Korean J. Math. 28 (2020), No. 2, pp. 311–321 http://dx.doi.org/10.11568/kjm.2020.28.2.311

THE PROPERTIES OF RESIDUATED CONNECTIONS AND ALEXANDROV TOPOLOGIES

Ju-Mok Oh† and Yong Chan Kim[∗]

Abstract. In this paper, we investigate the properties of residuated connections and Alexandrov topologies based on $[0, \infty]$. Under various relations, we investigate the residuated and dual residuated connections on Alexandrov toplogies. Moreover, we study their properties and give their examples.

1. Introduction

Blyth and Janovitz [2] introduced the residuated connection as a pair of maps on partially ordered sets. Recently, Orlowska and Rewitzky [7,8] investigated various residuated connections from the viewpoint of many valued logics and rough sets.

Pawlak [9,10] introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. Ward et al. [13] introduced a complete residuated lattice which is an algebraic structure for many valued logic. It is an important mathematical tool as algebraic structures for many valued logics [1,3-6,11,12].

For an extension of Pawlak's rough sets, many researchers developed L-lower and L-upper approximation operators in complete residuated

[∗]Corresponding author.

Received January 10, 2020. Revised June 15, 2020. Accepted June 17, 2020.

²⁰¹⁰ Mathematics Subject Classification: 03E72, 03G10, 06A15, 54F05.

Key words and phrases: Non-symmetric pseudo-metrics, residuated and dual residuated connections, Alexandrov topologies .

[†] This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

c The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

lattices [1,3-6,11,12]. Using this concepts, information systems and decision rules were investigated in complete residuated lattices [1,11,12].

An interesting and natural research topic in rough set theory is the study of rough set theory and topological structures. Lai [5] and Ma [6] investigated the Alexandrov L-topology and lattice structures of Lfuzzy rough sets determined by lower and upper sets. Kim [3,4] introduce the notion of Alexandrov topologies as a topological viewpoint of fuzzy rough sets and studied the relations among fuzzy preorders, L-lower and L-upper approximation operators and Alexandrov topologies in complete residuated lattices.

In this paper, we introduced the residuated and dual-residuated connection as maps from a non-symmetric pseudo-metric to another nonsymmetric pseudo-metric. We investigate the notion of residuated and dual residuated connection on Alexandrov topologies. Under various relations, we study their properties and give their examples.

2. Preliminaries

Let $([0, \infty], \leq, \vee, +, \wedge, \rightarrow, \infty, 0)$ be a structure where

$$
x \to y = \bigwedge \{ z \in [0, \infty] \mid z + x \ge y \} = (y - x) \lor 0,
$$

$$
\infty + a = a + \infty = \infty, \forall a \in [0, \infty], \infty \to \infty = 0.
$$

DEFINITION 2.1. Let X be a set. A function $d_X : X \times X \to [0, \infty]$ is called a non-symmetric pseudo-metric if it satisfies the following conditions:

(M1) $d_X(x, x) = 0$ for all $x \in X$, (M2) $d_X(x, y) + d_X(y, z) \ge d_X(x, z)$, for all $x, y, z \in X$. The pair (X, d_X) is called a non-symmetric pseudo-metric space.

REMARK 2.2. (1) We define a function $d_{[0,\infty]}x : [0,\infty]^X \times [0,\infty]^X \to$ $[0, \infty]$ as $d_{[0,\infty]}x(A, B) = \bigvee_{x \in X}(A(x) \to B(x)) = \bigvee_{x \in X}((B(x) - A(x)) \vee$ 0). Then $([0, \infty]^{X}, d_{[0, \infty]}^{X})$ is a non-symmetric pseudo-metric space.

(2) If (X, d_X) is a non-symmetric pseudo-metric space and we define a function $d_X^{-1}(x, y) = d_X(y, x)$, then (X, d_X^{-1}) is a non-symmetric pseudometric space.

(3) Let (X, d_X) be a non-symmetric pseudo-metric space and define $(d_X \oplus d_X)(x, z) = \bigwedge_{y \in X} (d_X(x, y) + d_X(y, z))$ for each $x, z \in X$. By (M2),

 $(d_X \oplus d_X)(x, z) \geq d_X(x, z)$ and $(d_X \oplus d_X)(x, z) \leq d_X(x, x) + d_X(x, z) =$ $d(x, z)$. Hence $(d_X \oplus d_X) = d_X$.

