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MAXIMAL EXPONENTS OF PRIMITIVE GRAPHS

WITH MINIMUM DEGREE 3

Byung Chul Song and Byeong Moon Kim∗

Abstract. In this paper, we find the maximum exponent of primi-
tive simple graphs G under the restriction deg(v) ≥ 3 for all vertex v
of G. Our result is also an answer of a Klee and Quaife type problem
on exponent to find minimum number of vertices of graphs which
have fixed even exponent and the degree of whose vertices are always
at least 3.

1. Introduction

A digraph D = (V,A) is primitive if there is a positive integer k such
that for any pair of vertices u, v, there is a u → v walk, a walk from u
to v, of length k. We say that the smallest such k is the exponent of D,
which is denoted by exp(D).

The exponent of D is the same with the minimum k such that for an
adjacency matrix A of D, Ak > 0, which means that every entry of Ak

is positive. Note that the diameter, diam(D), of a connected digraph is
the minimum k such that I + A+ A2 + · · ·+ Ak > 0.

Wielandt [14] found that the maximum exponent of a primitive di-
graph on n vertices is n2 − 2n+ 2. Dulmage and Mendelsohn [3] found
the upper bound n + s(n − 2) of exponents of primitive digraphs on n

vertices with girth s. Zhang [15] proved for all k with 2 ≤ k ≤ n2−2n+4
2

,
there is a primitive digraph on n vertices whose exponent is k. Holla-
day and Varga [4] and Lewin [9] computed the maximum exponent of
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primitive graphs. Moon and Pullman [10] proved that the maximum ex-
ponent of a primitive tournament on n vertices is n+2. Brualdi and Ross
[1] computed the lower and upper bounds of primitive nearly reducible
n × n matrices and classified the maximal cases. Ross [11] computed
the upper bound of the exponent of nearly reducible primitive n × n
matrix A such that the girth of the associated digraph of A is s. Shao
[12] proved for all k with 6 ≤ k ≤ n2−2n+10

9
, there is a nearly reducible

primitive n × n matrix whose exponent is k. Shen [13] computed the
maximum exponent of 2 regular digraphs. The authors [5] of this paper
found the maximum exponent of primitive Cartesian product graphs.

Klee and Quaife [7, 8], and Klee [6] obtained some interesting results
on diameter. They computed the minimum order of a simple graph with
specified diameter, connectivity and degree. They also classified all 3-
regular graphs which have the minimum order with given diameter and
connectivity.

In this paper, we find the maximum exponent of a primitive simple
graph G = (V,E) with |V | = n such that deg(v) ≥ 3 for all v ∈ V .
As a consequence, we obtain a Klee and Quaife type result for exponent
instead of diameter, which finds the minimum number of vertices of a
graph of minimum degree 3 with fixed even exponent.

2. Main theorem

Theorem 1. Let G = (V,E) be a primitive graph on n vertices and
let deg(v) ≥ 3 for all v ∈ V . Then, for t ≥ 2,

exp(G) ≤



8t− 4 for n = 6t, 6t+ 1,

8t− 2 for n = 6t+ 2, 6t+ 3,

8t for n = 6t+ 4,

8t+ 2 for n = 6t+ 5.

Moreover this upper bound is extremal for n ≥ 8, i.e., for each n ≥ 8,
there is a primitive graph on n vertices with minimum degree 3 and
exponent the smallest value of above inequality.

Proof. This Theorem follows from Propositions 1-4 in section 4.
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As a consequence of Theorem 1, we have the following Klee and Quaife
type result.

Corollary 1. Let G = (V,E) be a primitive graph, deg(v) ≥ 3 for
all v ∈ V and exp(G) = 2k. Then, the number of vertices of G is less
than or equal to 

3
2
k + 4, if k ≡ 0 (mod 4);

3k+7
2

, if k is odd;

3
2
k + 3, if k ≡ 2 (mod 4).

