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2-COLOR RADO NUMBER FOR
Ty + T+ T =y1+Y2=2

ByeEoNnG MooN KiM, WOONJAE HWANG, AND BYUNG CHUL SONG*

ABSTRACT. An r-color Rado number N = R(L,r) for a system £ of
equations is the least integer, provided it exists, such that for every
r-coloring of the set {1,2,..., N}, there is a monochromatic solution
to L. In this paper, we study the 2-color Rado number R(£,2) for
E:x1+axo+-+x, =vy1 +Yy2 =2z when n > 4.

1. Introduction

For a,b € N with a < b, let [a,b] = {a,a +1,...,b}. A function
¢ : [1,N] — [1,r] is called an r-coloring of the set [1, N]. A solution
{1, x9,...,2,} to an equation L is said to be monochromatic if ¢(z1) =
c(xg) =+ =c(xy).

In 1916 Schur [17] proved the existence of the number N = S(r) such
that for a given integer r > 2 and every r-coloring of the set [1, N], there
exists a monochromatic solution to x + y = 2. The least such integer
is called the r-color Schur number S(r). There are some known Schur
numbers such as S(2) =5, S(3) = 14, S(4) = 45 [18] and S(5) = 161 [5],
but it is unknown yet for » > 6. Motivated by the Schur numbers, Rado
considered the same problem for a system of linear equations instead
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of the single equation x + y = z. He found the necessary and suffi-
cient conditions to determine if an arbitrary system of linear equations
admits a monochromatic solution for every coloring of the natural num-
bers with a finite number of colors [3,10]. If such a system always has a
monochromatic solution, then there is N such that for every r-coloring
of [1, N] this system has a monochromatic solution. The least number N
satisfying this property is called the r-color Rado number for the system.

The results on Rado number has been conducted mainly in 2-color
for a specific linear equation. As the most natural generalization of the
2-color Schur number S(2), Beutelspacher and Brestovansky [2] found
the 2-color Rado number for z; + 29 + -+ + 2,,—1 = x,,,. Harborth and
Maasberg [6,7] studied the 2-color Rado number for a(x +y) = bz which
is another generalization of it.

Hopkins and Schaal [8] found the 2-color Rado number for some spe-
cial classes of Z;’;l a;x; = x,, and conjectured for the general case. Guo
and Sun [4] proved this conjecture. Robertson and Myers [11] computed
the 2-color Rado number for some special classes of v+ y+ kz = fw, and
Saracino and Wynne [16] obtained this number when ¢ = 3. In [14, 15],
Saracino studied the 2-color Rado number for z1+zo+- - -+ 2ym_1 = ax,,.
There are some interesting results [1,9,12] in two important variants of
Rado numbers, disjunctive Rado numbers and off-diagonal Rado num-
bers.

Most of the results on Rado number have been limited on 2-color or
r-color Rado number for single equation. Consider a system of linear
equation £ : x1+x9+---+x, = y1 +y2 = z. It is known that the 2-color
Rado number for z; + x5 + -+ + x, = z is n®* + n — 1 [2] and that the
2-color Rado number for x +xo+4- - -+x, = y1+y2is [5[5]] [13]. In this
paper we show that the 2-color Rado number for the system of equations
£ is n? + n — 1, which is the same with that for x; + o + -+ - + 2, = 2.

2. Main Result

LEMMA 1. [2] For n > 4, the 2-color Rado number for x1 +x9+ - - - +
T, =z isn®>+n—1.

Consider the system of equation € : x1+xo+---+x, = y1+ys = z for
n > 4. By Lemma 1, the 2-color Rado number R(E,2) for £ is greater
than or equals to n?> +n — 1. Thus when N > n? 4+ n — 1, if we find a



2-color Rado number for 1 +xo + -+, =y1 +y2 = 2 381

monochromatic solution to £, then we can prove that the 2-color Rado
number for £ is n? +n — 1.

