||ﬁy y7217227"' 7Zn—1||
gb’" icJy Ps
1 1 Ay, i
S K— _i_sgi[ 172,2,-"72_ ]
1 1 A@y, a
I e D | R |
Or iy 2 P2
1 s A g, i
< Ko ST, el
" iedy
1 A( qi
R ) Dra | e S |
(br zEZJT P2
— Oasr — o0
Thus we have z+vy € wg(M, s, A, g, [|,- -, -||). Hence wi(M, s, A, g, |-, -~ ,[|)
is a linear space. On the similar lines, we can prove that w?(M, s, A q, |-,
and
w? (M, s, A q.|-,---,-||) are linear spaces. O
THEOREM 2.2. Let M = (§;) be a Musielak-Orlicz function and ¢ = (q;) be
a bounded sequence of positive real numbers. Then wi(M, s, A q. |-,--- ,-||) is a

topological linear space paranormed by

o) = int {1+ (- [1%

i€Jy

@GN
yR1y 22, " 7Zn—1||i| ) S]-}7

where H = max(1,sup ¢;) < oo.

i

Proof. Clearly g(z) > 0 for x = (2;) € wi(M, s, A q,|-,---,-|]). Since M;(0) =
0 we get g(0) = 0. Again if g(x) = 0 then

inf {p¥ o (3 E 15 szl )T S 1) =0
r i€y P
This implies that for a given € > 0 there exist some p.(0 < p. < €) such that

(;T S -S&[H

i€,

qi %
y R1y %2, 72n71”i| ) §1

Thus

O F R ]

=
<¢ S i s&[ Az, DU 1’@ );11

T ied, Pe
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Suppose (z;) # 0 for each i € N. This implies that A () # 0 for each i € N. Let
e — 0 then
A(Q)xi

yR1y 22y " 7Zn_1||—)OO.
It follows that
A CUZ G\ g
(¢TZZ S‘S"L[ yR1, 22,0y Zp— 1Hi| ) — 00,
1€Jy

which is a contradiction. Therefore A (z;) = 0 for each i and thus (x;) = 0 for each
1 € N. Let p; > 0 and ps > 0 be such that

<§;rz _S&[HA - 1AL E2, 7Zn—1||}qi> <1

i€Jy

1 G\ o
<¢7‘ Z 7831[” 217227 . ,Zn,IH] )H S 1

T‘

|-

and

Let p = p1 + p2, then by using Minkowski’s inequality, we have

1

<¢r Zz—s&[n xl—i_yl) yR1, 22, ,%—1“}%)?

7

1 _ Az, + Al @\ 7
S <¢ 53z|:|| + yazla227"'azn 1||] )H
T’LEJr P1 P2
1 Ay,
S ( _SSZ< [H : y R15R2y " " 7Zn—1||]
¢r7gj:r P1 +P2
e D
p1+p2 pQ Y Y 7 y ~“Nn—
P1 1 A :Uz £l %
S < )( SSZ[ yR15 %257y Zn— :| )
L+ p aﬁrz =52 !
(@), L
P2 )(1 _SS[A e }%)H
<,o1+,o2 @Z = el
< L
Since p, p; and po are non-negative, so we have
9(x +y)
. 1 A (2 +y; @\ 7
= i s (DY m A ] <)
"icl, P
ar ]. A( 7 qi 5
< inf{(p)¥ <h7§“&[” S m s mall] ) <
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Therefore g(x + y) < g(x) + g(y). Finally we prove that the scalar multiplication is
continuous. Let A be any complex number. By definition

g(Ax) = inf {p% : ( L Z SSZ[HA A 21, 22yt ,zan]qi)}{ < 1}.

(br i€ Jr

Thus

g(A\zr) = inf{ IA[t)H (qﬁ ZZ_SSZ[ L 21, %2, ’Zn_1||]qi>é < 1},

r ’LEJT

where 1 = ﬁ. Since |A|% < max(1, |\[*"P?), we have

g(Az) < max(1, |\*"P9)inf {t% ; (hi Zz"s&-[ A

" el

@GN &
21y %2, " 7zn71Hi| > S 1}

From above inequality it follows that scalar multiplication is continuous. This com-
pletes the proof of the theorem. O

3. Inclusion relations

THEOREM 3.1. Let M = (§i) be a Musielak-Orlicz function. If sup[§;(x)]" < oo
for all fixed x > 0, then Z

wg(M73’A(a)>qv H> to ’“) - wZo(Mjst(a)>qv H? o ’H)

Proof. Let © = (z;) € wi(M,s,A® q,||-,---,-||), then there exists positive num-
ber p; such that