3. Some lemmas

Throughout this paper, we assume that G = (V,E) is a primitive
graph and deg(v) ≥ 3 for all v ∈ V . For a subgraph H of G, let VH and
EH be the set of vertices and edges of H respectively. Let Γ be the set
of all odd cycles in G. For C ∈ Γ, let lC be the length of C. We define

S0 = (
∪
C∈Γ

VC)
∪

{v ∈ V |dist(C0, v) + dist(v, C1)

= dist(C0, C1) for some C0, C1 ∈ Γ}.

For T ⊂ V , < T >= (T,ET ) is a subgraph of G where ET = E ∩
{{v, w}|v, w ∈ T}. Usually < T > is called the subgraph of G generated
by T . It is not difficult to see that < S0 > is connected. Let s0 be the
number of the elements of S0. For a subgraph H of G and v, w ∈ VH ,
we say v

α−→ w along H if there is a v → w walk in H with length

α. Also distH(v, w) is the minimum k such that v
k−→ w along H and

expH(v, w) is the minimum k such that for all α ≥ k, v
α−→ w along H.

We briefly write v
α−→ w, dist(v, w) and exp(v, w) instead of v

α−→ w

along G, distG(v, w) and expG(v, w), respectively. Note that if v
α−→ w,

v
β−→ w and α ̸≡ β (mod 2), then expG(v, w) ≤ max{α, β} − 1.

Lemma 1. If C0, C1 ∈ Γ, v ∈ S0, dist(C0, C1) =dist(C0, v)+dist(C1, v),
dist (C0, v) = t, and v = v0 → v1 → · · · → vt = w for some w ∈ VC0 ,
then v0, v1, · · · , vt are distinct elements of S0.
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Proof. Let k = dist(C0, C1) = dist(C0, v) + dist(C1, v). For all i =
0, · · · , t, we have k = dist(C0, C1) ≤ dist(C0, vi)+dist(vi, C1) ≤ dist(w, vi)+
dist(vi, C1) ≤ t− i+dist(vi, v)+dist(v, C1) ≤ t− i+ i+k− t = k. Hence
vi ∈ S0. Since dist(v0, vi) = t− i, we have vi ̸= vj for i ̸= j.

Lemma 2. Let T ⊂ S0 and w ∈ S0. If dist(w, T ) = k, then |S0−T | ≥
k.

Proof. Since dist<S0>(w, T ) = k, there is a walk w = w0 → w1 →
· · · → wk such that wi ∈ S0 − T and wi ̸= wj for i ̸= j < k and wk ∈ T .
So S0 − T ⊃ {w0, · · · , wk−1}. Therefore, we have |S0 − T | ≥ k.

Lemma 3. For each pair v, w ∈ S0,

exp<S0>(v, w) ≤ s0 − 1.

Proof. Case I) v ∈ VC for some C ∈ Γ.
There is w̃ ∈ VC such that dist<S0>(w̃, w) = dist<S0>(C,w) = t. Let

α be an integer such that v
α−→ w̃ along C with 0 ≤ α ≤ lC−1

2
. Since

v
α−→ w̃,

t−→ w, v
lC−α−→ w̃,

t−→ w and α + t ̸≡ lC − α + t (mod 2), we
have exp<S0>(v, w) ≤ lC − α + t − 1 ≤ lC + t − 1. By Lemma 2 with
T = VC , |S0 − VC | = s0 − lC ≥ t. So exp<S0>(v, w) ≤ s0 − 1.
Case II) v ̸∈

∪
C∈Γ VC .

There are C0, C1 ∈ Γ such that dist(C0, v) + dist(v, C1) = dist(C0, C1).
Let v0(∈ VC0), v1(∈ VC1) be vertices with dist(C0, C1) = dist(v0, v1) = h.
Let v0 = u0 → u1 → · · · → uh = v1, W1 = {ui|1 ≤ i ≤ h − 1}, and
W2 = VC0 ∪ VC1 ∪ W1. We may assume that v ∈ W1. Let w̃ ∈ W2

such that dist<S0>(w, w̃) = dist<S0>(w,W2) = t. From Lemmas 1 and
2, s0 ≥ |W2|+ t ≥ |VC0 |+ |VC1 |+ h− 1 + t = lC0 + lC1 + h+ t− 1. Let
dist(v, Ci) = hi for i = 0, 1. Note that h0 + h1 = h.