THEOREM 1. Ifn > 4, then the 2-color Rado number for £ is n?4+n—1.

Since the 2-color Rado number for z1+z3+- - -4z, = zisn?>+n—1, we
have R(E,2) > n?+n—1. Thus it suffices to prove R(£,2) < n?*+n—1.
Let ¢: [1,n?*+n—1] — {0,1} be a 2-coloring and let S.(£) be the set of
all [(z1,x2,...,2n), (Y1,Y2), 2] such that x1 +xo+ -+, = y1 + 12 = 2,
c(z;) = c(y;) = ¢(2) and 4,95,z € [I,n* +n—1] foralli =1,2,...,n
and j = 1,2. The inequality R(€,2) < n*+n—1 follows from S.(&) # 0.

Suppose that S.(£) = (. We want to find a contradiction in each
case. The proof consists of case by case considerations. We divide all
the cases into following 18 cases.

w0 0 )0 (2)
c(2)=0 2 e(n’ —n+1)=0---
C(n)zl{c(nzinJrl):l...(?,)

) cn”+n—-1)=0---(4)
2y 4 ce(n*+2)=0---(6)
e(2)=1 e(n”) = {c(n +2)=1---(7)
o) c(n®)=0-- (() - ©)
c(2n) =1 2 e(n® +n—1 0 9
(1) =0 (”) 1{ e(n*+n—1)=1---(10)

(n7) ( )= an+2§ ((12))
en?) =0 en?+n—1 c(n+2)=1, c(2n 0-
e(n+1)=1 (n+2)—c(2n)—1
c(n*+n—1)=1---(15)
c(n®*—1)=0---(16)

c(n?) =1 2 _ c(n—=1)=0---(17)
{ c(n _1)_1{ e(n—1)=1---(18)

Case (1): ¢(n) = ¢(2) = ¢(n?) = 0.
From the assumption, we have the following.

¢(n — 1) = 1, since otherwise [(1,...,1),(n —1,1),n] € S.(€),

¢(n —2) = 1, since otherwise [(1,...,1),(n —2,2),n] € S.(€),

¢(2n) = 1, since otherwise [(2,...,2), (n,n),2 ] Se(€),

c(n? —n) = 1, since otherwise [(n, .,n) (n? —n,n),n? € S.(€),

c(n? — ) = 1, since otherwise [(n,...,n), (n? —1,1),n% € S.(€).
Thus, [(n — on—1,n—2n—-22n),(n*—n,n—1),n*—1] € S.(€).

This is a contradiction.

- (13)
(14)
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Case (2): ¢(n) =¢(2) =0, c¢(n?*)=1,¢(n* —n+1)=0.

We have ¢(n — 1) = ¢(n — 2) = ¢(2n) = 1 by the same method as in
Case (1). Also we have ¢(n?—n+2) = 1 since otherwise [(n, ..., n,2), (n*—
n+1,1),n* —n+2] € S.(€).

Thus, [(n—1,...,n—1,n—2,2n), (n* —n+2,n — 2),n?] satisfies &.
This is a contradiction.

Case (3): c(n) =¢(2) =0, c(n®)=c(n®*—n+1)=1.

We have ¢(n — 1) = ¢(n —2) = ¢(2n) = 1 by the same method as
in Case (1). Thus, [(n—1,...,n—1,n—2,2n),(n> —n+1,n — 1),n?
€ S.(€), This is a contradiction.

Case (4): ¢(n) =0, ¢(2) =1, ¢(2n) =c(n®) =c(n*+n—-1)=0.