(4) If d_X is a non-symmetric pseudo-metric and $d_X(x, y) = d_X(y, x)$ for each $x, y \in X$, then d_X is a pseudo-metric

EXAMPLE 2.3. (1) Let $X = \{a, b, c\}$ be a set and define maps d_X^i : $X \times X \to [0, \infty]$ for $i = 1, 2, 3$ as follows:

$$
d_X^1 = \begin{pmatrix} 0 & 6 & 5 \\ 6 & 0 & 1 \\ 15 & 7 & 0 \end{pmatrix} d_X^2 = \begin{pmatrix} 0 & 6 & 3 \\ 7 & 0 & 4 \\ 0 & 5 & 0 \end{pmatrix} d_X^3 = \begin{pmatrix} 0 & 3 & 7 \\ 6 & 0 & 9 \\ 5 & 4 & 0 \end{pmatrix}.
$$

Since $d_X^1(c, b) + d_X^1(b, a) = 13 < d_X^1(c, a) = 15$ and $d_X^2(b, c) + d_X^2(c, a) =$ $4 < d_X^2(b, a) = 15$, d_X^1 and d_X^2 are not non-symmetric pseudo-metrics. Since d_X^3 is a non-symmetric pseudo-metric, $d_X^3 \oplus d_X^3 = d_X^3$.

3. The properties of residuated connections and Alexandrov topologies

DEFINITION 3.1. Let (X, d_X) and (Y, d_Y) be non-symmetric pseudometric spaces and $f : X \to Y$ and $g : Y \to X$ maps.

(1) (d_X, f, g, d_Y) is called a *residuated connection* if for all $x \in X, y \in$ $Y, d_Y(f(x), y) = d_X(x, g(y)).$

(2) (d_X, f, g, d_Y) is called a *dual residuated connection* if for all $x \in$ $X, y \in Y, d_Y(y, f(x)) = d_X(g(y), x).$

REMARK 3.2. Let (X, d_X) be a non-symmetric pseudo-metric space. For $A, B \in [0, \infty]^{X}$,

$$
F(A)(y) = \bigwedge_{x \in X} (d_X(x, y) + A(x)), \ G(B)(x) = \bigvee_{y \in X} \Big(d_X(x, y) \to B(y) \Big).
$$

Then $(d_{[0,\infty]}x, F, G, d_{[0,\infty]}x)$ is a residuated connection because for all $A, B \subset X$,

$$
d_{[0,\infty]^{Y}}(F(A), B) = \bigvee_{y \in X} (F(A)(y) \to B(y))
$$

\n
$$
= \bigvee_{y \in X} \left(\bigwedge_{x \in X} (d_{X}(x, y) + A(x)) \to B(y) \right)
$$

\n
$$
= \bigvee_{y \in X} \left((B(y) - \bigwedge_{x \in X} (d_{X}(x, y) + A(x))) \vee 0 \right)
$$

\n
$$
= \bigvee_{x \in X} \left((\bigvee_{y \in X} (B(y) - d_{X}(x, y)) \vee 0) - A(x)) \vee 0 \right)
$$

\n
$$
= \bigwedge_{x \in X} (A(x) \to G(B)(x)) = d_{[0,\infty]^{X}}(A, G(B)).
$$

THEOREM 3.3. Let (X, d_X) and (Y, d_Y) be non-symmetric pseudometric spaces and $f: X \to Y$ and $g: Y \to X$ maps.

(1) (d_X, f, g, d_Y) is a residuated connection iff $d_Y(f(x), f(z)) \leq d_X(x, z)$ for all $x, z \in X$, $d_X(g(y), g(w)) \leq d_Y(y, w)$ for all $y, w \in Y$, and $d_Y(f(g(y)), y) = d_X(x, g(f(x))) = 0.$

(2) (d_X, f, g, d_Y) is a dual residuated connection iff $d_Y(f(x), f(z)) \leq$ $d_X(x, z)$ for all $x, z \in X$, $d_X(g(y), g(w)) \leq d_Y(y, w)$ for all $y, w \in Y$, and $d_Y(y, f(g(y))) = d_X(g(f(x)), x) = 0.$

