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THE PROPERTIES OF RESIDUATED CONNECTIONS

AND ALEXANDROV TOPOLOGIES

Ju-Mok Oh† and Yong Chan Kim∗

Abstract. In this paper, we investigate the properties of residu-
ated connections and Alexandrov topologies based on [0,∞]. Un-
der various relations, we investigate the residuated and dual residu-
ated connections on Alexandrov toplogies. Moreover, we study their
properties and give their examples.

1. Introduction

Blyth and Janovitz [2] introduced the residuated connection as a pair
of maps on partially ordered sets. Recently, Or lowska and Rewitzky [7,8]
investigated various residuated connections from the viewpoint of many
valued logics and rough sets.

Pawlak [9,10] introduced the rough set theory as a formal tool to deal
with imprecision and uncertainty in the data analysis. Ward et al.[13]
introduced a complete residuated lattice which is an algebraic structure
for many valued logic. It is an important mathematical tool as algebraic
structures for many valued logics [1,3-6,11,12].

For an extension of Pawlak’s rough sets, many researchers developed
L-lower and L-upper approximation operators in complete residuated
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lattices [1,3-6,11,12]. Using this concepts, information systems and de-
cision rules were investigated in complete residuated lattices [1,11,12].

An interesting and natural research topic in rough set theory is the
study of rough set theory and topological structures. Lai [5] and Ma
[6] investigated the Alexandrov L-topology and lattice structures of L-
fuzzy rough sets determined by lower and upper sets. Kim [3,4] introduce
the notion of Alexandrov topologies as a topological viewpoint of fuzzy
rough sets and studied the relations among fuzzy preorders, L-lower and
L-upper approximation operators and Alexandrov topologies in complete
residuated lattices.

In this paper, we introduced the residuated and dual-residuated con-
nection as maps from a non-symmetric pseudo-metric to another non-
symmetric pseudo-metric. We investigate the notion of residuated and
dual residuated connection on Alexandrov topologies. Under various
relations, we study their properties and give their examples.

2. Preliminaries

Let ([0,∞],≤,∨,+,∧,→,∞, 0) be a structure where

x→ y =
∧
{z ∈ [0,∞] | z + x ≥ y} = (y − x) ∨ 0,

∞+ a = a+∞ =∞,∀a ∈ [0,∞],∞→∞ = 0.

Definition 2.1. Let X be a set. A function dX : X ×X → [0,∞]
is called a non-symmetric pseudo-metric if it satisfies the following con-
ditions:

(M1) dX(x, x) = 0 for all x ∈ X,
(M2) dX(x, y) + dX(y, z) ≥ dX(x, z), for all x, y, z ∈ X.
The pair (X, dX) is called a non-symmetric pseudo-metric space.

Remark 2.2. (1) We define a function d[0,∞]X : [0,∞]X × [0,∞]X →
[0,∞] as d[0,∞]X (A,B) =

∨
x∈X(A(x)→ B(x)) =

∨
x∈X((B(x)−A(x))∨

0). Then ([0,∞]X , d[0,∞]X ) is a non-symmetric pseudo-metric space.
(2) If (X, dX) is a non-symmetric pseudo-metric space and we define a

function d−1
X (x, y) = dX(y, x), then (X, d−1

X ) is a non-symmetric pseudo-
metric space.

(3) Let (X, dX) be a non-symmetric pseudo-metric space and define
(dX⊕dX)(x, z) =

∧
y∈X(dX(x, y)+dX(y, z)) for each x, z ∈ X. By (M2),
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(dX ⊕ dX)(x, z) ≥ dX(x, z) and (dX ⊕ dX)(x, z) ≤ dX(x, x) + dX(x, z) =
d(x, z). Hence (dX ⊕ dX) = dX .

(4) If dX is a non-symmetric pseudo-metric and dX(x, y) = dX(y, x)
for each x, y ∈ X, then dX is a pseudo-metric

Example 2.3. (1) Let X = {a, b, c} be a set and define maps diX :
X ×X → [0,∞] for i = 1, 2, 3 as follows:

d1
X =

 0 6 5
6 0 1
15 7 0

 d2
X =

 0 6 3
7 0 4
0 5 0

 d3
X =

 0 3 7
6 0 9
5 4 0

 .