Subcase i) w̃ ∈ VC1 .

There is α such that v1
α−→ w̃ along C1 with 0 ≤ α ≤ lC1

−1

2
. Since v

h1−→

v1
α−→ w̃

t−→ w, v
h1−→ v1

lC1
−α

−→ w̃
t−→ w and h1+α+ t ̸≡ h1+ lC1 −α+ t

(mod 2), exp<S0>(v, w) ≤ h1 + lC1 − α+ t− 1 ≤ (h− 1) + lC1 + t− 1 =
h+ lC1 + t− 2 ≤ s0 − lC0 − 1 ≤ s0 − 4.

Subcase ii) w̃ ∈ W1.
Let ki = dist<S0>(w̃, Ci) for i = 0, 1. Since k0+h0+k1+h1 = 2h, k0+h0 ≤
h or k1+h1 ≤ h. If k0+h0 ≤ h, there are walks v

h0−→ v0
k0−→ w̃

t−→ w and
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v
h0−→ v0

lC0−→ v0
k0−→ w̃

t−→ w. Since h0+k0+t ̸≡ h0+lC0+k0+t (mod 2),
we have exp<S0>(v, w) ≤ h0+ lC0+k0+t−1 ≤ lC0+h+t−1 ≤ s0− lC1 ≤
s0 − 3. If k1 + h1 ≤ h, similarly we can show exp<S0>(v, w) ≤ s0 − 3.

Subcase iii) w̃ ∈ VC0 .
This is similar to subcase i).

Let Si = {v ∈ V |dist(v, S0) = i}, |Si| = si and k = max{i|si ≥ 1}.
Then, if u ∈ Si, v ∈ Sj and {u, v} ∈ E for some i, j, then |i− j| ≤ 1.

Lemma 4. If si = 1 and u, v ∈ Sj for some 1 ≤ i ≤ j ≤ k, then
{u, v} /∈ E.

Proof. If {u, v} ∈ E, since i < j and si = 1, u
j−i−→ w and v

j−i−→ w

for w ∈ Si. Thus, u
j−i−→ w

j−i−→ v
1−→ u is a closed walk of odd length

which must contains an odd cycle not included in < S0 >, which is a
contradiction.

Lemma 5. If 0 ≤ i ≤ k − 2, then si + si+2 ≥ 3.

Proof. If not, si = si+2 = 1. For any v ∈ Si+1, since si = 1, by Lemma
4, there is no vertex in Si+1 adjacent to v. So deg(v) ≤ si + si+2 = 2.
This is a contradiction.

Corollary 2. If 1 ≤ i ≤ k − 3, then si + si+1 + si+2 + si+3 ≥ 6.

Lemma 6. If k ≥ 3, then

sk−2 + sk−1 + sk ≥ 6.

Proof. Suppose sk−2 + sk−1 + sk ≤ 5. If there are u, v ∈ Sk such that
u ̸= v and {u, v} ∈ E, there are x1, x2, y1, y2 ∈ V \ {u, v} such that x1 ̸=
x2, y1 ̸= y2 and {xi, u}, {yi, v} ∈ E for i = 1, 2. Since u, v, x1, x2, y1, y2 ∈
Sk ∪ Sk−1 and sk−1 + sk ≤ 4, xi = yj for some i, j = 1, 2. Thus,
xi → u → v → yj = xi is a cycle of length 3, which is impossible. So if
u, v ∈ Sk, {u, v} /∈ E. Since deg(v) ≥ 3, sk−1 ≥ 3. So sk−2 + sk−1 + sk =
sk−1 + (sk−2 + sk) ≥ 3 + 3 = 6. This is a contradiction. Therefore
sk−2 + sk−1 + sk ≥ 6.