Proof. (1) Let (d_X, f, g, d_Y) be a residuated connection. Since $d_Y(f(x), y)$ $= d_X(x, g(y))$, we have $0 = d_Y(f(x), f(x)) = d_X(x, g(f(x)))$ and $d_Y(f(g(y)), y)$ $= d_X(q(y), q(y)) = 0.$ Furthermore,

$$
d_Y(f(x_1), f(x_2)) = d_X(x_1, g(f(x_2)))
$$

\n
$$
\leq d_X(x_1, x_2) + d_X(x_2, g(f(x_2))) = d_X(x_1, x_2),
$$

\n
$$
d_X(g(y_1), g(y_2)) = d_Y(f(g(y_1)), y_2)
$$

\n
$$
\leq d_Y(f(g(y_1)), y_1) + d_Y(y_1, y_2) = d_Y(y_1, y_2).
$$

Conversely, $d_Y(f(x), y) \le d_Y(f(g(y)), y) + d_Y(f(x), f(g(y))) = d_Y(f(x), f(g(y)))$ $\leq d_X(x, g(y))$. Similarly, $d_Y(f(x), y) \geq d_X(x, g(y))$.

(2) It is similarly proved as (1).

 \Box

EXAMPLE 3.4.(1) Let $(X = \{a, b, c\}, d_i), i = 1, 2, 3$, be a non-symmetric pseudo-metric space as follows:

$$
d_1 = \begin{pmatrix} 0 & 6 & 5 \\ 6 & 0 & 5 \\ 7 & 7 & 0 \end{pmatrix} d_2 = \begin{pmatrix} 0 & 6 & 5 \\ 6 & 0 & 7 \\ 7 & 5 & 0 \end{pmatrix} d_3 = \begin{pmatrix} 0 & 10 & 6 \\ 7 & 0 & 6 \\ 6 & 6 & 0 \end{pmatrix}
$$

(1) Let $f: X \to X$ be a function as $f(a) = b, f(b) = a, f(c) = c$. Since $d_1(x, y) = d_1(f(x), f(y)), d_1(x, f(f(x))) = d_1(f(f(x)), x) = 0,$ by Theorem 3.3, (d_1, f, f, d_1) are both residuated and dual residuated connections.

(2) Since $7 = d_2(c, a) \ge d_2(f(c), f(a)) = d_2(c, b) = 5$ and $5 =$ $d_2(c, b) \not\geq d_2(f(c), f(b)) = d_2(c, a) = 7, (d_2, f, f, d_2)$ are neither residuated nor dual residuated connections.

(3) Let $g, h: X \to X$ a function as $g(a) = g(b) = a, g(c) = c$ and $h(a) = h(b) = b, h(c) = c$. Since $d_3(x, y) \ge d_3(g(x), g(y))$, $d_3(x, y) \ge d_3(x, y)$ $d_3(h(x), h(y))$, $g(h(a)) = g(h(b)) = a$, $g(h(c)) = c$, $h(g(a)) = h(g(b)) =$ $b, g(h(c)) = c$, then $d_X(g(h(b)), b) = d_X(a, b) = 10 = d_X(a, h(g(a))),$ $d_X(h(q(a)), a) = d_X(b, q(h(b))) = d_X(b, a) = 7$. Hence (d_3, q, h, d_3) are neither a residuated connection nor a dual residuated connection.

We redefine the following definition as a sense in [3-6].

DEFINITION 3.5.A subset $\tau_X \subset [0,\infty]^X$ is called an *Alexandrov topol* qqq on X iff it satisfies the following conditions:

(AT1) $\alpha_X \in \tau_X$ where $\alpha_X(x) = \alpha$ for each $x \in X$ and $\alpha \in [0, \infty]$.

(AT2) If $A_i \in \tau_X$ for all $i \in I$, then $\bigvee_{i \in I} A_i$, $\bigwedge_{i \in I} A_i \in \tau_X$.

(AT3) If $A \in \tau_X$ and $\alpha \in [0, \infty]$, then $\alpha + A, \alpha \to A \in \tau_X$ where $(\alpha \rightarrow A)(x) = (A(x) - \alpha) \vee 0.$

The pair (X, τ_X) is called an *Alexandrov topological space*.

THEOREM 3.6. Let $\tau_X \subset [0,\infty]^X$ be an Alexandrov topology. Define $d_{\tau_X} : \tau_X \times \tau_X \to L$ as $d_{\tau_X}(A, B) = \bigvee_{x \in X} (A(x) \to B(x)) = \bigvee_{x \in X} ((B(x) - B(x)))$ $A(x)$ \vee 0). Then the followings hold.

(1) (τ_X, d_{τ_X}) is a non-symmetric pseudo-metric space.