Since d1
X(c, b) + d1

X(b, a) = 13 < d1
X(c, a) = 15 and d2

X(b, c) + d2
X(c, a) =

4 < d2
X(b, a) = 15, d1

X and d2
X are not non-symmetric pseudo-metrics.

Since d3
X is a non-symmetric pseudo-metric, d3

X ⊕ d3
X = d3

X .

3. The properties of residuated connections and Alexandrov
topologies

Definition 3.1. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-
metric spaces and f : X → Y and g : Y → X maps.

(1) (dX , f, g, dY ) is called a residuated connection if for all x ∈ X, y ∈
Y , dY (f(x), y) = dX(x, g(y)).

(2) (dX , f, g, dY ) is called a dual residuated connection if for all x ∈
X, y ∈ Y , dY (y, f(x)) = dX(g(y), x).

Remark 3.2. Let (X, dX) be a non-symmetric pseudo-metric space.
For A,B ∈ [0,∞]X ,

F (A)(y) =
∧
x∈X

(dX(x, y) + A(x)), G(B)(x) =
∨
y∈X

(
dX(x, y)→ B(y)).
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Then (d[0,∞]X , F,G, d[0,∞]X ) is a residuated connection because for all
A,B ⊂ X,

d[0,∞]Y (F (A), B) =
∨
y∈X(F (A)(y)→ B(y))

=
∨
y∈X

(∧
x∈X(dX(x, y) + A(x))→ B(y)

)
=
∨
y∈X

(
(B(y)−

∧
x∈X(dX(x, y) + A(x))) ∨ 0

)
=
∨
x∈X

(
(
∨
y∈X(B(y)− dX(x, y)) ∨ 0)− A(x))) ∨ 0

)
=
∧
x∈X(A(x)→ G(B)(x)) = d[0,∞]X (A,G(B)).

Theorem 3.3. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-
metric spaces and f : X → Y and g : Y → X maps.

(1) (dX , f, g, dY ) is a residuated connection iff dY (f(x), f(z)) ≤ dX(x, z)
for all x, z ∈ X, dX(g(y), g(w)) ≤ dY (y, w) for all y, w ∈ Y , and
dY (f(g(y)), y) = dX(x, g(f(x))) = 0.

(2) (dX , f, g, dY ) is a dual residuated connection iff dY (f(x), f(z)) ≤
dX(x, z) for all x, z ∈ X, dX(g(y), g(w)) ≤ dY (y, w) for all y, w ∈ Y ,
and dY (y, f(g(y))) = dX(g(f(x)), x) = 0.

Proof. (1) Let (dX , f, g, dY ) be a residuated connection. Since dY (f(x), y)
= dX(x, g(y)), we have 0 = dY (f(x), f(x)) = dX(x, g(f(x))) and dY (f(g(y)), y)
= dX(g(y), g(y)) = 0. Furthermore,

dY (f(x1), f(x2)) = dX(x1, g(f(x2)))
≤ dX(x1, x2) + dX(x2, g(f(x2))) = dX(x1, x2),
dX(g(y1), g(y2)) = dY (f(g(y1)), y2)
≤ dY (f(g(y1)), y1) + dY (y1, y2) = dY (y1, y2).

Conversely, dY (f(x), y) ≤ dY (f(g(y)), y)+dY (f(x), f(g(y))) = dY (f(x), f(g(y)))
≤ dX(x, g(y)). Similarly, dY (f(x), y) ≥ dX(x, g(y)).

(2) It is similarly proved as (1).

Example 3.4.(1) Let (X = {a, b, c}, di), i = 1, 2, 3, be a non-symmetric
pseudo-metric space as follows:

d1 =

 0 6 5
6 0 5
7 7 0

 d2 =

 0 6 5
6 0 7
7 5 0

 d3 =

 0 10 6
7 0 6
6 6 0


(1) Let f : X → X be a function as f(a) = b, f(b) = a, f(c) = c.

