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ON ALMOST PSEUDO-VALUATION DOMAINS, II

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, D" be the w-integral
closure of D, X be an indeterminate over D, and N, = {f €
D[X]|e(f)y = D}. In this paper, we introduce the concept of ¢-
locally APVD. We show that D is a t-locally APVD and a UMT-
domain if and only if D is a t-locally APVD and D" is a PvMD,
if and only if D[X] is a t-locally APVD, if and only if D[X]y, is a
locally APVD.

1. Introduction

Let D be an integral domain, K be the quotient field of D, and D be
the integral closure of D in K. An overring of D is a ring between D
and K.

A prime ideal P of D is called strongly prime if xty € P and z,y € K
imply © € P or y € P. As in [13], we say that D is a pseudo-valuation
domain (PVD) if every prime ideal of D is strongly prime; equivalently,
if D is quasi-local whose maximal ideal is strongly prime. It is known
that if D is a PVD, then Spec(D) is linearly ordered under inclusion
[13, Corollary 1.3] and if (D, M) is a PVD which is not a valuation
domain, then M~ = {x € K|xM C D} is a valuation domain such that
Spec(M ™) = Spec(D) (in particular, M is the maximal ideal of M~!)
[13, Theorem 2.10]. For a survey article on PVDs, we recommend [1].
In [3], the authors introduced the notions of strongly primary ideals and
almost PVDs as follows: an ideal I of D is strongly primary if, whenever
xy € I with x,y € K implies x € I or y" € [ for some integer n > 1,
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while D is an almost PVD (APVD) if each prime ideal of D is strongly
primary. They showed that if D is quasi-local with maximal ideal M,
then D is an APVD if and only if there exists a valuation overring V' of
D such that M = MV and v MYV is the maximal ideal of V' [3, Theorem
3.4]. They also proved that if D is an APVD, then Spec(D) is linearly
ordered under inclusion (and hence D is quasi-local) and D is a PVD [3,
Propositions 3.2 and 3.7].

As in [9], we say that D is a locally pseudo valuation domain (LPVD)
if Dy is a PVD for all maximal ideals M of D. In [5], we studied when
D[X]n, is an LPVD. To do this, we introduced the notion of ¢-locally
PVD; D is a t-locally PVD (t-LPVD) if Dp is a PVD for all maximal
t-ideals P of D. (Definitions related to the t-operation will be reviewed
in the sequel.) Then we proved that D[X]y, is an LPVD if and only
if D[X]is a t-LPVD, if and only if D is an LPVD and a UMT-domain
[5, Theorem 3.8]. In [6], we defined a locally APVD as follows: D is a
locally APVD (LAPVD) if Dy is an APVD for all maximal ideals M of
D. We proved that D(X), the Nagata ring of D, is an LAPVD if and
only if D is an LAPVD and D is a Priifer domain [6, Corollary §].

In this paper, we study when D[X]y, is an LAPVD. Precisely, we
introduce the concept of t-locally APVDs. We prove that if D is a t-
locally APVD, then DY is a t-locally PVD; and D is a UMT-domain
if and only if D" is a Priifer v-multiplication domain. We also prove
that D is a t-locally APVD and a UMT-domain if and only if D[X] is a
t-locally APVD, if and only if D[X]y, is a locally APVD.

We would like to point out that other classes of integral domains that
are closely related to the classes of PVDs and APVDs are introduced in

[2].

1.1. Definitions related to the t-operation. Throughout this pa-
per, D denotes an integral domain, ¢f(D) is the quotient field of D, D
is the integral closure of D in ¢f(D), X is an indeterminate over D, and
D[X] is the polynomial ring over D.

Let K = qf(D). For any nonzero fractional ideal A of D, let A1 =
{z € K|zA C D}, A, = (A™H)7! and A, = U{[|I C A is a nonzero
finitely generated fractional ideal}, and A, = {z € K|zJ C A for J a
nonzero finitely generated ideal of D with J~! = D}. A fractional ideal
A is called a divisorial ideal (resp., t-ideal) if A, = A (resp., A, = A),
while A is called a mazimal t-ideal if A is maximal among proper integral
t-ideals of D. It is well known that each maximal t-ideal is a prime ideal;
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each proper integral ¢t-ideal is contained in a maximal ¢-ideal; and D has
at least one maximal ¢-ideal if D is not a field.