(2) If $d_{\tau_X}(A, C) = d_{\tau_X}(B, C)$ for all $C \in \tau_X$, then $A = B$.

Proof. (1) (M1) $d_{\tau_X}(A, A) = \bigvee_{x \in X} (A(x) \to A(x)) = 0$ for all $A \in \tau_X$, (M2) Since $d_{\tau_X}(A, B) + d_{\tau_X}(B, C) = \bigvee_{x \in X} (A(x) \to B(x)) + \bigvee_{x \in X} (B(x))$ $\to C(x)) \geq \bigvee_{x \in X} ((B(x) - A(x)) \vee 0) + (C(x) - B(x)) \vee 0 \geq \bigvee_{x \in X} ((C(x) - B(x))) \vee 0$ $A(x)$ \vee 0) = $d_{\tau_X}(A, C)$, for all $A, B, C \in \tau_X$, (2) Since $d_{\tau_X}(A, B) = d_{\tau_X}(B, B) = 0 = d_{\tau_X}(A, A) = d_{\tau_X}(B, A), A =$

B.

THEOREM 3.7. Let
$$
(X, d_X)
$$
 be a non-symmetric pseudo-metric. De-

\n \Box

fine

$$
\tau_{d_X} = \{ A \in [0, \infty]^X \mid A(x) + d_X(x, z) \ge A(z) \}.
$$

Then the followings hold.

(1) τ_{d_X} is an Alexandrov topology on X.

316 Ju-Mok Oh and Yong Chan Kim

 $(2) If (d_X)_x = d_X(x, -) \in [0, \infty]^X$ and $((d_X)_x^{-1} \to \alpha)(z) = (d_X)_x^{-1}(z) \to$ $\alpha = d_X(z, x) \to \alpha$, then $(d_X)_x \in \tau_{d_X}$ and $(d_X)_x^{-1} \to \alpha \in \tau_{d_X}$. Moreover,
 $\bigvee_{y \in X} (d_X(-, y) \to B(y)) \in \tau_{d_X}$ and $\bigwedge_{y \in X} (B(x) + d_X(x, -)) \in \tau_{d_X}$. $y\in X(dX(-,y) \to B(y)) \in \tau_{dX}$ and $\bigwedge_{y\in X}(B(x)+d_X(x,-)) \in \tau_{dX}$.

Proof. (1) Since $\alpha_X(x) + d_X(x, y) \geq \alpha_X(y)$, we have $\alpha_X \in \tau_{d_X}$. If $A_i \in \tau_{d_X}$ for all $i \in I$, then

$$
(\bigwedge_{i \in I} A_i) + d_X(x, y) = \bigwedge_{i \in I} (A_i + d_X(x, y)) \ge \bigwedge_{i \in I} A_i, (\bigvee_{i \in I} A_i) + d_X(x, y) = \bigvee_{i \in I} (A_i + d_X(x, y)) \ge \bigvee_{i \in I} A_i,
$$

then $\bigwedge_{i\in I} A_i, \bigvee_{i\in I} A_i \in \tau_{d_X}.$

If $A \in \tau_{d_X}$ and $\alpha \in L$, then $\alpha + (\alpha \to A(x)) + d_X(x, y) \geq A(x) + d_Y(x, y)$ $d_X(x, y) \geq A(y)$ implies $(\alpha \to A(x)) + d_X(x, y) \geq (\alpha \to A(y))$. So, $\alpha \to A \in \tau_{d_X}$. Easily, $\alpha + A \in \tau_{d_X}$. Hence τ_{d_X} is an Alexandrov topology on X .

(2) Since $(d_X)_x(y) + d_X(y, z) \le (d_X)_x(z), (d_X)_x \in \tau_{d_X}$. Moreover, $(d_X)_x^{-1} \to \alpha$) $\in \tau_{d_X}$ from

$$
(d_X(z, x) \to \alpha) + d_X(z, w) + d_X(w, x)
$$

\n
$$
\geq (\alpha - d_X(z, x)) \lor 0 + d_X(z, x) \geq \alpha,
$$

\n
$$
(\Rightarrow)(d_X(z, x) \to \alpha) + d_X(z, w) \geq (\alpha - d_X(w, x)) \lor 0
$$

\n
$$
(\Rightarrow)(d_x^{-1}(z) \to \alpha) + d_X(z, w) \geq d_x^{-1}(w) \to \alpha
$$

By (1), $\bigwedge_{x\in X} (d_X(x,-) + A(x)) \in \tau_{d_X}$ and $\bigvee_{x\in X} (d_X(-,x) \to A(x)) \in$ τ_{d_X} .