Since d1(x, y) = d1(f(x), f(y)), d1(x, f(f(x))) = d1(f(f(x)), x) = 0,
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by Theorem 3.3, (d1, f, f, d1) are both residuated and dual residuated
connections.

(2) Since 7 = d2(c, a) ≥ d2(f(c), f(a)) = d2(c, b) = 5 and 5 =
d2(c, b) 6≥ d2(f(c), f(b)) = d2(c, a) = 7, (d2, f, f, d2) are neither resid-
uated nor dual residuated connections.

(3) Let g, h : X → X a function as g(a) = g(b) = a, g(c) = c and
h(a) = h(b) = b, h(c) = c. Since d3(x, y) ≥ d3(g(x), g(y)), d3(x, y) ≥
d3(h(x), h(y)), g(h(a)) = g(h(b)) = a, g(h(c)) = c, h(g(a)) = h(g(b)) =
b, g(h(c)) = c, then dX(g(h(b)), b) = dX(a, b) = 10 = dX(a, h(g(a))),
dX(h(g(a)), a) = dX(b, g(h(b))) = dX(b, a) = 7. Hence (d3, g, h, d3) are
neither a residuated connection nor a dual residuated connection.

We redefine the following definition as a sense in [3-6].
Definition 3.5.A subset τX ⊂ [0,∞]X is called an Alexandrov topol-

ogy on X iff it satisfies the following conditions:
(AT1) αX ∈ τX where αX(x) = α for each x ∈ X and α ∈ [0,∞].
(AT2) If Ai ∈ τX for all i ∈ I, then

∨
i∈I Ai,

∧
i∈I Ai ∈ τX .

(AT3) If A ∈ τX and α ∈ [0,∞], then α + A,α → A ∈ τX where
(α→ A)(x) = (A(x)− α) ∨ 0.

The pair (X, τX) is called an Alexandrov topological space.

Theorem 3.6. Let τX ⊂ [0,∞]X be an Alexandrov topology. Define
dτX : τX×τX → L as dτX (A,B) =

∨
x∈X(A(x)→ B(x)) =

∨
x∈X((B(x)−

A(x)) ∨ 0). Then the followings hold.
(1) (τX , dτX ) is a non-symmetric pseudo-metric space.
(2) If dτX (A,C) = dτX (B,C) for all C ∈ τX , then A = B.

Proof. (1) (M1) dτX (A,A) =
∨
x∈X(A(x)→ A(x)) = 0 for all A ∈ τX ,

(M2) Since dτX (A,B)+dτX (B,C) =
∨
x∈X(A(x)→ B(x))+

∨
x∈X(B(x)

→ C(x)) ≥
∨
x∈X((B(x)−A(x))∨0)+(C(x)−B(x))∨0 ≥

∨
x∈X((C(x)−

A(x)) ∨ 0) = dτX (A,C), for all A,B,C ∈ τX ,
(2) Since dτX (A,B) = dτX (B,B) = 0 = dτX (A,A) = dτX (B,A), A =

B.

Theorem 3.7. Let (X, dX) be a non-symmetric pseudo-metric. De-
fine

τdX = {A ∈ [0,∞]X | A(x) + dX(x, z) ≥ A(z)}.
Then the followings hold.
(1) τdX is an Alexandrov topology on X.
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(2)If (dX)x = dX(x,−) ∈ [0,∞]X and ((dX)−1
x → α)(z) = (dX)−1

x (z)→
α = dX(z, x)→ α , then (dX)x ∈ τdX and (dX)−1

x → α ∈ τdX . Moreover,∨
y∈X(dX(−, y)→ B(y)) ∈ τdX and

∧
y∈X(B(x) + dX(x,−)) ∈ τdX .

Proof. (1) Since αX(x) + dX(x, y) ≥ αX(y), we have αX ∈ τdX .
If Ai ∈ τdX for all i ∈ I, then

(
∧
i∈I Ai) + dX(x, y) =

∧
i∈I(Ai + dX(x, y)) ≥

∧
i∈I Ai,

(
∨
i∈I Ai) + dX(x, y) =

∨
i∈I(Ai + dX(x, y)) ≥

∨
i∈I Ai,

then
∧
i∈I Ai,

∨
i∈I Ai ∈ τdX .