Lemma 7. If i ≥ 1 and si+si+1+· · ·+sk = m ≥ 8, then k ≤ i+ 2
3
m− 4

3
.

And if n ≥ s0 + 8, then k ≤ 2
3
n− 2

3
s0 − 1

3
.
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Proof. Let k− i = 4t+r and 0 ≤ r ≤ 3. Since 5 ≤ i+ 2
3
m− 4

3
, we may

assume that k ≥ 5. If r = 0, since t ≥ 2, by Corollary 2 and Lemma 6,

m = (si+si+1+si+2+si+3)+(si+4+si+5+si+6+si+7)+· · ·+(si+4t−8+· · ·+si+4t−5)

+si+4t−4 + si+4t−3 + (sk−2 + sk−1 + sk) ≥ 6(t− 1) + 2 + 6 = 6t+ 2.

So k = i + 4t = i + 2
3
(6t + 2) − 4

3
≤ i + 2

3
m − 4

3
. For r = 1, 2, 3, by

using Lemma 5, Corollary 2 and Lemma 6, we can prove it similarly. In
particular, if i = 1, then k ≤ 1 + 2

3
(n− s0)− 4

3
= 2

3
n− 2

3
s0 − 1

3
.

Lemma 8. If s0 = 3, then k ≤ 2
3
n− 19

3
.

Proof. Since s0 = 3, < S0 > is a cycle of length 3. For each v ∈ S0,
there is w ∈ V \ S0 such that {v, w} ∈ E. Suppose S0 = {v1, v2, v3}. If
1 ≤ i < j ≤ 3 and {vi, w′}, {vj, w′} ∈ E for some w′ ∈ S1, since vi →
w′ → vj → vi is a cycle of length 3, w′ ∈ S0, which is a contradiction. So
s1 ≥ 3 and for each w ∈ S1 there is only one v ∈ S0 such that w −→ v.
Suppose w1, w2 ∈ S1 and {w1, w2} ∈ E. If {w1, vi}, {w2, vi} ∈ E, w1 →
vi → w2 → w1 is a circuit of length 3. This is a contradiction. If
{w1, vi}, {w2, vj} ∈ E for 1 ≤ i < j ≤ 3, w1 → vi → vk → vj → w2 → w1

is a circuit of length 5 where vk is an element of S0 different from vi and
vj. This is a contradiction. So any two elements of S1 are not adjacent.
For each w ∈ S1 such that {vi, w} ∈ E, the number of vertices u ∈ S2

satisfying {u,w} ∈ E is at least two.

If u ∈ S2 and u
2−→ vi and u

2−→ vj for 1 ≤ i < j ≤ 3, u
2−→ vi

1−→
vj

2−→ u is a closed walk of length 5. If vk is an element of S0 different
from vi and vj, this walk does not pass through vk. So there is an odd
cycle different from < S0 >. This is a contradiction. So for all u ∈ S2,

there is only one v ∈ S0 such that v
2−→ u. Thus S2 has at least six

elements. Since s3+ s4+ · · ·+ sk = n− s0− s1− s2 ≤ n− 12, by Lemma
7, k ≤ 3 + 2

3
(n− 12)− 4

3
= 2

3
n− 19

3
.

Lemma 9.
exp(G) ≤ exp(< S0 >) + 2k.

Proof. If v, w ∈ V , v ∈ Si, w ∈ Sj for some i, j ≤ k. There are

v0, w0 ∈ S0 such that v
i−→ v0 and w

j−→ w0. If t = exp(< S0 >

)+2k− i− j ≥ exp(< S0 >), there is a walk v0
t−→ w0. So v

i−→ v0
t−→

w0
j−→ w. So exp(G) ≤ exp(< S0 >) + 2k.
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Corollary 3. If s0 = 3, then

exp(G) ≤ 4

3
n− 32

3
.