THEOREM 3.8. Let (X, d_X) and (Y, d_Y) be non-symmetric pseudometric spaces and $f: X \to Y$ be a map such that $d_Y(f(x), f(y)) \leq$ $d_X(x, y)$ for all $x, y \in X$. Then the followings hold.

(1) A map $f: (X, \tau_{d_X}) \to (Y, \tau_{d_Y})$ is continuous, that is, $f^{\leftarrow}(B) \in \tau_{d_X}$ for each $B \in \tau_{d_Y}$.

(2) For each $B \in [0,\infty]^Y$, $f^{\leftarrow}(F_2(B)) \leq F_1(f^{\leftarrow}(B))$ where

$$
F_1(A)(z) = \bigwedge_{x \in X} (A(x) + d_X(x, z)), \ F_2(B)(y) = \bigwedge_{w \in Y} (B(w) + d_Y(w, y)).
$$

(3) For each
$$
B \in [0, \infty]^Y
$$
, $G_1(f^{\leftarrow}(B)) \leq f^{\leftarrow}(G_2(B))$ where

$$
G_1(A)(z) = \bigvee_{x \in X} (d_X(z, x) \to A(x)), G_2(B)(y) = \bigvee_{w \in Y} (d_Y(y, w) \to B(w)).
$$

Proof. (1) For each $B \in \tau_{d_Y}, f^{\leftarrow}(B) \in \tau_{d_X}$ from

$$
f^{\leftarrow}(B)(x) + d_X(x, z) = B(f(x)) + d_X(x, z)
$$

\n
$$
\geq B(f(x)) + d_Y(f(x), f(z)) \geq B(f(z)) = f^{\leftarrow}(B)(z).
$$

(2) For each $B \in [0, \infty]^{Y}$,

$$
f^{\leftarrow}(F_2(B))(x) = F_2(B)(f(x)) = \bigwedge_{y \in X} (B(y) + d_Y(y, f(x)))
$$

\n
$$
\leq \bigwedge_{z \in X} (B(f(z)) + d_Y(f(z), f(x)) \leq \bigwedge_{z \in X} (f^{\leftarrow}(B)(z) + d_X(z, x))
$$

\n
$$
= F_1(f^{\leftarrow}(B))(x).
$$

(3) For each $B \in [0, \infty]^{Y}$,

$$
f^{\leftarrow}(G_2(B))(x) = G_2(B)(f(x)) = \bigvee_{y \in X} (d_Y(f(x), y) \to B(y))
$$

\n
$$
\geq \bigvee_{y \in X} (d_Y(f(x), y) \to B(y)) \geq \bigvee_{z \in X} (d_Y(f(x), f(z)) \to B(f(z)))
$$

\n
$$
\geq \bigvee_{z \in X} (d_X(x, z) \to B(f(z))) = G_1(f^{\leftarrow}(B))(x).
$$

THEOREM 3.9. Let (X, d_X) and (Y, d_Y) be non-symmetric pseudometrics and $f: X \to Y$ and $g: Y \to X$ maps. Then the following statements hold:

(1) (d_X, f, g, d_Y) is a residuated connection if $d_X(x_1, x_2) \ge d_Y(f(x_1), f(x_2))$ for all $x_1, x_2 \in X$ and $(d_{\tau_{d_X}}, F_1, G_1, d_{\tau_{d_Y}})$ is a residuated connection where

$$
F_1(A)(y) = \bigwedge_{y \in Y} (d_Y(f(x), y) + A(x)), \ \ G_1(B)(x) = \bigvee_{x \in X} (d_X(x, g(y)) \to B(y)).
$$

(2) (d_X, f, g, d_Y) is a dual residuated connection iff $d_Y(y_1, y_2) \ge d_X(g(y_1),$ $g(y_2)$) for all $y_1, y_2 \in Y$ and $d_{\tau_{d_Y}}(B, F_2(A)) = d_{\tau_{d_X}}(G_2(B), A)$ where

$$
F_2(A)(y) = \bigvee_{x \in X} (d_Y(y, f(x)) \to A(x)), \ \ G_2(B)(x) = \bigwedge_{y \in Y} (d_X(g(y), x) + B(y)).
$$