If A ∈ τdX and α ∈ L, then α + (α → A(x)) + dX(x, y) ≥ A(x) +
dX(x, y) ≥ A(y) implies (α → A(x)) + dX(x, y) ≥ (α → A(y)). So,
α→ A ∈ τdX . Easily, α+A ∈ τdX . Hence τdX is an Alexandrov topology
on X.

(2) Since (dX)x(y) + dX(y, z) ≤ (dX)x(z), (dX)x ∈ τdX . Moreover,
(dX)−1

x → α) ∈ τdX from

(dX(z, x)→ α) + dX(z, w) + dX(w, x)
≥ (α− dX(z, x)) ∨ 0 + dX(z, x) ≥ α,
(⇒)(dX(z, x)→ α) + dX(z, w) ≥ (α− dX(w, x)) ∨ 0
(⇒)(d−1

x (z)→ α) + dX(z, w) ≥ d−1
x (w)→ α

By (1),
∧
x∈X(dX(x,−) + A(x)) ∈ τdX and

∨
x∈X(dX(−, x) → A(x)) ∈

τdX .

Theorem 3.8. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-
metric spaces and f : X → Y be a map such that dY (f(x), f(y)) ≤
dX(x, y) for all x, y ∈ X. Then the followings hold.

(1) A map f : (X, τdX )→ (Y, τdY ) is continuous, that is, f←(B) ∈ τdX
for each B ∈ τdY .

(2) For each B ∈ [0,∞]Y , f←(F2(B)) ≤ F1(f←(B)) where

F1(A)(z) =
∧
x∈X

(A(x) + dX(x, z)), F2(B)(y) =
∧
w∈Y

(B(w) + dY (w, y)).

(3) For each B ∈ [0,∞]Y , G1(f←(B)) ≤ f←(G2(B)) where

G1(A)(z) =
∨
x∈X

(dX(z, x)→ A(x)), G2(B)(y) =
∨
w∈Y

(dY (y, w)→ B(w)).
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Proof. (1) For each B ∈ τdY , f←(B) ∈ τdX from

f←(B)(x) + dX(x, z) = B(f(x)) + dX(x, z)
≥ B(f(x)) + dY (f(x), f(z)) ≥ B(f(z)) = f←(B)(z).

(2) For each B ∈ [0,∞]Y ,

f←(F2(B))(x) = F2(B)(f(x)) =
∧
y∈X(B(y) + dY (y, f(x)))

≤
∧
z∈X(B(f(z)) + dY (f(z), f(x)) ≤

∧
z∈X(f←(B)(z) + dX(z, x))

= F1(f←(B))(x).

(3) For each B ∈ [0,∞]Y ,

f←(G2(B))(x) = G2(B)(f(x)) =
∨
y∈X(dY (f(x), y)→ B(y))

≥
∨
y∈X(dY (f(x), y)→ B(y)) ≥

∨
z∈X(dY (f(x), f(z))→ B(f(z)))

≥
∨
z∈X(dX(x, z)→ B(f(z))) = G1(f←(B))(x).

Theorem 3.9. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-
metrics and f : X → Y and g : Y → X maps. Then the following
statements hold:

(1) (dX , f, g, dY ) is a residuated connection iff dX(x1, x2) ≥ dY (f(x1), f(x2))
for all x1, x2 ∈ X and (dτdX , F1, G1, dτdY ) is a residuated connection
where

F1(A)(y) =
∧
y∈Y

(dY (f(x), y)+A(x)), G1(B)(x) =
∨
x∈X

(dX(x, g(y))→ B(y)).

(2) (dX , f, g, dY ) is a dual residuated connection iff dY (y1, y2) ≥ dX(g(y1),
g(y2)) for all y1, y2 ∈ Y and dτdY (B,F2(A)) = dτdX (G2(B), A) where

F2(A)(y) =
∨
x∈X

(dY (y, f(x))→ A(x)), G2(B)(x) =
∧
y∈Y

(dX(g(y), x)+B(y)).