From the assumption, we have the following.

c(n? —n) = 1, since otherwise [(n,...,n), (n* —n,n),n?] € S.(€),
c(n? — 2n) = 1, since otherwise [(n,...,n),(n* — 2n,2n),n% €
S5.(6),

c(n —1) = 1, since otherwise [(1,...,1,n2), (n*,n —1),n* +n — 1]
€ Sc(€),

c(n + 1) =1, since otherwise [(1,...,1,n+ 1), (n,n),2n] € S.(£),
c(n®* —n +2) = 0, since otherwise [(n +1,...,n + 1,2,2), (n* —
n,2),n* —n+ 2] € S.(€).

c(n —2) = 1, since otherwise [(n,...,n),(n* —n + 2,n — 2),n?
€ S.(€),
c(n?* —n —1) = 0, since otherwise [(n — 1,...,n —1,n —2), (n* —

2n,n —1),n* —n — 1] € S.(€),
Thus, [(1,...,1,n%),(n> —n — 1,2n),n?> + n — 1] € S.(€), This is a
contradiction.
Case (5): ¢(n) =0, ¢(2) =1, ¢(2n) =c¢(n®) =0, c(n*+n—1) = 1.
From the assumption, we have the following.

¢(n+ 1) =1, since otherwise [(1,...,1,n+ 1), (n,n),2n] € S.(£),
c(n? —n) = 1, since otherwise [(n,...,n), (n? —n,n),n?] € S.(€),
c(n? +1) = 1, since otherwise [(n,...,n,2n,1),(n* 1),n* + 1] €

Sc(g)a

Thus, [(n+1,...,n+ 1,2),(n* —n,n+ 1),n* + 1] € S.(£), This is a
contradiction.
Case (6): c(n) =0, ¢(2) =1, ¢(2n) =0, c¢(n?) =1, c¢(n*+2) =0.
From the assumption, we have the following.

¢(n + 1) =1, since otherwise [(1,...,1,n+ 1), (n,n),2n] € S.(£),
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c(n®* —n+2) = 1, since otherwise [(n,...,n,2n,2n,1,1), (n> —n+
,n),n*+2] € S.(&),

c(n® — 2n + 2) = 1, since otherwise [(n,...,n,2n,2n,1,1),(n? —

2n +2,2n),n? + 2] € S.(€),

c(n?+1) = 1, since otherwise [(n, ..., n,2n,2n,1,1), (n?+1,1),n%+

2 € 5.().

¢(n—1) =0, since otherwise [(n+1,...,n+1,2),(n* —n+2,n—

1),n* +1] € Se(€),

¢(2n — 1) = 1, since otherwise [(1,...,1,n),(n,n —1),2n — 1] €

5.(6),

Thus, [(n+1,...,n+1,2),(n?* = 2n+2,2n — 1),n* + 1] € S.(€), This
is a contradiction.
Case (7): ¢(n) =0, ¢(2) =1, ¢(2n) =0, ¢(n*) =c(n*+2) = 1.
From the assumption, we have the following.
¢(n + 1) =1, since otherwise [(1,...,1,n+ 1), (n,n),2n] € S.(£),
c(n+2) = 0, since otherwise [(n+1,...,n+1,n+2,2), (n? 2),n?+2]

€ Se(€),
c(3) = 0, since otherwise [(n+1,...,n+1,3), (n? 2),n*+2] € S.(£),
c¢(n—1) = 1, since otherwise [(1,...,1,3), (n— 1 ,3),n+2] € SC( ),
c(n?*—2n+4) = 0, since otherwise [(2,...,2,n —2n—|—4) (n?,2),n?
2] € S.(&),
c(n® — 2n + 1) = 1, since otherwise [(n,...,n,1,3),(n* — 2n +
1,3),n% — 2n + 4] € S.(E),
c(n* — 2n + 3) = 1, since otherwise [(n,...,n,1,3),(n* — 2n +
3,1),n? —2n+4] € S5.(&),