. 1 A( xl di
lim — > i S&[n 2290zl =0,

Define p = 2p;. Since §; is non-decreasing, convex and so by using inequality (1.1),
we have
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1 L A(a)l’i qi
Supgb_ZZ S&[H ) R1, 22,00 7Zn71Hi|

1€Jy p

1 - ADg, + L — L a
- Sup_ZZ sgl[H ) R1y %2, " 7271—1”]

et p
1 1 A@g, — L g
S KSUp— _S_.'S'Z || - y 15 22, 7Z1’L—1Hi|
T ¢r7§ 24 P1
1 | L i
b K 3t [ el
i€dy
1 L A(“)xi — L qi
< Kswp— i I15 s 2]
r ¢r icJ, P1
1 L i
+ KSUp— 7;783’1‘["_7217227”' 7Zn71H:|
r (ereZJT P1
< Q.
Hence = = (xZ) ewgo(MaSaA(a)7Qa||'7"' a||) O

THEOREM 3.2. Let 0 < infq; =h < ¢ <supg; = H < o0 and M = (§;), M' =
(&) be Musielak-Orlicz functions satisfying Aq-condition, then we have

(Z) wg(M/787A(a)’q7 ||7 e 7||) C wg(M OM/7S7A(Q)’q’ Hv e 7'||);
(”) we(M/7$7A(a)aQ7 ||7 Tt 7||) - w@(M OM’,S,A(Q)’(L ||7 Tt 7||)7
(iii) wgo<M/73’A(a)>Q7 H> e ’H) C wgo(M OM/>S7A(Q)7Q7 Hv T >H)
Proof. Let x = (z;) € w(M’, 5, A q,|-,---,-||) then we have
]. A(Q)CL’ qi
lim — Z*SSQ[ —Z,Zl,ZQ,"' , Zn—1 i| =0.
Jim =31 [
Let € > 0 and choose § with 0 < 0 < 1 such that M;(t) < e for 0 < ¢t < 4. Let
@ [°03
(y;)% = MZ{[HNP)M’ZD Zoy ,zn,lﬂ} for all i € N. We can write
IR W | oot L et
gb_zz Si[%}l:gb— Z 1 Si[y¢]2+¢— Z 1 &[yz]l
"ied, T iednyi <o T e yi>6
So we have

oD DI TCV L e AL

i€Jryi <6 T iednyi <6

(3.1) <EEF— S

Or i€Jr,yi <8
For y; > d,y; < % < 1+ %. Since §;s are non-decreasing and convex, it follows that

Vi 1 1. 2y
Sk(ys) < Ti(1+ g) < 5&(2) + 5&(7)
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Since M = (§;) satisfies Ay-condition, we can write

1 s 1 s A
ilys) < —T%&-@) T —T%&»(Q) - T%&-(Z).

2 2

Hence,

1 s . Si(2 1 st 0,
(32 o >, i7Fll" < max (. <T%>H)¢7 o i

T iedyyi>6 T ey <8
From equation (3.1) and (3.2), we have x = (2;) € wi(M o M’ s, A q |-, ,-||).
This completes the proof of (7). Similarly we can prove that

we(/\/l/, S,A(o‘),q, -, € we(M oM, s,A(a),q, )
and
wgo(Mla S, A(a)7 4, H? T H) - wzo(M o Ml? S, A(a)a q, ”7 ) ”)

]

THEOREM 3.3. Let 0 < h =infq; = ¢; < supq; = H < co. Then for a Musielak-
Orlicz function M = (§;) which satisfies Aq-condition, we have

(i) wg(S’A(a)vq’ ||7 o 7”) C w(e)(MvsaA(a)?% ||a e 7'”);
(ii) we(S’ A(a)’q’ ”, e 7”) C wG(M’ S’A(@)7q’ H’ e 7.H);
(ZZZ) wgo(s,A(o‘),q, H? T 7”) - wgo(M,s,A(o‘),q, H7 T 7H)
Proof. Tt is easy to prove so we omit the details. O]
THEOREM 3.4. Let M = (§;) be a Musielak-Orlicz function and 0 < h = inf g;.
Then wgo<M757A(a)7Q7 ”7 T 7”) - w8<87A(a)7Q7 “7 T 7“) Zf and only Zf
R
(3.3) lim Egz 3% = oo

for some t > 0.