Proof. (1) Let dX(x, g(y)) = dY (f(x), y). Since dY (f(x), y)+dY (y, w) ≥
dY (f(x), w), (dY )f(x) ∈ τdY . Thus F1(A) =

∧
y∈Y (dY (f(x),−) +A(x)) ∈

τdY . Since (dX(x, g(y)) → B(y)) + dX(x, z) + dX(z, g(y)) ≥ B(y),
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G(B) ∈ τdX . Moreover,

dτdY (F1(A), B) =
∨
y∈X(F1(A)(y)→ B(y))

=
∨
y∈Y

(∧
x∈X(dY (f(x), y) + A(x))→ B(y)

)
=
∨
y∈Y

∨
x∈X

(
(B(y)− dY (f(x), y)− A(x)) ∨ 0

)
=
∨
y∈Y

∨
x∈X

(
((B(y)− dY (f(x), y)) ∨ 0)− A(x)) ∨ 0

)
=
∨
x∈X

∨
y∈Y

(
A(x)→ (dX(x, g(y))→ B(y))

)
=
∨
x∈X

(
A(x)→

∨
y∈Y (dX(x, g(y))→ B(y))

)
=
∨
x∈X

(
A(x)→ G1(B)(x)

)
= dτdX (A,G1(B)).

Conversely, since F1((dX)x)(y) =
∧
z∈X(dY (f(z), y) + (dX)x(z)) ≤

dY (f(x), y) and dY (f(z), y) + dX(x, z) ≥ dY (f(z), y) + dY (f(x), f(z)) ≥
dY (f(x), y), F1((dX)x)(y) = dY (f(x), y), that is, F1((dX)x) = (dY )f(x).

dτdY ((dY )f(x), B) = dτdY (F1((dX)x), B) = dτdX ((dX)x, G1(B))

=
∨
z∈X

∨
y∈Y

(
(dX)x(z)→ (dX(z, g(y))→ B(y))

)
=
∨
z∈X

∨
y∈Y

(
((B(y)− d(f(x), y)) ∨ 0− dX(x, z)) ∨ 0

)
=
∨
y∈Y (

∧
z∈X

(
dX(x, z) + dX(z, g(y)))→ B(y))

)
=
∨
y∈Y (dX(x, g(y)))→ B(y)) = dτdY (g←((dX)x, B).

Since dτdY ((dY )f(x), B) = dτdY (g←((dX)x, B) for all B ∈ τdY , by Theorem

3.6(2), (dY )f(x)(y) = dY (f(x), y) = g←((dX)x)(y) = dX(x, g(y)) for all
x ∈ X, y ∈ Y .

(2) Let dY (y, f(x)) = dX(g(y), x). Since dX(g(y), x) + dX(x, z) ≥
dX(g(y), z), (dX)g(y) ∈ τdX . Thus G(B) ∈ τdX . Since (dY (y, f(x)) →
A(x)) + dY (y, w) + dY (w, f(x)) ≥ A(x), F (A) ∈ τdY . Thus,

dτdX (G1(B), A) =
∨
x∈X(G2(B)(x)→ A(x))

=
∨
x∈X

(∨
y∈Y (dX(g(y), x) +B(y))→ A(x)

)
=
∨
Y ∈Y

∨
x∈X

(
B(y)→ (dY (y, f(x))→ A(x))

)
=
∨
y∈Y

(
B(y)→

∨
x∈X(dY (y, f(x))→ A(x))

)
=
∨
y∈Y

(
B(y)→ F2(A)(y)

)
= dτdY (B,F2(A))

Conversely, since G2((dY )y)(x) =
∧
w∈X(dX(g(w), x) + (dY )y(w)) ≤

dX(g(y), x) and dX(g(w), x)+dY (y, w) ≥ dX(g(w), x)+dX(g(y), g(w)) ≤
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dX(g(y), x), G2((dY )y)(x) = dX(g(y), x).

dτdX ((dX)g(y), A) = dτdX (G2((dY )y), A) = dτdY ((dY )y, F2(A))

=
∨
w∈Y

∨
x∈X

(
(dY )y(w)→ (dY (w, f(x))→ A(x))

)
=
∨
x∈X(

∧
w∈Y

(
dY (y, w) + dX(w, f(x)))→ A(x))

)
=
∨
x∈X(dY (y, f(x)))→ A(x)) = dτdX (f←((dY )y, A).