We denote by ¢(f) the ideal of D generated by the coefficients of a
polynomial f € D[X]. Let N, = {f € D[X]|e(f), = D} and S = {f €
D[X]|e(f) = D}; then N, and S are saturated multiplicative subsets of
D[X] with S C N,. The quotient ring D[X]y, (resp., D(X) := D[X]s)
is called the (v-)Nagata (resp., Nagata) ring of D. An z € K is said to
be w-integral over D if there is a nonzero finitely generated ideal I of
D such that xI,, C I,,. Let DV = {x € K|z is w-integral over D}. We
know that D" is an integrally closed domain; D C D C D* C K; and
D% = D[X]n,NK [8, Theorem 1.3]. The ring D¥ is called the w-integral
closure of D. An upper to zero in D[X] is a (height-one) prime ideal
of D[X] of the form fK[X]N D[X], where f € D[X] is irreducible in
K[X]. Recall that D is a UMT-domain if each upper to zero in D[X] is a
maximal ¢-ideal of D[X]| and that D is a Prifer v-multiplication domain
(PvMD) if each nonzero finitely generated ideal I of D is t-invertible,
i.e., (II™'); = D. The concept of UMT-domains was introduced by
Houston and Zafrullah [14]. It is well known that D is a PoMD if and
only if Dp is a valuation domain for each maximal t-ideal P of D [12,
Theorem 5|, if and only if D is an integrally closed UMT-domain [14,
Proposition 3.2], if and only if D[X]y, is a Priifer domain [15, Theorem
3.7).

2. t-locally almost pseudo-valuation domains

Let D be an integral domain with ¢f(D) = K, D be the integral
closure of D, D" be the w-integral closure of D, and N, = {f €
DIX][c(f). = D}.

We first introduce the concept of t-locally APVDs: D is a t-locally
APVD (t-LAPVD) if Dp is an APVD for all maximal t-ideals P of D.

LEMMA 1. (1) Fach nonzero prime ideal of an LAPVD D is a t-
ideal.
(2) D is an LAPVD if and only if D is a t-LAPVD and each maximal
ideal of D is a t-ideal.

Proof. (1) Let P be a nonzero prime ideal of D, and let M be a
maximal ideal of D with P C M. Then D,; is an APVD, and hence
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Spec(Dyy) is linearly ordered under inclusion. Hence PD); is a t-ideal
of Dy, and thus P = PDy; N D is a t-ideal [15, Lemma 3.17].

(2) If D is an LAPVD, then each maximal ideal of D is a t-ideal by
(1), and, in particular, D is a t-LAPVD. The converse is clear. O

An overring R of D is said to be t-linked over D if for any nonzero
finitely generated ideal I of D, I™' = D implies (IR)~' = R. Tt is known
that R is t-linked over D if and only if (QN D), C D for all prime t-ideals
Q of R [10, Proposition 2.1}, if and only if R[X]y, N K = R [4, Lemma
3.2].

LEMMA 2. Let D be at-LAPVD, and let P be a nonzero prime ideal
of D with P, C D.
(1) P is a prime t-ideal of D.
(2) If P is not a maximal t-ideal, then Dp is a valuation domain.
(3) DD\p = (Dw)D\p and DD\p is a PVD.

Proof. (1) and (2) Let @ be a maximal t-ideal of D such that P, C @Q;
then D¢ is an APVD and PDyg, is a proper prime ideal of Dg. Hence
PDg, and thus P = PDgN D, is a t-ideal [15, Lemma 3.17]. Moreover,
if P is not a maximal t-ideal, then PDg is not a maximal ideal, and
hence Dp = (Dgq)pp,, is a valuation domain [7, Lemma 3.1].

(3) Note that DD\p is an integrally closed t-linked overring of D
10, Proposition 2.9]; so D¥ C Dp\p (cf. [8, Theorem 1.3]), and thus
DD\p = (D")p\p. Moreover, since DD\p is the integral closure of Dp
and Dp is an APVD, we have that DD\p is a PVD [3, Proposition
3.7). O

LEMMA 3. The following statements are equivalent.

(1) D is a UMT-domain.
(2) Dp is a UMT-domain and PDp is a t-ideal for each prime t-ideal

P of D.
(3) Dp has Priifer integral closure for each maximal t-ideal P of D.