PTOOf' Let WZO(M, S, A(a)’ q, H7 T H) - wg(sa A(a)’ q, ||7 T ||) Suppose that
equation (2.3) does not hold. Therefore there are subinterval I, ;) of the set of interval
I, and a number ¢ty > 0, where

Ay,
to = || * L 21,22, Zn—1]|| for all 4,
0
such that
1
(34) = Y i Fte)" <K <oo,m=1,23,--.
or(i) i€l (j)
let us define = = (x;) as follows :
t 1€ Ly
Ay, — { pto, i€ L)
0, ? ¢ Ir(j)
Thus, by equation (3.4), 2z € w? (M, s, A q, |-+ ,-||). But & & w® (s, A ¢, |-, - ,|).

Hence equation (2.3) must hold.
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Conversely, suppose that equation (3.3) holds and that x € w? (M, s, A q,|-,---,-]|).
Then for each r,

1
or
Suppose that = ¢ wi(s, A q,|----,-||). Then for some number € > 0, there is a
number ¢ such that for a subinterval .J,.;), of the set of interval .J,,

A(a) i qi
(3.5) S i [||—””,z1,z2, o ze|l| € K < oo
p

i€Jr

| ’ 21,7 || > efori > .

From properties of sequence of Orlicz function, we obtain

A(a)l'i qi _
31[”7721,227“' sant||| = Mi(e)®
which contradicts equation (3.3), by using equation (2.5). Hence we get
wgo(M> S, A(a)v q, ||7 T ||) - wg(s, A(a)v 4, ||> T ||)
This completes the proof. O

THEOREM 3.5. Let M = (§;) be a Musielak-Orlicz function. Then the following
statements are equivalent :

(7’) wgo<st(a)7Q7 ||a 7”) C wgo(MvsaA(a)v% ||a 7'”)’.

(ii) wg(sa A(a)ﬂ q, ”> T ”) - wgo(Mv 3, A(a)ﬂ q, Hv R ”)7
1
(111) sup — Zi’s&(t)qi < oo for allt > 0.
v ¢ i€y
Proof. (i) = (ii). Let (i) holds. To verify (ii), it is enough to prove
wg(sv A(a)7Q7 H7 T H) - U)ZO(M, S, A(a)7Q7 H7 T H)
Let x = (2;) € wl(s, A q,||-,--- ,-]|). Then for € > 0 there exists r > 0, such that

1 A(a) i qi
i’ H & ) Ry #2500t >Zn71H < €.
¢ p
T ied,

Hence there exists K > 0 such that

1 L A(a)l'i qi
Squg_ZZ S[H ,21,22,-~-,zn_1\|} < K.
T e, P

So we get v = (xz) S wgo(Ma S, A(a)7Q7 ||7 T ||)
(ii) = (iii). Let (ii) holds. Suppose (iii) does not hold. Then for some ¢ > 0

1
sup — Z i M;(1)" = o0

T e,
and therefore we can find a subinterval J,(;), of the set of interval .J, such that
1

3.6
(36) Pr(j)

1
i M(=)% >, j=1,2,3,---
€r() J
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Let us define = = (z;) as follows :

Am%:{? )
07 ¢ ¢ IT(j)
Then z = (z;) € wi(s,A,q, |-+ ,-||). But by equation (2.6), z ¢ w? (M, s, A ¢,
I,- - ,-|l), which contradicts (ii). Hence (iii) must holds.
(iii) = (i). Let (iii) holds and suppose * = (x;) € w? (s, A ¢, |-,--- ,-||). Suppose
that © = ('rl) g_ﬁ wgo(Mv SvA(a)7Q7 H7 T H)> then
1 o A(a)xz qi
(3.7) sup—Zz S&[H 21, 20y ,zn_1||] = 00.
v Or i€Jy p
Let t = HA(:)xi,zl, Zg,++ , zn—1|| for each i, then by equation (2.7)
sup 1 Z iF ()T = o0
v i
which contradicts (iii). Hence (i) must holds. O

THEOREM 3.6. Let M = (F;) be a Musielak-Orlicz function. Then the following
statements are equivalent :

(i) wg(M’SvA(a)>qv ||7 a”) C wg(s,A(o‘),q, ||’ T 7'”);

(ii) wg(./\/l,s,A(O‘),q, H? 7”) - wgo(s,A(a),q, H7 7'”);

e L s .
(111) 1r7}fh—r Zz §i(t)% >0 for allt > 0.
ZEI’!‘
Proof. (i) = (ii). It is obvious.