Thus, [(n—1,...,n—1,2),(n? = 2n + 1,2),n* — 2n + 3] € S.(€), This

is a contradiction.
Case (8): ¢(n) =0, ¢(2) =c(2n) =1, ¢(n?) =0.
From the assumption, we have the following.
¢(2n — 2) = 0, since otherwise [(2,...,2), (2n — 2,2),2n] € S.(E),
¢(n—1) = 1, since otherwise [(1,...,1,n—1),(n—1,n—1),2n—2]
€ S.(E),
c(n? — 1) = 1, since otherwise [(n,...,n), (n?> —1,1),n% € S.(€),
c(n*+1) = 0, since otherwise [(n,...,n—1,2n), (n>—1,2),n? +1]
€ 5.(8),
c(n + 1) = 1, since otherwise [(n,...,n,n + 1),(n? 1),n*> + 1] €
Se(€),
Thus, [(2,...,2),(n —1,n+1),2n] € S.(£), This is a contradiction.
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Case (9): ¢(n) =0, ¢(2) =c(2n) =c(n*) =1, c(n*+n—1)=0.
We have ¢(2n —2) = 0 and ¢(n — 1) = 1 by the same method as in
Case (8). Also we have
c(n+1) = 0, since otherwise [(2,...,2),(n+1,n—1),2n] € S.(E),
c(n? —2) = 1, since otherwise [(n +1,...,n + 1,n), (n* —
1),n*+n—1] € S.(€),
c(2n—1) = 0, since otherwise [(n—1,...,n—1,2n—1), (n*-2,2), n?|
€ S.(€),
c(n —2) = 0, since otherwise [(n — 1,...,n — 1,n — 2,2n), (n? —
2,2),n% € S.(£),

Thus, [(1,...,1,n),(n—2,n+1),2n—1] € S.(£), This is a contradiction.

Case (10): ¢(n) =0, ¢(2) =c¢(2n) =c(n?*) =c(n*+n—-1)=1.

We have ¢(n — 1) = 1 and ¢(2n — 2) = 0 by the same method as in
Case (9). Also we have ¢(n? —n+1) = 0, since otherwise [(2,...,2,n? —
n+1),n%n—1),n*+n—-1] € Sc(é'). We have c(n* —n) = 1, since
otherwise [(n, coon 1), (n?—n,1),n? —n+1] € S.(€).

Also we have ¢(n? — 2n + 1) = 0, since otherwise [(n — 1,...,n —
1),(n*—=2n+1,n—1),n*—n| € SC(S) And We have ¢(n? —n+1) =1,
since otherwise [(n,...,n,1),(n* —2n +1 n) n? —n+1] € S.(€),

Thus, [(2,...,2,n> —n+1),(n%n ) n?+n—1] € S.(€). This is
a contradiction.

Case (11): ¢(n) =1, ¢(n?*) =c(n+1) = 0.

From the assumption, we have the following.

c(n? — 1) = 1, since otherwise [(n+1,...,n+1,1),(n? — 1,1),n?

€ S.(),

c(n?* —n —1) = 1, since otherwise [(n +1,...,n+1,1), (n* —n —
L,n+1),n? € S.(&),

c(n—1) = 0, since otherwise [(n,...,n,n—1),(n>—n—1,n),n*—1]
€ S.(&),

c(n* —n+1) = 1, since otherwise [(n+1,...,n+1,1),(n®> —n +

1,n—1),n? € S.(€),

¢(2) = 1, since otherwise [(1,...,1,2),(n — 1,2),n+ 1] € S.(&),
(2n) = 1, since otherwise [(1,...,1,n+1),(n — 1,n + 1),2n] €

Se(€),
Thus, [(2,...,2),(n n), 2n] € S.(€), This is a contradiction.
Case (1 ) cn) =1, ¢c(n?) =0, c(n+1) =1, ¢c(n®>+n—-1) =
c(n+2)=0.

From the assumption, we have the following.
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c(n —1) =1, since otherwise [(n +2,...,n+2,1),(n*,n—1),n* +
n—1] € S.(&),
c(n? +n —2) = 1, since otherwise [(n +2,...,n+2,1), (n* +n —
2,1),n? +n—1] € S.(&),
c(n2—2) = 0, since otherwise [(n+1,...,n+1,n,n), (n?=2,n),n*+
—2] € S.(€),

c( 3) = 0, since otherwise [(n + 1,...,n+1,n,n), (n?> —3,n +
1),n —I—n—2] € S.(8),
Thus, [(n+2,...,n+2,1,1),(n* — 3,1),n* — 2] € S.(€), This is a con-
tradiction.

