Korean J. Math. 28 (2020), No. 2, pp. 379–389 http://dx.doi.org/10.11568/kjm.2020.28.2.379

2-COLOR RADO NUMBER FOR

 $x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$

Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song[∗]

ABSTRACT. An r-color Rado number $N = R(\mathcal{L}, r)$ for a system $\mathcal L$ of equations is the least integer, provided it exists, such that for every r-coloring of the set $\{1, 2, ..., N\}$, there is a monochromatic solution to $\mathcal L$. In this paper, we study the 2-color Rado number $R(\mathcal E, 2)$ for $\mathcal{E}: x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$ when $n \geq 4$.

1. Introduction

For $a, b \in \mathbb{N}$ with $a < b$, let $[a, b] = \{a, a+1, \ldots, b\}$. A function $c : [1, N] \rightarrow [1, r]$ is called an r-coloring of the set $[1, N]$. A solution ${x_1, x_2, \ldots, x_n}$ to an equation L is said to be monochromatic if $c(x_1)$ $c(x_2) = \cdots = c(x_n).$

In 1916 Schur [\[17\]](#page-9-0) proved the existence of the number $N = S(r)$ such that for a given integer $r > 2$ and every r-coloring of the set [1, N], there exists a monochromatic solution to $x + y = z$. The least such integer is called the r-color Schur number $S(r)$. There are some known Schur numbers such as $S(2) = 5$, $S(3) = 14$, $S(4) = 45$ [\[18\]](#page-9-1) and $S(5) = 161$ [\[5\]](#page-9-2), but it is unknown yet for $r \geq 6$. Motivated by the Schur numbers, Rado considered the same problem for a system of linear equations instead

Received January 19, 2020. Revised June 20, 2020. Accepted June 22, 2020.

²⁰¹⁰ Mathematics Subject Classification: 05D10.

Key words and phrases: Rado number, Schur number, Ramsey theory, r-coloring. ∗ Corresponding author.

This work was supported by Basic Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(Grant No. NRF-2017R1D1A1B03028961).

c The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

of the single equation $x + y = z$. He found the necessary and sufficient conditions to determine if an arbitrary system of linear equations admits a monochromatic solution for every coloring of the natural numbers with a finite number of colors [\[3,](#page-9-3)[10\]](#page-9-4). If such a system always has a monochromatic solution, then there is N such that for every r-coloring of $[1, N]$ this system has a monochromatic solution. The least number N satisfying this property is called the r-color Rado number for the system.

The results on Rado number has been conducted mainly in 2-color for a specific linear equation. As the most natural generalization of the 2-color Schur number $S(2)$, Beutelspacher and Brestovansky [\[2\]](#page-9-5) found the 2-color Rado number for $x_1 + x_2 + \cdots + x_{m-1} = x_m$. Harborth and Maasberg [\[6,](#page-9-6)[7\]](#page-9-7) studied the 2-color Rado number for $a(x+y) = bz$ which is another generalization of it.

Hopkins and Schaal [\[8\]](#page-9-8) found the 2-color Rado number for some special classes of $\sum_{i=1}^{m-1} a_i x_i = x_m$ and conjectured for the general case. Guo and Sun [\[4\]](#page-9-9) proved this conjecture. Robertson and Myers [\[11\]](#page-9-10) computed the 2-color Rado number for some special classes of $x+y+kz = \ell w$, and Saracino and Wynne [\[16\]](#page-9-11) obtained this number when $\ell = 3$. In [\[14,](#page-9-12) [15\]](#page-9-13), Saracino studied the 2-color Rado number for $x_1+x_2+\cdots+x_{m-1}=ax_m$. There are some interesting results [\[1,](#page-9-14) [9,](#page-9-15) [12\]](#page-9-16) in two important variants of Rado numbers, disjunctive Rado numbers and off-diagonal Rado numbers.

Most of the results on Rado number have been limited on 2-color or r-color Rado number for single equation. Consider a system of linear equation $\mathcal{E}: x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$. It is known that the 2-color Rado number for $x_1 + x_2 + \cdots + x_n = z$ is $n^2 + n - 1$ [\[2\]](#page-9-5) and that the 2-color Rado number for $x_1+x_2+\cdots+x_n=y_1+y_2$ is $\lceil \frac{n}{2} \rceil$ $\frac{n}{2} \lceil \frac{n}{2}$ $\frac{n}{2}$] [\[13\]](#page-9-17). In this paper we show that the 2-color Rado number for the system of equations \mathcal{E} is $n^2 + n - 1$, which is the same with that for $x_1 + x_2 + \cdots + x_n = z$.

2. Main Result

LEMMA 1. [\[2\]](#page-9-5) For $n > 4$, the 2-color Rado number for $x_1 + x_2 + \cdots$ $x_n = z \text{ is } n^2 + n - 1.$

Consider the system of equation $\mathcal{E}: x_1+x_2+\cdots+x_n=y_1+y_2=z$ for $n \geq 4$. By Lemma 1, the 2-color Rado number $R(\mathcal{E}, 2)$ for $\mathcal E$ is greater than or equals to $n^2 + n - 1$. Thus when $N \geq n^2 + n - 1$, if we find a

2-color Rado number for
$$
x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z
$$
 381

monochromatic solution to \mathcal{E} , then we can prove that the 2-color Rado number for $\mathcal E$ is $n^2 + n - 1$.

THEOREM 1. If $n \geq 4$, then the 2-color Rado number for \mathcal{E} is n^2+n-1 .

