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A NEW SUBCLASS OF ANALYTIC
FUNCTIONS DEFINED BY CONVOLUTION

S. K. LEE* AND S. M. KHAIRNAR

ABSTRACT. In the present paper we introduce a new subclass of
analytic functions in the unit disc defined by convolution (fu)(_l) *
f(z), where

fu=1—p)z 2F1(a,b;c; 2) + pz(z 2Fi(a, bs¢; 2))’.

Several interesting properties of the class and integral preserving
properties of the subclasses are also considered.

1. Introduction

Let A denote the class of functions of the form
(1.1) f2) =2+ ap
k=2

which are analytic in the open disc U = {z : |z| < 1}. If f and g are
analytic in U, we say that f is subordinate to g, written as f(z) < g(2)
if there exists an analytic function w in U with w(0) = 0 and |w(2)| < 1
for z € U such that f(z) = g(w(z)). Let S*, K and C be subclasses
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of A consisting of analytic functions which are starlike, convex and
close-to-convex in U, respectively.

Consider M as class of functions ¢ which are analytic and univalent
in U such that ¢(U) is convex with ¢(0) = 1 and Re{¢(z)} > 0 for
zeU.

Using the subordination principle researchers (cf. [6],[13]) have in-
vestigated the subclasses S*(¢), K(¢), and C(¢,) of the class A for
¢, € M defined by

N PN L R
(1.2) S(¢).-{f€A. B < ¢(2), GU},
N PO (C PN
(1.3) K(¢)._{feA.1+ 70 < ¢(2), EU},
(1.4)
= : *(¢) suc a 2f(2) 2), 2
C(¢,¢).—{f€A.3g€S(¢) h that e < (z), EU}.

For ¢(z) = ¢(z) = %J_r—z in the above definitions, we have the popular

classes S*, K and C respectively. Furthermore for ¢(z) = iigz , —1 <
B < A <1, we obtain the classes

(1.5) S (

1+ Az
1+ Bz

1+ Az
1+ Bz

):S*(A,B) andK< )zK(AB)-

Let P denote the class of functions of the form

p(2) =1+piz+p2° +--

analytic in U and Re(p(z)) > 0. Denote by D* : A — A, the operator
defined by

(1.6) DAf(z) =

z
—(1 o x f(z) (A>-1).

The operator D* f is called the Ruscheweyh derivative of f of order \.
It is obvious that D°f = f, D' f = zf’ and

2(22 1 f(2))

ol

(17 DOf(z) =

(o € Ny = N U{0}).
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Recently K. I. Noor [16], K. I. Noor and M. A. Noor [17] have defined
as integral operator I,, : A — A, analogous to D*f as follows.

Let f,(z) = =y, 7 € No and fr(l_l)(z) be defined such that

(1.8) fn(2) * fé_l)(z) = (1—2)%

Then

5 (=1
m} « f(z) (f €A).
We notice that Iof(z) = zf'(z) and I, f(2) = f(2). The operator I,
is called the Noor integral of n-th order of f (see [3], [12]), which is
very important operator used in defining several subclasses of analytic
functions.

For real or complex numbers a, b, ¢ different from 0, —1, —2,---, the
hypergeometric series is defined by

(19) 1fG) = S 1) = |

a,b;c;z) = 3 Mzk
(1.10) 2F1(a, b5¢; 2) kzz()(c)k(l)k

where (v)y is the Pochhammer symbol defined in terms of Gamma
function by

(1.11) (v)k:W:v(v—l—l)---(v—l—k—l)

for k=1,2,3,--- and (v)g = 1.

We notice that the series (1.10) converges absolutely for all z € U, so
that it represents an analytic function in U. In particular z o F1 (1, a; ¢; 2)
= ¢(a,c; z) which is the incomplete beta function. Also ¢(a,1;z) =
ﬁ, where ¢(2,1; z) is the Koebe function.