(ii) = (iii). Let (ii) holds. Suppose that (iii) does not hold. Then

1
inf ¢— Z i °Fi(t)% = 0 for some t > 0,

T ey

and we can find a subinterval J,(;), of the set of interval .J,. such that

1
(38) SR <o, = 1,23,
qbr(]) ’iGJT( )
Let us define x = (x;) as follows :
: e T
Am%:{% L€ Jr(j)
0, i ¢ Jr(5)
Thus by equation (3.8),7 = (x;) € wi(M,s,A® g |- --,-) but z = (z;) ¢
w? (s, A q,||-,---,-]|), which contradicts (ii). Hence (iii) must holds.
(iii) = (i). Let (iii) holds. Suppose that z = (2;) € wi(M, s, A ¢ |-,---,-||). Then
1 A(a) i i
(3.9) ng_ZZSMk[H ’ 21529, e || " L 0asr — oo
r P

1€Jr
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Again suppose that z = (z;) ¢ wi(s, A® q,|-,---,-||). For some number ¢ > 0 and
a subinterval J,(;), of the set of 1nterval J.. we have
A@ g,
I 21,22, Zn1]|| > € for all 4.

Then from properties of the Orlicz function, we can write

A(a)$i
Si ”7721;22,"‘ s Zn— 1||] > M( )

consequently, by equation (2.9), we have

i o 3"

’LGJT
which contradicts (iii). Hence (i) must holds. O

THEOREM 3.7. Let 0 < ¢; < p; for all i and let (%) be bounded. Then

we(M,s,A(O‘),p, |-, € U)€<M,S,A(a),q, oD
Proof. Let x = (z;) € w?(M, s, A p ||-,--- ,-||), write
AC“:L“Z
= F 1= el

and/zl-:g—iforallieN. Then()</u§1foralli€N. Take 0 < p < p; for i € N.
Define sequences (u;) and (v;) as follows :
For t; > 1, let u; = t; and v; = 0 and for ¢; < 1, let u; = 0 and v; = t;. Then clearly
for all © € N, we have

ti = u; + vt = ut 4 ol

Now it follows that u* <w; <t; and v < v!'. Therefore,

¢Zw::§2www>

" ied, " ied,
< Zt +— Z v}
" ied, " ied,

Now for each 1,

IN
/N
[ —
VS
|-
>
S
N——
=
—_
|-
N——
=
/
<.
Ul g
~
[ —
/N
S~
N——
—
=
| IS
N——
0
=

and so
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Hence z = (2;) € w?(M,s,A@ ¢ ||-,---,-||). This completes the proof of the theo-
rem. O
THEOREM 3.8. (i) If 0 <infq; < ¢; <1 for alli € N, then
wg(MasaA(a)7Q7 H7 e 7”) - wa(M757A(a)7 H7 e 7“)
(1) If 1 < q; <supgq; = H < 0o, for all i € N, then
w@(M’S’A(a)’ H7 e 7H) C we(MasuA(a)7Q7 ||7 e 7||)
Proof. (i) Let 2 = (1;) € w*(M,5,A@ g ||-,--+ [}, then
. 1 s A(Q)IZ‘ —L qi
TIL%OE;Z &'[HTazhzm“' ,Zn—lﬂ =0.

Since 0 < inf ¢; < ¢; < 1. This implies that

. 1 L A(a)l’i — L
lim o3 8&-[\|T,zl,zz,-~ ,zn,lu]

"ied
s L qi
TILIEOEZZ Sz[ )21, 22,0 ,znflll] :
i€Jr
therefore,
1 A@g, — L
lim — ZZ_S&[H 21, 22, Zn 1||] 0
=00 (). P
’LGJT
Therefore
we(Ma S, A(a)7 q, H? Tty H) C w@(M) S, A(a)a ||7 Tty ||)
(ii) Let ¢; > 1 for each ¢ and supgq; < co. Let z = (z;) € w?(M, s, A ||-,-- ,-||),

then for each p > 0, we have

A@g, — L ai
lim — § M, [\|x—,z1,22,--- ,zn_1||] —0<1.
7'4)00 p
’LEJT

Since 1 < ¢; <supgq; < oo, we have

1 A@qp T, ai
lim — i_sMi[ — 21,20,y Zn }

T ied,

r—=00 (. = p
= 0
< 1
Therefore x = (x;) € w?(M, s, A q,|-,---,-||), for each p > 0. Hence
w@(M’S7A(a)7 Hu e 7H> g we(MusaA(a)7Q7 ||7 e 7||)

This completes the proof of the theorem. n
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THEOREM 3.9. If0 <infq; < ¢ <supq; = H < oo, for alli € N, then
w0<M)87 A(a)7Q7 ||7 e 7||) = w@(M’ S, A(a)7 ||7 e 7||>

Proof. 1t is easy to prove so we omit the details. O

Conclusion

We have introduced here some new sequence spaces defined by fractional difference
operator and Musielak-Orlicz function. We have studied their topological properties
and proved some inclusion relations between these newly defined spaces.
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