Proof. (1) Let $d_X(x, g(y)) = d_Y(f(x), y)$. Since $d_Y(f(x), y)+d_Y(y, w) \ge$ $d_Y(f(x), w)$, $(d_Y)_{f(x)} \in \tau_{d_Y}$. Thus $F_1(A) = \bigwedge_{y \in Y} (d_Y(f(x), -) + A(x)) \in$ τ_{d_Y} . Since $(d_X(x, g(y)) \to B(y)) + d_X(x, z) + d_X(z, g(y)) \geq B(y)$,

 $G(B) \in \tau_{d_X}$. Moreover,

$$
d_{\tau_{d_Y}}(F_1(A), B) = \bigvee_{y \in X} (F_1(A)(y) \to B(y))
$$

\n
$$
= \bigvee_{y \in Y} \Big(\bigwedge_{x \in X} (d_Y(f(x), y) + A(x)) \to B(y) \Big)
$$

\n
$$
= \bigvee_{y \in Y} \bigvee_{x \in X} \Big((B(y) - d_Y(f(x), y) - A(x)) \vee 0 \Big)
$$

\n
$$
= \bigvee_{y \in Y} \bigvee_{x \in X} \Big(((B(y) - d_Y(f(x), y)) \vee 0) - A(x)) \vee 0 \Big)
$$

\n
$$
= \bigvee_{x \in X} \bigvee_{y \in Y} \Big(A(x) \to (d_X(x, g(y)) \to B(y)) \Big)
$$

\n
$$
= \bigvee_{x \in X} \Big(A(x) \to \bigvee_{y \in Y} (d_X(x, g(y)) \to B(y)) \Big)
$$

\n
$$
= \bigvee_{x \in X} \Big(A(x) \to G_1(B)(x) \Big) = d_{\tau_{d_X}}(A, G_1(B)).
$$

Conversely, since $F_1((d_X)_x)(y) = \bigwedge_{z \in X} (d_Y(f(z), y) + (d_X)_x(z)) \le$ $d_Y(f(x), y)$ and $d_Y(f(z), y) + d_X(x, z) \ge d_Y(f(z), y) + d_Y(f(x), f(z)) \ge$ $d_Y(f(x), y), F_1((d_X)_x)(y) = d_Y(f(x), y)$, that is, $F_1((d_X)_x) = (d_Y)_{f(x)}$.

$$
d_{\tau_{d_Y}}((d_Y)_{f(x)}, B) = d_{\tau_{d_Y}}(F_1((d_X)_x), B) = d_{\tau_{d_X}}((d_X)_x, G_1(B))
$$

= $\bigvee_{z \in X} \bigvee_{y \in Y} ((d_X)_x(z) \to (d_X(z, g(y)) \to B(y)))$
= $\bigvee_{z \in X} \bigvee_{y \in Y} (((B(y) - d(f(x), y)) \lor 0 - d_X(x, z)) \lor 0)$
= $\bigvee_{y \in Y} (\bigwedge_{z \in X} (d_X(x, z) + d_X(z, g(y))) \to B(y))$
= $\bigvee_{y \in Y} (d_X(x, g(y))) \to B(y)) = d_{\tau_{d_Y}}(g^{\leftarrow}((d_X)_x, B)).$

Since $d_{\tau_{d_Y}}((d_Y)_{f(x)}, B) = d_{\tau_{d_Y}}(g^{\leftarrow}((d_X)_x, B)$ for all $B \in \tau_{d_Y}$, by Theorem 3.6(2), $(d_Y)_{f(x)}(y) = d_Y(f(x), y) = g^{\leftarrow}((d_X)_x)(y) = d_X(x, g(y))$ for all $x \in X, y \in Y$.

(2) Let $d_Y(y, f(x)) = d_X(g(y), x)$. Since $d_X(g(y), x) + d_X(x, z) \ge$ $d_X(g(y), z)$, $(d_X)_{g(y)} \in \tau_{d_X}$. Thus $G(B) \in \tau_{d_X}$. Since $(d_Y(y, f(x))) \to$ $A(x)$) + $d_Y(y, w) + d_Y(w, f(x)) \ge A(x)$, $F(A) \in \tau_{d_Y}$. Thus,

$$
d_{\tau_{d_X}}(G_1(B), A) = \bigvee_{x \in X} (G_2(B)(x) \to A(x))
$$

= $\bigvee_{x \in X} \Big(\bigvee_{y \in Y} (d_X(g(y), x) + B(y)) \to A(x) \Big)$
= $\bigvee_{Y \in Y} \bigvee_{x \in X} \Big(B(y) \to (d_Y(y, f(x)) \to A(x)) \Big)$
= $\bigvee_{y \in Y} \Big(B(y) \to \bigvee_{x \in X} (d_Y(y, f(x)) \to A(x)) \Big)$
= $\bigvee_{y \in Y} \Big(B(y) \to F_2(A)(y) \Big) = d_{\tau_{d_Y}}(B, F_2(A))$