N. Shukla and P. Shukla [22] studied the mapping properties of f,
function defined by

fula,b,¢)(2)

(112) (1 —p)z 2F1(a,by¢;2) + pz(z oF1(a, bye; 2))" (1> 0).
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Kim and Shon [11] defined a linear operator L, : A — A defined by

Lﬂ(aa b, C)(f(z)) = f“(a,b, C)(z) * f(z)

We now define a function (f,(a,b,c)(z))("1) by

1 fula,b,c)(z) * (fu(a,b, c)(z))(—l)
(1.13) :ﬁ (L=0, A>-1)

and introduce the linear operator
(1.14) I3 (a,b,0) f(2) = (fula,b,e)(2) 7Y * f(2).

For ;o = 0 in (1.13) we obtain the operator introduced by K. I. Noor
[15]. For A > —1 we have

(1'15) ﬁ _ Z ()\ ;ﬁ)k k+1 (Z e U)
k=0

Using (1.10) and (1.15) in (1.13), we get

5 Ut DO s (7, 0,0, )2
k=0

— (A + 1), s
k! '

(1.16)

k=0

Thus (f,(a,b,c)(2))"Y has the form

ab ) )NED = = A+ DO e
(117)  (fula,b,0)(2)) ;<Mk+1)<a)k(b)k (z € U).

Equation (1.14) now implies that

(118) @b afE) =2+ ¢
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In particular

(1.19) I3(a, A +1,a)f(2) = f(2), Iy(a.1.a)f(2) =2f"(2).
It can be easily shown that

(1.20) z([l’)(a,b, o)f(z) =+ 1)Iﬁ+1(a,b, o)f(z) — )\I;‘(a,b, o) f(2),

A I
(1.21) Z(Iu(a+1/\,b, c)f(z)) X
=al;(a,b,c)f(z) — (a —1)I;(a+1,b,c)f(2).

By using the operator l’)(a, b, c), we introduce the following classes of
analytic functions for ¢, v € M, A\ > —1, u > O:

Si(a,b,c)(9) = {f € A: [;}(a,b,0)f(2) € S* ()},

(1.22) K} (a,b,¢)(¢) :=={f € A: I(a,b,c)f(2) € K(¢)},
Ch(a,b,c)(¢, )

= {f € A:3g(z) € Sﬁ‘(a,b, c)(¢) s.t.

We note that
(1.23)  f(2) € K, (a,b,c)(¢) if and only if zf'(z) € S, (a,b,c)(¢).

In particular

1+ Az

A QA

Su(a,b,c)<1+Bz>—S“(a,b,c,A,B) (-1<B< AL,
1+ Az

K“<a’b’c)<1+Bz> K, (a,b,c,A,B) (-1<B<A<L1)

In this paper we investigate the inclusion properties of the class
Sl;\(a, b,c)(o), Kﬁ‘(a,b, ¢)(¢) and C’;‘(a,b, ¢)(¢,). Notice that

S (a, A+ 1,a) <1+Z> =S*, Kj(a,A+1,a) <1+Z) =K

—z 1—2

1
CMa,\ +1,a) (1”) _C

—Z
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2. Inclusion properties involving the operator I;}(a, b, c)

The following lemmas will be required in our investigation.

LEMMA 2.1([14]). Let ¢(z) be convex univalent in U and E > 0.
Suppose B(z) is analytic in U with Re B(z) > E. If g € P is analytic
in U, then

(2.1) Bz?g"(2) + B(2)2g'(2) + 9(2) < ¢(2) (2 €U)

implies
9(z) < ¢(z) (z€U).

LEMMA 2.2([20]). Let f € K and g € S*. Then for every analytic
function @) in U,

(2.2) U xQ9) 1y « coq),

fxg
where COQ(U) denotes the closed convex hull of Q(U).