Case (13): ¢(n) =1, ¢(n?) =0, ¢c(n+1) =1, ¢(n®*+n—-1) =
0, ¢(n+2)=1, ¢(2n) =0.

From the assumption, we have c¢(n—1) = ¢(n*—n—1) = c¢(n*+n—2) =
1, since otherwise [(1,...,1,n%),(n?>,n — 1),n*> + n — 1] € S.(€), and
n?+m—1)=m*-n—-1)+2n=(n*>+n—2)+ 1. We also have the
following

¢(2n — 1) = 0, since otherwise [(n +1,...,n+ 1,n,n), (n* —n —
1,2n —1),n* +n — 2] € S.(&),

¢(2) = 1, since otherwise [(2,...,2),(2n —1,1),2n] €
(n* —n+1) =0, since otherwise [(n —1,...,n —
,2),n* —n+1] € S.(€),
(n?
)

2 _

Se(€),
1,n),(n* —n—

n?—1) = 0, since otherwise [(n+1,....,n+1,n—1),(n* —1,n—
,n?+n—2] €8.(&),
Thus, [(1,...,1,n*—n+1), (n?~1,1),n% € S.(€), This is a contradiction.
Case (14): ¢(n) =1, ¢(n?*) =0, ¢c(n+1) =1, ¢(n*+n—-1) =
0, c(n+2)=c¢(2n) = 1.
From the assumption, we have the following.

c
1
&
1

c(n —1) =1, since otherwise [(1,...,1,n?),(n*,n —1),n* +n — 1]

€ S.(€),

¢(2) = 0, since otherwise [(2,...,2),(n+1,n —1),2n] € S.(E),

c(n*+n—2) =1, since otherw1se [(1,...,1,n%), (n*+n—2,1),n*+

n—1] € S.(&),

c(n?—2) = 0, since otherwise [(n+1,...,n+1,n,n), (n*=2,n),n*+
- 2] S SC(E)a

c(n?* —n—2) = 0, since otherwise [(n+1,...,n+1,n,n),(n* —n—

2,2n),n? +n — 2] € S.(€),
Thus, [(1,...,1,2,2,2,n%> —n — 2),(n*> — 2,2),n% € S.(€), This is a
contradiction.
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Case (15): ¢(n) =1, ¢(n®*) =0, ¢c(n+1)=c(n*+n—-1)=1.
From the assumption, we have the following.

c(n?—1) = 0, since otherwise [(n+1,...,n+1,n), (n*—1,n),n*+
n—1] € S.(€),

c(n* — 2) = 0, since otherwise [(n + 1,...,n+ 1,n),(n? — 2,n +
1),n*+n—1] € S.(&),

c(n*—n+1) = 1, since otherwise [(1,...,1,n?—n+1), (n*~1,1),n?|
€ S.(8),

c(2n—2) = 0, since otherwise [(n+1,...,n+1,n),(n*—n+1,2n—
2),n*+n—1] € S.(&),

¢(n—1) = 1, since otherwise [(1,...,1,n—1),(n—1,n—1),2n—2]
€ S.(&),

c(n?* —2n) = 0, since otherwise [(n —1,...,n—1,n), (n* = 2n,n +
1),n* —n+1] € S.(€),
c(n*> —n — 1) = 1, since otherwise [(1,...,1,n*> —n — 1), (n? —

2n,2n — 2),n* — 2| € S.(€),
c(2) = 1, since otherwise [(2,...,2,n*—2n), (n®*—2n,2n—2),n? -2
€ 5.(&),

Thus, [(n—1,...,n—1,n),(n*> —n —1,2),n* —n+1] € S.(€), This is
a contradiction.