Conversely, since $G_2((d_Y)_y)(x) = \bigwedge_{w \in X} (d_X(g(w), x) + (d_Y)_y(w)) \le$ $d_X(g(y), x)$ and $d_X(g(w), x)+d_Y(y, w) \geq d_X(g(w), x)+d_X(g(y), g(w)) \leq$

$$
d_X(g(y), x), G_2((d_Y)_y)(x) = d_X(g(y), x).
$$

\n
$$
d_{\tau_{d_X}}((d_X)_{g(y)}, A) = d_{\tau_{d_X}}(G_2((d_Y)_y), A) = d_{\tau_{d_Y}}((d_Y)_y, F_2(A))
$$

\n
$$
= \bigvee_{w \in Y} \bigvee_{x \in X} ((d_Y)_y(w) \to (d_Y(w, f(x))) \to A(x)) \big)
$$

\n
$$
= \bigvee_{x \in X} (\bigwedge_{w \in Y} (d_Y(y, w) + d_X(w, f(x))) \to A(x)) \big)
$$

\n
$$
= \bigvee_{x \in X} (d_Y(y, f(x))) \to A(x)) = d_{\tau_{d_X}}(f^{\leftarrow}((d_Y)_y, A).
$$

Since $d_{\tau_{d_X}}((d_X)_{g(y)}, A) = d_{\tau_{d_X}}(f^{\leftarrow}((d_Y)_y, A)$ for all $A \in \tau_{d_X}$, by Theorem 3.6(2), $(\ddot{d}_X)_{g(y)}(x) = d_X(g(y),x) = f^{\leftarrow}((d_Y)_y)(x) = d_Y(y,f(x))$. for all $x \in X, y \in Y$. \Box

THEOREM 3.10. Let (X, d_X) and (Y, d_Y) be non-symmetric pseudometric spaces and $f: X \to Y$ with $d_Y(f(x), f(y)) \leq d_X(x, y)$ for all $x, y \in X$. If $F: \tau_{d_X} \to \tau_{d_Y}$ is a function with $F((d_X)_x)(y) = (d_Y)_{f(x)}(y)$ such that $F(\bigwedge_{i\in \Gamma} A_i) = \bigwedge_{i\in \Gamma} F(A_i)$ and $F(\alpha+A) = \alpha + F(A)$, then there exists $G: \tau_{d_Y} \to \tau_{d_X}$ with $G(\bigvee_{i \in \Gamma} A_i) = \bigvee_{i \in \Gamma} G(A_i)$ and $G(\alpha \to A) =$ $\alpha \to G(A)$. Moreover, $(d_{\tau_{d_X}}, F, G, d_{\tau_{d_Y}})$ is a residuated connection.

Proof. Let $F: \tau_{d_X} \to \tau_{d_Y}$ be a function with $F((d_X)_x)(y) = (d_Y)_{f(x)}(y)$ such that $F(\bigwedge_{i\in \Gamma} A_i) = \bigwedge_{i\in \Gamma} F(A_i)$ and $F(\alpha + A) = \alpha + F(A)$. Since $(d_Y)_{f(x)}(y)+d_Y(y,w) \ge (d_Y)_{f(x)}(w), F((d_X)_x) \in \tau_{d_Y}$. Moreover, $F(A)(y)$ $= F(\bigwedge_{x \in X} (A(x) + (d_X)_x))(y) = \bigwedge_{x \in X} (A(x) + F((d_X)_x)(y)) = \bigwedge (A(x) +$ $d_Y(f(x), y)$ and $F(A) \in \tau_{d_Y}$. Hence F is well defined. Define $G : \tau_{d_Y} \to$ τ_{d_X} as

$$
G(B)(x) = \bigwedge \{A(x) \mid F(A) \ge B\} = \bigvee (d_Y(f(x), y) \to B(y)).
$$

Since $G(B)(x) + d_X(x, z) + d_Y(f(z), y) \ge G(B)(x) + d_Y(f(x), f(z)) +$ $d_Y(f(z), y) \ge G(B)(x) + d_Y(f(x), y) \ge B(y), G(B) \in \tau_{d_X}$. Moreover, $(d_{\tau_{d_X}}, F, G, d_{\tau_{d_Y}})$ is a residuated connection. \Box