LEmMA 2.3([19]). Let 8, be complex numbers. Let ¢(z) be con-
vex univalent in U with ¢(0) = 1 and Re[B¢(z) + 7] > 0,z € U and
q(z) € A with q(z) < ¢(z),z € U. If p(z) € P is analytic in U, then
(2:) b+ 2 o) e

' Ba(z) +~
implies

p(z) < ¢(z) (z€U).
LEMMA 2.4([7]). Let 6,7 be complex numbers. For ¢(z) convex

univalent in U with ¢(0) = 1 and Re[d¢(z)+n] > 0,z € U. Ifp(z) € P
is analytic in U, then

(2.4) p(z) + <¢(2) (ze€U)

implies
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THEOREM 2.5. Let ¢(z) be convex and univalent in U with ¢(0) = 1
and Re ¢(z) > 0. Then

SuH(a,b,0)(¢) € Sj(a,b,0)(¢)
for A > =1, > 0.
Proof. Let f(z) € S;™(a,b,¢)(¢) and
I} a.b.0)f(2))
I/i‘(a, b,c)f(2)
where p(z) € P. Using (1.20) in (2.5) and differentiating we get

2Ly (a,b,0)f(2))
" (a,b,¢) f(2)

(2.5) p(z) =

zp'(2)
(A+1)q(2)

=p(z) +

where .
I (a, b o) f(2)

q(2) =
Ip(a,b,0) f(2)
and ¢(z) < ¢(z). Hence by applying Lemma 2.3, we obtain

2(I;(a,b,c) f(2))
I3a,b,c) f(2)

In view of (1.22) we get f(z) € S)(a,b,c)(¢). O

< ¢(2).

THEOREM 2.6. Let ¢(z) be convex and univalent in U with ¢(0) = 1
and Re ¢(z) > 0. Then

Sh(a,b,c)(¢) C Sy(a+1,bc)(e)

for A > -1, > 0.

Proof. Applying the same technique as in proof of Theorem 2.5 and
using (1.21) with Lemma (2.4) we obtain the required result. O

Taking ¢(z) = (1 + Az)/(1+ Bz) (-1 < B < A <1) in Theorem
2.5 and Theorem 2.6 we obtain the following result.
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COROLLARY 2.7. For A\ > —1, 4 >0 and Re a > 1
A+1 A
S, (a,b,¢, A, B) C S;(a,b, ¢, A, B),

A A
Sy(a,b,c, A, B) C Sy(a+1,b,c,A,B).

Further if ¢(z) = 122 in Theorem 2.5 and Theorem 2.6 we obtain
the following result.

COROLLARY 2.8. For A > —1, 4 >0 and Re a > 0
A+1 * . . A *
;7 (a,b,c) f(2) € S* implies I;(a,b,c)f(z) € S™.
Similarly

A * - . A *
I )(a,b,c)f(z) € S* implies I/)(a + 1,b,¢) f(2) € S™.

COROLLARY 2.9. For A > —1,u > 0 and Re a > 0 we have
A+1 A
K,u (aab7 C)(d)) - Ku(a'v b7 C)(¢)7
A A
K, (a,b,c)(¢) C K, (a+1,b,c)(¢).
Proof.

f(z) € K3 (a,0,0)(9) & 2f'(2) € Sy (a,b,¢)(9)
= 2f'(2) € Sﬁ‘(a,b, c)(¢)
& I (a,b,0)(2f'(2)) € 5*(9)
& 2(I;(a,b,0)f(2)) € 5*(9)
& I;‘(a, b,c)f(z) € K(¢)
& f(z) € Kl’)(a,b, c)(o).

The second relation can be proved similarly. OJ
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THEOREM 2.10. Let ¢(z) be convex univalent in U with ¢(0) = 1
and Re ¢(z) > 0. If f(z) € A satisfies the condition

f(2) € Sp(a,b,0)(9)

then
F(z) € S)(a,b,c)(¢)

where F'(z) is the integral operator defined by

(2.6) F(z) = ctl /Oz tLf(t)dt (e >0).