Lemma 10. If exp(< S0 >) = s0 − 1, then s0 is odd and < S0 > is
Hamiltonian.

Proof. Since exp(< S0 >) = s0 − 1, there are v, w ∈ S0 such that
exp<S0>(v, w) = s0−1. If v ∈

∪
C∈Γ VC , there exists C1 ∈ Γ such that v ∈

VC1 . There is w′ ∈ VC1 such that dist<S0>(w,w
′) = dist<S0>(w,C1) = t.

If w′ α−→ v along C1 with α ≤ lC1
−1

2
, there is w′ lC1

−α
−→ v along C1.

We have s0 − 1 = exp<S0>(w, v) ≤ lC1 − α + t − 1 ≤ s0 − α − 1.
So w′ = v and lC1 + t = s0. Thus S0 = VC1 ∪ {wi|0 ≤ i ≤ t − 1}.
Suppose t ≥ 1. Choose w = w0 → w1 → w2 → · · · → wt = v where
wi ∈ S0. Since dist<S0>(w,C1) = t, if j − i ≥ 2, wi and wj are not
adjacent. In particular, w is not adjacent to wi for 2 ≤ i ≤ t− 1. Since
deg<S0>(w) ≥ 2 and S0 = VC1 ∪ {wi|0 ≤ i ≤ t − 1}, w is adjacent to
at least one elements of VC1 . So t = 1 and there is ṽ ∈ VC1 such that

ṽ ̸= v and {w, ṽ} ∈ E. If ṽ
β−→ v along C! with 1 ≤ β ≤ lC1

−1

2
, since

ṽ
lC1

−β
−→ v along C1, s0 − 1 = exp<S0>(v, w) ≤ s0 − β − 1 ≤ s0 − 2. This

is a contradiction. So t = 0. Since lC1 = s − 0, < S0 > is Hamiltonian.
Since C1 ∈ Γ, s0 = lC1 is odd. If v /∈

∪
C∈Γ VC , by similar method as

used in case II of Lemma 3, we can obtain exp<S0>(v, w) ≤ s0−3, which
is a contradiction.

Note that if there are two vertices whose degree in < S0 > is 1 or 2
then s1 ≥ 2. And so s2 ≥ 4.

4. Proof of main theorem

Let G = (V,E) be a primitive graph and deg(v) ≥ 3 for all v ∈ V .

Proposition 1. If G has 6t or 6t+ 1 vertices and t ≥ 2, then

exp(G) ≤ 8t− 4.
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Proof. If s0 = 3, then

exp(G) ≤ 8t− 32

3
< 8t− 4,

by Corollary 3. Suppose that s0 ≥ 8. If n ≤ s0 + 7, then by Lemma 6,
k ≤ 4. By Lemma 9,

exp(G) ≤ s0 + 7 ≤ n+ 7 ≤ 6t+ 7 < 8t− 4.

If n ≥ s0 + 8, then by Lemma 3, 7 and 9,

exp(G) ≤ s0+2k−1 ≤ s0+2(
2

3
·6t− 2

3
s0−

1

3
)−1 ≤ 8t− 8

3
− 5

3
< 8t−4.

If s0 = 7, by Lemma 3, 7 and 9,

exp(G) ≤ 7 + 2k − 1 ≤ 6 + 2(
2

3
· 6t− 2

3
· 7− 1

3
) = 8t− 4.

If s0 = 6, by Lemma 7,

k ≤ 2

3
· 6t− 2

3
· 6− 1

3
= 4t− 13

3
.

So k ≤ 4t− 5. By Lemma 9,

exp(G) ≤ 5 + 2k ≤ 8t− 5 < 8t− 4.

If s0 = 4, then exp(< S0 >) = 2. By Lemma 3, 7 and 9,

exp(G) ≤ 2 + 2(
2

3
· 6t− 2

3
· 4− 1

3
) = 8t− 4.