Proof. This appears in [11, Propositions 1.2 and 1.4, Theorem 1.5].
O
PROPOSITION 4. Let D be a t-LAPVD.

(1) D is a t-LPVD.
(2) D is a UMT-domain if and only if D" is a PuMD.
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Proof. (1) Let @ be a maximal t-ideal of D", and set P = Q N D.
Since DV is t-linked over D [8, Lemma 1.2], we have P, C D. Hence
(D¥)p\p is a PVD by Lemma 2(3). Thus (D*)q = ((D¥)p\r)Qp,» 8
a PVD since @Qp\p is a maximal ideal of (D")p\p (cf. [8, Corollary
1.4(3)]).

(2) Assume that D" is a PvMD. Let P be a maximal ¢-ideal of D,
and let () be a prime ideal of D" such that QN D = P (cf. [8, Corollary
1.4(3)]). Then (D")p\p is a PVD by Lemma 2(3). So (D")p\p = (D")q
and Qp\p is a t-ideal of (D")p\p, and hence Q) = Qp\p N D" is a t-ideal
of D" [15, Lemma 3.17]. Hence (D")p\p is a valuation domain [12,
Theorem 5]. Thus D is a UMT-domain by Lemma 3. The converse holds
without assumption that D is a --LAPVD (see [8, Theorem 2.6]). [

We next give the main result of this paper.

THEOREM 5. The following statements are equivalent for an integral
domain D.

(1) D is a t-LAPVD and a UMT-domain.

2) D is a t-LAPVD and D" is a PuMD.

) D[X] is a t-LAPVD.

) D[X]n, is an LAPVD, where N, = {f € D[X]|c(f), = D}.
) D[X]n, is a t-LAPVD.

Proof. (1) < (2) Proposition 4.

(1) = (3) Assume that D is a --LAPVD and a UMT-domain. Let @
be a maximal ¢-ideal of D[X]; then either QND = (0) or Q = (QND)[X]
with @ N D maximal t-ideal of D [11, Proposition 2.2]. If @ N D = (0),
then D[X]q is a valuation domain. Assume that @ = (Q N D)[X], and
note that Dgnp is an APVD and the integral closure of Dgnp is a Priifer
domain by Lemma 3. Thus D[X]g = (Dgnp[X])gonp = Donp(X), the
Nagata ring of Dgnp, is an APVD [6, Theorem 7].

(3) = (4) Let D[X] be a t-LAPVD. Let @ be a maximal ideal of
D[X]n,; then @ = P[X]y, for a maximal t-ideal P of D [15, Proposition
2.1]. Note that P[X] is a maximal t-ideal of D[X] [11, Lemma 2.1(4)].
Thus (D[X]NU>Q = (D[X]Nv)p[x]]\,v = D[X]p[X] is an APVD.

(4) = (1) Let P be a maximal t-ideal of D. Then P[X]y, is a max-
imal ideal of D[X]y, [15, Proposition 2.1], and so (D[X]n,)px]y, =
D[X]|pix) = Dp(X), the Nagata ring of Dp, is an APVD. Thus Dp is an
APVD and the integral closure of Dp is a valuation domain [6, Theorem
7]. Thus D is a UMT-domain by Lemma 3.

(

(3
(4
(5
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(4) < (5) This follows because each maximal ideal of D[X]y, is a
t-ideal (cf. [15, Propositions 2.1 and 2.2]). O

Lemma 1(2) shows that APVD = LAPVD = ¢-LAPVD. Clearly,
PVD = APVD, and thus

LPVD —— ¢LPVD

| l

LAPVD —— ¢-LAPVD

We end this paper with an example of t-LAPVDs that are neither
LAPVDs nor t-LPVDs.

EXAMPLE 6. Let Q[t] be the power series ring over the field Q of
rational numbers, and let D = Q[t?,¢3]. Then D is a one-dimensional
Noetherian APVD such that D = Q[t] and D is not a PVD [7, Example
2.1]. Thus D[X] is a t-LAPVD by Theorem 5 but not a t-LPVD [5,
Theorem 3.8]. Note also that if M is the maximal ideal of D, then @ :=
(X, M) is a maximal ideal of D[X] such that X D[X]q and M D[X]q are
not comparable; so D[X]g is not an APVD, and thus D[X] is not an
LAPVD.
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