ZC

Proof. From (2.6) we have
(2.7) z(Iﬁ‘(a, b,c)F(2)) = (c+ 1)[2‘(@, b,c)f(z) — clﬁ(a, b,c)F(z).
Let
(2) = z(IIQ\(a, b,c)F(z))
P = T (a,b,0)F (2)

where p(z) € P. Using (2.7), we get

(c+ 1)[2(@, b,c)f(2)
INa,b,c)F(2)

(2.8) p(z) +c=

Differentiating both sides of (2.8) logarithmically, we get

2p'(2) _ z(Iﬁ‘(a,b, ) f(2))
c—i—p(z) Iﬁ\(a?b? C)f(Z)

by hypothesis. Now applying Lemma 2.4 we obtain

p(z) + < #(2)

z([l’)(a, b,c)F(z))
I(a,b,c)F(2)

That is F(z) € S;(a,b,c)(¢). O

For ¢(z) = (1 + Az)/(1+ Bz) (-1 < B < A <1) in Theorem 2.10
we obtain the following result.
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)\COROLLARY 2.11. For \ >)\—1, pw > 0 and ¢ > 0, if f(z) €
,?2#5, b,c, A, B), then F(z) € S;(a,b,c, A, B) where F(z) is given by

COROLLARY 2.12. For A\ > —1, p > 0 and ¢ > 0, if f(z) €
K2 (a.b,0)(6), then F(z) € K} (a,b,0)(6).

Proof. We have

f(2) € K (a,b,¢)(¢) & 2f'(2) € Sp(a,b,¢)(¢)
= 2(F(2)) € S;}(a, b,c)(¢)
< F(z) € K/i‘(a,b, c)(o).

THEOREM 2.13. Let f(z) € A. Then

O a,b,¢,6,9) € Cpla,be, ¢, 9)
for A\>0, p>0.
Proof. Let f(z) € C/;\“(a,b, ¢, $,1). Then by definition

2Lt (a,b,c,0,9) f(2))

B abe b))
for some g(z) € S5t (a,b,c)(¢). Let
2(IMa,b,c)f(2))
(2.9) h(z) = (Il/\L((a 5 c));c((z))) and

(2.10) H(z) = —=£

Notice that h(z), H(z) € P. By Theorem 2.5 g(z) € S)(a,b,c)(¢) and
so ReH (z) > 0. We also note that (2.9) implies

(2.11) z(Ili‘(a, b,c)f(2)) = (Iﬁ‘(a, b,c)g(z))h(z).
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Differentiating both sides of (2.11

1

2(2(I}(a,b,c) f(2))")

Iﬁ‘(a,b, c)g(z)
Using identity (1.20), we get

21t (a, b, 0) f(2)) It (a,b,0)(2(2))

I (a,b,0)g(2) It (a,b,¢)g(2)
2(Ip(a,b,0)(2f'(2))) + M (a,b,0)(2f'(2))

z(Iﬁ‘(a, b,c)g(z)) + )\Iﬁ‘(a, b,c)g(z)

2N (abe)F'(2) | AL (ab.o)(=f(2)
I} (a,b,c)g(z) I (a,b,c)g(z)
(1 (a5,0)9(2))
I} (a,b,c)g(z) +A

_ H(2)h(z) 4 zh/(z) + Ah(2)
B H(z)+ A
B zh!(2)
= h(Z) + m =< w(z)
Now from Lemma 2.1, for £ =0 and B(z) = W with Re(B(z)) =
mRe (H(z) +A) > 0. We get h(z) < ¢(2). In view of (2.9) we
get £(2) € CA(a,b, ¢ 6, ). a

THEOREM 2.14. Let f € A. Then

Cala,b,¢,6,9) C Cla+1,b,c,6,4)

) gives
/

(2.12)

= H(2)h(2) + 21/ (2).

A>0,pu>0.

Proof. By using arguments similar to the proof of Theorem 2.13, we
get

zh/(2)
— <
H(z)+a-1 v(z)

2(I) (a+1,b,0)f(2)) (I, (a+1,b,0)g())’

for h(2) = —arimaee ~ 04 H(2) = s o)
P. Taking £ =0 and B(z) = W with

|H(z)—|—1a_1‘2Re(H(2)+a—1) > 0.

Now applying Lemma 2.1 we obtain the required result. O

h(z) +

belonging to

Re(B(2)) =
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THEOREM 2.15. Iff(z) € C’;‘(a, b, c, ¢, ) then F(z) € C’ﬁ‘(a, b,c,d,1)
for ¢ > 0, where F(z) is given by (2.6).