Since dτdX ((dX)g(y), A) = dτdX (f←((dY )y, A) for all A ∈ τdX , by Theorem

3.6(2), (dX)g(y)(x) = dX(g(y), x) = f←((dY )y)(x) = dY (y, f(x)). for all
x ∈ X, y ∈ Y .

Theorem 3.10. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-
metric spaces and f : X → Y with dY (f(x), f(y)) ≤ dX(x, y) for all
x, y ∈ X. If F : τdX → τdY is a function with F ((dX)x)(y) = (dY )f(x)(y)
such that F (

∧
i∈ΓAi) =

∧
i∈Γ F (Ai) and F (α+A) = α+F (A), then there

exists G : τdY → τdX with G(
∨
i∈ΓAi) =

∨
i∈ΓG(Ai) and G(α → A) =

α→ G(A). Moreover, (dτdX , F,G, dτdY ) is a residuated connection.

Proof. Let F : τdX → τdY be a function with F ((dX)x)(y) = (dY )f(x)(y)
such that F (

∧
i∈ΓAi) =

∧
i∈Γ F (Ai) and F (α + A) = α + F (A). Since

(dY )f(x)(y)+dY (y, w) ≥ (dY )f(x)(w), F ((dX)x) ∈ τdY . Moreover, F (A)(y)
= F (

∧
x∈X(A(x)+(dX)x))(y) =

∧
x∈X(A(x)+F ((dX)x)(y)) =

∧
(A(x)+

dY (f(x), y)) and F (A) ∈ τdY . Hence F is well defined. Define G : τdY →
τdX as

G(B)(x) =
∧
{A(x) | F (A) ≥ B} =

∨
(dY (f(x), y)→ B(y)).

Since G(B)(x) + dX(x, z) + dY (f(z), y) ≥ G(B)(x) + dY (f(x), f(z)) +
dY (f(z), y) ≥ G(B)(x) + dY (f(x), y) ≥ B(y), G(B) ∈ τdX . Moreover,
(dτdX , F,G, dτdY ) is a residuated connection.

Example 3.11.(1) Let (X = {a, b, c}, d1) be a non-symmetric pseudo-
metric and f : X → X a function in Example 3.4(1). Then d1(x, y) =
d1(f(x), f(y)) and d1(f(x), y) = d1(x, f(y)) for all x, y ∈ X. Let F1, G1 :
τd1 → τd1 be functions with F1(A)(y) =

∧
(A(x) + d1(f(x), y)) and

G1(B)(x) =
∨
y∈X(d1(f(x), y) → B(y)) =

∨
y∈X(d1(x, f(y)) → B(y)).

By Theorems 3.9(1) and 3.10, (dτd1 , F1, G1, dτd1 ) is a residuated connec-
tion.
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Let F2, G2 : τd1 → τd1 be functions with F2(A)(y) =
∨
x∈X(d1(y, f(x))

→ A(x)) and G2(B)(x) =
∧
y∈X(B(y)+d1(f(y), x)). By Theorem 3.9(2),

(dτd1 , F2, G2, dτd1 ) is a dual residuated connection.

(2) Let (X = {a, b, c}, d3) be a non-symmetric pseudo-metric and
g, h : X → X functions in Example 3.4(3). Then d3(x, y) ≥ d3(g(x), g(y)),
d3(x, y) ≥ d3(h(x), h(y)). Let F3, G3 : τd3 → τd3 be functions with
F3(A)(y) =

∧
(A(x) + d3(g(x), y)) and G3(B)(x) =

∨
y∈X(d3(g(x), y)→

B(y)). By Theorem 3.10, (dτd3 , F3, G3, dτd3 ) is a residuated connection.

Let F4, G4 : τd3 → τd3 be a function with F4(A)(y) =
∧

(A(x) +
d3(h(x), y)) and G4(B)(x) =

∨
y∈X(d3(h(x), y) → B(y)). By Theorem

3.10, (dτd3 , F4, G4, dτd3 ) is a residuated connection.
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