Case (16): ¢(n) = ¢(n?) =1, ¢(n* —1) =0.

From the assumption, we have the following.

c(n? —n) = 0, since otherwise [(n,...,n), (n* —n,n),n?] € S.(€),
c(n—1) = 1, since otherwise [(1,...,1,n?—n), (n*—n,n—1),n?—1]
€ S.(&),

c(n? —2) = 1, since otherwise [(1,...,1,n? —n), (n? —2,1),n* — 1]
€ Se(€),

c(2) = 0, since otherwise [(n,...,n), (n* —2,2),n% € S.(&),

c(n®* —n — 1) = 0, since otherwise [(n,...,n,n —1,n — 1), (n* —

n—1,n—1),n*—2] € S.(),

c(n + 1) = 1, since otherwise [(n + 1,...,n + 1,1,1),(n* — n —
1,1),n? —n] € S.(£),

c(n® +n — 1) = 0, since otherwise [(n + 1,...,n + 1,n), (n? n —
1),n*+n—1] € S.(€),

c(n® +n —2) = 1, since otherwise [(1,...,1,2,n% —1),(n®> +n —
2,1),n*+n—1] € S.(€),

Thus, [(n+1,...,n+ 1,n,n),(n? —2,n),n*>+n —2] € S.(€), This is a
contradiction.
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Case (17): ¢(n) =c(n*) =c(n*—-1)=1, ¢(n—1) =0.
We have ¢(n? —n) = 0 by the same method as in Case (16). Also we
have

c(n2 —n — 1) = 1, since otherwise [(n — 1,...,n — 1), (n?> —n —
1,1),n? —n] € S.(£),

c(n + 1) = 0, since otherwise [(n,...,n),(n> —n — 1,n + 1),n?

€ Sc(€),

¢(2) = 1, since otherwise [(1,...,1,2),(n — 1,2),n + 1] € S.(£),
¢(2n) = 0, since otherwise [(2,...,2),(n,n),2n] € S.(€),

Thus, [(1,...,1,n+1),(n—1,n+1),2n] € S.(£), This is a contradiction.
Case (18): ¢(n) =c¢(n*) =c(n* —1)=c(n—1) = 1.
We have ¢(n? —n) = 0 by the same method as in Case (16). Also we
have

c(n* —n — 1) = 0, since otherwise [(n,...,n,n —1),(n* —n —
1,n),n*—1] € S.(&),

c(n + 1) = 1, since otherwise [(n + 1,...,n + 1,1,1),(n*> — n —
1,1),n? —n] € S.(£),

c(n*—n+1) = 0, since otherwise [(n,...,n), (n> —n+1,n—1),n?]
€ S.(€),

c(n? —2n + 1) = 1, since otherwise [(1,...,1,n? —2n + 1), (n? —
n—1,1),n? —n] € S.(€),

¢(2n—2) = 0, since otherwise [(n—1,...,n—1,2n—2), (n* —2n+
1,2n —2),n? — 1] € S.(€),

c(n —2) = 1, since otherwise [(n —2,...,n —2,2n —2), (n®> —n —
1,1),n? —n] € S.(£),

(n —|— n — 1) = 0, since otherwise [(n +1,...,n + 1,n), (n?,n —
1),n* +n—1] € S.(€),
c(2) = 1, since otherwise [(2,...,2,n* —n+1),(n* —n+1,2n —
2),n? +n—1] € S5.(8),

c(n?*—n+2) = 0, since otherwise [(n,...,n,n), (n*—n+2,n—2),n?
€ S.(€),
c(n?+1) = 0, since otherwise [(n,...,n,n+ 1), (n? —1,2),n? + 1]
€ S.(€),

c(n?—2n+3) = 1, since otherwise [(1,...,1,n?2—n+2), (n?> —2n+
3,2n —2),n%* + 1] € S.(€),

Thus, [(n—1,...,n—1,2),(n* —2n + 1,2),n* — 2n + 3] € S.(€), This
is a contradiction.
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