Proof. Employing same technique as in proof of Theorem 2.13, we
get
zh'(2)

H(2) + o + h(z) < ¥(2)

2(I> a,b,c)F(2)) 2(I> a,b,c)g(z))’ .
for h(z) = (IE((a,b,c))g((z))) and H(z) = % belonging to P.

Taking £ =0 and B = W, we obtain

1

Re(B(z)) = WRe

(H(z)4+c¢) > 0.

Now by Lemma 2.1 we derive the required result. 0

3. Inclusion properties by convolution

. . >\ )\
In this Section we show that the classes S;(a, b, c)(¢), K} (a,b,c)(¢)

and C;)(a, b,c, ¢,1) are invariant under convolution with convex func-
tions.

THEOREM 3.1. Let a,b > 0,c€ R\ Z;,¢,9» € M and let g € K.
Then

(i) f € Sp(a,b,0)(¢) = g+ f € Spa,b,c)(¢),
(ii) f € K} (a,b,¢)(¢) = g+ f € K (a,b,¢)(9),
(111) f € C;‘(CL, ba C7¢7¢) = g * f S Cﬁ(aab; ) ¢a¢)

Proof. (i) Let f € SX(a,b,c)(¢), then “dal@bel Ny )y
’ BT ? ID(abe)f(z) :

Consider the following

(3.1)
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Using Lemma 2.2, we conclude that

{g* ¢(w)I}(a,b,0)f}
{g* Li(a,b.c)f}

since ¢ is convex univalent and I} (a,b,c)f € S*(¢). By definition of
subordination we conclude that (3.1) is subordinated to ¢ in U and so
gxf € S;)(a,b, c)().

(ii) Let f € Kj(a,b, ¢)(¢). Then by (1.23), zf'(z) € S;}(a,b, c)(¢)
and hence by (i) g * zf'(2) € S)(a,b,c)(¢). Notice that

9(2) * 2f'(2) = 2(g * £)' ().

Now applying (1.23) again, we get g * f € K} (a,b,c)(¢).
(iii) Let f € C}(a,b,c,¢,1). Then there exists ¢ € S)(a,b,c)(¢)

such that
2(Ip(a,b,c) f(2))
IXa,b,c)q(z)

(U) C CO(6(U)) € ¢(U)

=< P(2).
Therefore

(32)  z(Ip(a,b,c)f(2)) = v(w(2)) 3 (a,b,c)a(z) (2 € U)
where w is an analytic function in U with |w(z)] < 1 (2 € U) and
w(0) = 0.

In view of I} (a,b,c)q € 5*(¢), we have

2(Ip(a,b,e)(g* f)(2))  g(2) * 2(I3(a,b, ) f(2))
g*1Ix(a,b,c)q o g(z) * Il’}(a, b,c)q(z)
_9(2) x Y (w(2) I (a, b, )q(2)
N g(z) * l;\(a,b, c)q(z)

Thus (iii) is proved. O
Next, we investigate the following operators ([18], [21]) defined by

— 1
(3.3) m(z) = +Czk (Rec>0;2€U),
Pt k+c
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1
1—

1—=z

(3.4) m2(z) =

log Z] (logl=0; || <1, x#1; z€U).
T

It is known that the operators n; and 79 are convex univalent in U ([1],
[21]). Therefore, we have the following results which immediately fol-
low from Theorem 3.1.

COROLLARY 3.2. Let a,b > 0; ¢ € R\ Zy; ¢, € M and let
n; (i =1,2) be as defined by (3.3) and (3.4). Then

(j) f € Sﬁ\(aJ)? C)(¢) = i * f € S;);((%ba C)(¢)7
(ii) f € Kp(a,b,0)(¢) = n; = f € K} (a,b,c)(¢),
(111) f € C;/L\(aﬂ b7 C7¢;¢) = 1 * f S C;i\(a7b7 C>¢7¢)-
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