If s0 = 5, by Lemma 7, k ≤ 2
3
· 6t − 2

3
· 5 − 1

3
= 4t − 11

3
. So k ≤ 4t − 4.

By Lemma 9,

exp(G) ≤ 4 + 2(4t− 4) = 8t− 4.

Proposition 2. If G has 6t+ 2 or 6t+ 3 vertices and t ≥ 2, then

exp(G) ≤ 8t− 2.

Proof. If s0 = 3, by Corollary 3,

exp(G) ≤ 4

3
(6t+ 2)− 32

3
= 8t− 8.
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If s0 ≥ 10, by Lemma 3, 7 and 9,

exp(G) ≤ s0 − 1 + 2k ≤ s0 − 1 + 2(
2

3
(6t+ 2)− 2

3
s0 −

1

3
)

= 8t− s0
3
+ 1 ≤ 8t− 7

3
< 8t− 2.

If s0 = 9 , by Lemma 7, k ≤ 2
3
(6t+ 2)− 2

3
9− 1

3
= 4t− 5. By Lemma

9,

exp(G) ≤ exp(< S0 >) + 2k ≤ 8 + 2(4t− 5) = 8t− 2.

If s0 = 8 , by Lemma 7, k ≤ 2
3
(6t+2)− 2

3
·8− 1

3
= 4t− 13

3
. So k ≤ 4t−5.

Then by Lemma 9,

exp(G) ≤ exp(< S0 >) + 2k ≤ 7 + 2(4t− 5) = 8t− 3.

If s0 = 6, by Lemma 3, 7 and 9,

k ≤ 2

3
(6t+ 2)− 12

3
− 1

3
= 4t− 3.

So

exp(G) ≤ exp(< S0 >) + 2k ≤ 5 + 2(4t− 3) = 8t− 1.

Since 8t − 1 ≥ 6t + 3 and 8t − 1 is odd, by [2], exp(G) ̸= 8t − 1. So
exp(G) ≤ 8t− 2.
If s0 = 4 , by Lemma 7, k ≤ 2

3
(6t+ 2)− 2

3
4− 1

3
≤ 4t− 5

3
. So k ≤ 4t− 2.

By Lemma 9,

exp(G) ≤ exp(< S0 >) + 2k ≤ 2 + 2(4t− 2) = 8t− 2.

If s0 = 7 , by Lemma 7, k ≤ 4t− 11
3
. So k ≤ 4t− 4. By Lemma 9,

exp(G) ≤ exp(< S0 >) + 2k ≤ 6 + 2(4t− 4) = 8t− 2.

If s0 = 5 , by Lemma 7, k ≤ 4t− 7
3
. So k ≤ 4t− 3. By Lemma 9,

exp(G) ≤ exp(< S0 >) + 2k ≤ 4 + 2(4t− 3) = 8t− 2.

Proposition 3. If G has 6t+ 4 vertices and t ≥ 2, then

exp(G) ≤ 8t.
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Proof. If s0 = 3, by Lemma 8 and Corollary 3, exp(G) ≤ 4
3
(6t+ 4)−

32
3
= 8t− 16

3
< 8t.

If s0 ≥ 10, by Lemma 7, k ≤ 2
3
(6t + 4) − 20

3
− 1

3
= 4t − 13

3
. Thus

k ≤ 4t− 5. By Lemma 9, exp(G) ≤ 9 + 8t− 10 = 8t− 1.
If s0 = 8, by Lemma 7, k ≤ 2

3
(6t + 4)− 16

3
− 1

3
= 4t− 3. By Lemma

9, exp(G) ≤ 7 + 2(4t − 3) = 8t + 1. Since 8t > 6t + 3 = n − 1, by [2],
exp(G) is even. So exp(G) ≤ 8t.