EXAMPLE 3.11.(1) Let $(X = \{a, b, c\}, d_1)$ be a non-symmetric pseudometric and $f: X \to X$ a function in Example 3.4(1). Then $d_1(x, y) =$ $d_1(f(x), f(y))$ and $d_1(f(x), y) = d_1(x, f(y))$ for all $x, y \in X$. Let F_1, G_1 : $\tau_{d_1} \to \tau_{d_1}$ be functions with $F_1(A)(y) = \Lambda(A(x) + d_1(f(x), y))$ and $G_1(B)(x) = \bigvee_{y \in X} (d_1(f(x), y) \to B(y)) = \bigvee_{y \in X} (d_1(x, f(y)) \to B(y)).$ By Theorems 3.9(1) and 3.10, $(d_{\tau_{d_1}}, F_1, G_1, d_{\tau_{d_1}})$ is a residuated connection.

Let $F_2, G_2 : \tau_{d_1} \to \tau_{d_1}$ be functions with $F_2(A)(y) = \bigvee_{x \in X} (d_1(y, f(x)))$ $\to A(x)$ and $G_2(B)(x) = \bigwedge_{y \in X} (B(y) + d_1(f(y), x))$. By Theorem 3.9(2), $(d_{\tau_{d_1}}, F_2, G_2, d_{\tau_{d_1}})$ is a dual residuated connection.

(2) Let $(X = \{a, b, c\}, d_3)$ be a non-symmetric pseudo-metric and $g, h: X \to X$ functions in Example 3.4(3). Then $d_3(x, y) \geq d_3(q(x), q(y))$, $d_3(x, y) \geq d_3(h(x), h(y))$. Let $F_3, G_3 : \tau_{d_3} \to \tau_{d_3}$ be functions with $F_3(A)(y) = \bigwedge (A(x) + d_3(g(x), y))$ and $G_3(B)(x) = \bigvee_{y \in X} (d_3(g(x), y) \to$ $B(y)$). By Theorem 3.10, $(d_{\tau_{d_3}}, F_3, G_3, d_{\tau_{d_3}})$ is a residuated connection.

Let F_4, G_4 : $\tau_{d_3} \to \tau_{d_3}$ be a function with $F_4(A)(y) = \bigwedge (A(x) +$ $d_3(h(x), y)$ and $G_4(B)(x) = \bigvee_{y \in X} (d_3(h(x), y) \to B(y))$. By Theorem 3.10, $(d_{\tau_{d_3}}, F_4, G_4, d_{\tau_{d_3}})$ is a residuated connection.

References

- [1] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
- [2] T.S. Blyth, M.F. Janovitz, Residuation Theory, Pergamon Press, New York, 1972.
- [3] Y.C. Kim, Join-meet preserving maps and fuzzy preorders, Journal of Intelligent & Fuzzy Systems 28(2015), 1089–1097.
- [4] Y.C. Kim, Categories of fuzzy preorders, approximation operators and Alexandrov topologies, Journal of Intelligent & Fuzzy Systems 31 (2016), 1787–1793.
- [5] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems 157 (2006), 1865–1885.
- [6] Z.M. Ma, B.Q. Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Inf. Sci. 218 (2013), 194–204.
- [7] E. Orłowska, I. Rewitzky, Context algebras, context frames and their discrete duality, Transactions on Rough Sets IX, Springer, Berlin, 2008, 212–229.
- [8] E. Orlowska, I. Rewitzky Algebras for Galois-style connections and their discrete duality, Fuzzy Sets and Systems, 161 (2010), 1325–1342.
- [9] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci. 11 (1982), 341–356.
- [10] Z. Pawlak, Rough sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, Kluwer Academic Publishers, Dordrecht, The Netherlands (1991).
- [11] A. M. Radzikowska, E.E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems, 126 (2002), 137–155.
- [12] Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications, 58 (2009), 189– 201.
- [13] M. Ward, R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335–354,

Ju-Mok Oh

Department of Mathematics Gangneung-Wonju National, Gangneung 25457, Korea E-mail: jumokoh @gwnu.ac.kr

Yong Chan Kim

Department of Mathematics Gangneung-Wonju National, Gangneung 25457, Korea E-mail: yck@gwnu.ac.kr