If s0 = 6, by Lemma 7, k ≤ 4t − 5
3
and thus we have k ≤ 4t − 2. So

exp(G) ≤ 5 + 2(4t − 2) = 8t + 1. Since 8t > 6t + 3 = n − 1, by [2],
exp(G) is even. So exp(G) = 8t.

If s0 = 9, by Lemma 7, k ≤ 4t− 4 and exp(G) ≤ 8 + 2(4t− 4) = 8t.
If s0 = 7, we have k ≤ 4t− 3 and 8t ≤ exp(G) ≤ 6 + 2(4t− 3) = 8t.
If s0 = 4, then exp(< S0 >) = 2. Since k ≤ 2

3
(6t+4)− 8

3
− 1

3
= 4t− 1

3
,

k ≤ 4t− 1, we have exp(G) ≤ 2 + 2(4t− 1) = 8t.
Finally, if s0 = 5, k ≤ 2

3
(6t + 4) − 10

3
− 1

3
= 4t − 1. If k = 4t − 1,

6t + 4 = s0 + (s1 + · · · + s4t−4) + (s4t−3 + s4t−2 + s4t−1) ≥ 5 + 6t − 6 +
6 = 6t + 5. This is a contradiction. So k ≤ 4t − 2. By Lemma 9,
exp(G) ≤ 5 + 8t− 4− 1 = 8t.

Proposition 4. If G has 6t+ 5 vertices and t ≥ 2, then

exp(G) ≤ 8t+ 2.

Proof. If s0 = 3, by Corollary 3,

exp(G) ≤ 4

3
(6t+ 5)− 32

3
= 8t− 4 < 8t+ 2.

If s0 ≥ 10, by Lemma 3, 7 and 9,

exp(G) ≤ 9 + 2(
2

3
n− 2

3
s0 −

1

3
) = 8t+

5

3
< 8t+ 2.

If s0 = 9, by Lemma 7, k ≤ 2
3
(6t+ 5)− 18

3
− 1

3
= 4t− 3. By Lemma 9 ,

exp(G) ≤ exp(< S0 >) + 2k ≤ 9 + 2(4t− 3) = 8t+ 2.

If s0 = 8, by Lemma 7, k ≤ 2
3
(6t+ 5)− 16

3
− 1

3
= 4t− 7

3
. So k ≤ 4t− 3.

By Lemma 9,

exp(G) ≤ exp(< S0 >) + 2k ≤ 8t+ 1 < 8t+ 2.

If s0 = 7, by Lemma 7, k ≤ 4t − 5
3
. So k ≤ 4t − 2. By Lemma 9,

exp(G) ≤ 6 + 2(4t− 2) = 8t+ 2.
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If s0 = 6, by Lemma 7, k ≤ 2
3
(6t+5)− 12

3
− 1

3
= 4t− 1. So exp(G) ≤

5 + 2(4t− 1) = 8t+ 3.

If s0 = 4, k ≤ 4t+ 1
3
. So k ≤ 4t. By Lemma 9, exp(G) ≤ 2 + 2(4t) =

8t+ 2.

If s0 = 5, since k ≤ 2
3
(6t+5)− 10

3
− 1

3
= 4t− 1

3
, k ≤ 4t−1. By Lemma

9, exp(G) ≤ 4 + 2(4t− 1) = 8t+ 2.

The following figure gives examples which assert the upper bound given
in Propositions 1 - 4 are extremal.
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Figure 1.

So we have the following Proposition.
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Proposition 5. If t ≥ 2 and 0 ≤ r ≤ 5, then there is a primitive
graph G on 6t+ r vertices such that the minimum degree of G is 3 and

exp(G) =



8t− 4, for r = 0, 1

8t− 2 for r = 2, 3,

8t for r = 4,

8t+ 2 for r = 5.

Thus Theorem 1 is proved.

Remark 1. For n ≤ 11, the upper bound of exp(G) in Theorem 1
is still true except n = 4. In that case, G ≃ K4 and exp(G) = 2. The
graphs in Figure 2 are extremal cases.
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