Since the 2-color Rado number for $x_1+x_2+\cdots+x_n = z$ is n^2+n-1 , we have $R(\mathcal{E}, 2) \ge n^2 + n - 1$. Thus it suffices to prove $R(\mathcal{E}, 2) \le n^2 + n - 1$. Let $c : [1, n^2 + n - 1] \rightarrow \{0, 1\}$ be a 2-coloring and let $S_c(\mathcal{E})$ be the set of all $[(x_1, x_2, \ldots, x_n), (y_1, y_2), z]$ such that $x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$, $c(x_i) = c(y_j) = c(z)$ and $x_i, y_j, z \in [1, n^2 + n - 1]$ for all $i = 1, 2, ..., n$ and $j = 1, 2$. The inequality $R(\mathcal{E}, 2) \leq n^2 + n - 1$ follows from $S_c(\mathcal{E}) \neq \emptyset$.

Suppose that $S_c(\mathcal{E}) = \emptyset$. We want to find a contradiction in each case. The proof consists of case by case considerations. We divide all the cases into following 18 cases.

$$
c(1) = 0
$$
\n
$$
c(1) = 0
$$
\n
$$
c(n) = 1
$$
\n
$$
\begin{cases}\nc(n^2) = 0 \quad \begin{cases}\nc(n^2) = 0 \quad \text{(ii)} \\
c(n^2) = 1 \quad \begin{cases}\nc(n^2 - n + 1) = 1 \quad \text{(iii)} \\
c(n^2 - n + 1) = 1 \quad \text{(iv)}\n\end{cases} \\
c(2n) = 0
$$
\n
$$
c(2n) = 0
$$
\n
$$
\begin{cases}\nc(n^2) = 0 \quad \begin{cases}\nc(n^2 + n - 1) = 0 \quad \text{(iv)}\n\end{cases} \\
c(n^2) = 0 \quad \begin{cases}\nc(n^2 + n - 1) = 0 \quad \text{(iv)}\n\end{cases} \\
c(n^2) = 1
$$
\n
$$
\begin{cases}\nc(n^2) = 0 \quad \text{(iv)}\n\end{cases} \\
c(n^2) = 1
$$
\n
$$
\begin{cases}\nc(n^2) = 0 \quad \text{(v)}\n\end{cases} \\
c(n^2) = 1
$$
\n
$$
\begin{cases}\nc(n^2) = 0 \quad \text{(v)}\n\end{cases} \\
c(n^2) = 1
$$
\n
$$
\begin{cases}\nc(n^2) = 0 \quad \text{(v)}\n\end{cases} \\
c(n^2) = 1
$$
\n
$$
\begin{cases}\nc(n^2 + n - 1) = 0 \quad \text{(v)}\n\end{cases} \\
c(n + 1) = 0 \quad \text{(v)}\n\begin{cases}\nc(n^2 + n - 1) = 0 \quad \text{(v)}\n\end{cases} \\
c(n + 2) = 0 \quad \text{(v)}\n\begin{cases}\nc(n + 2) = 0 \quad \text{(v)}\n\end{cases} \\
c(n + 2) = 1, \quad c(2n) = 0 \quad \text{(v)}\n\end{cases} \\
c(n + 2) = 1, \quad c(2n) = 0 \quad \text{(v)}\n\begin{cases}\nc(n + 2) = 0 \quad \text{(v)}\n\end{cases} \\
c(n + 2) = 1, \quad c(2n) = 1 \quad \text{(v)}\n\end{cases} \\
c(n^2) = 1
$$
\n
$$
\begin{cases}\nc(n^2 -
$$

Case (1): $c(n) = c(2) = c(n^2) = 0$. From the assumption, we have the following.

 $c(n-1) = 1$, since otherwise $[(1, \ldots, 1), (n-1, 1), n] \in S_c(\mathcal{E}),$ $c(n-2) = 1$, since otherwise $[(1, \ldots, 1), (n-2, 2), n] \in S_c(\mathcal{E}),$ $c(2n) = 1$, since otherwise $[(2, \ldots, 2), (n, n), 2n] \in S_c(\mathcal{E}),$ $c(n^2 - n) = 1$, since otherwise $[(n, \ldots, n), (n^2 - n, n), n^2] \in S_c(\mathcal{E}),$ $c(n^2 - 1) = 1$, since otherwise $[(n, ..., n), (n^2 - 1, 1), n^2] \in S_c(\mathcal{E})$. Thus, $[(n-1, \ldots, n-1, n-2, n-2, 2n), (n^2-n, n-1), n^2-1] \in S_c(\mathcal{E})$.

This is a contradiction.

Case (2): $c(n) = c(2) = 0$, $c(n^2) = 1$, $c(n^2 - n + 1) = 0$.

We have $c(n-1) = c(n-2) = c(2n) = 1$ by the same method as in Case (1). Also we have $c(n^2 - n + 2) = 1$ since otherwise $[(n, ..., n, 2), (n^2$ $n+1, 1, n^2-n+2 \in S_c(\mathcal{E}).$

Thus, $[(n-1,\ldots,n-1,n-2,2n),(n^2-n+2,n-2),n^2]$ satisfies \mathcal{E} . This is a contradiction.

Case (3): $c(n) = c(2) = 0$, $c(n^2) = c(n^2 - n + 1) = 1$.

We have $c(n-1) = c(n-2) = c(2n) = 1$ by the same method as in Case (1). Thus, $[(n-1,\ldots,n-1,n-2,2n),(n^2-n+1,n-1),n^2]$ $\in S_c(\mathcal{E})$, This is a contradiction.

Case (4): $c(n) = 0$, $c(2) = 1$, $c(2n) = c(n^2) = c(n^2 + n - 1) = 0$. From the assumption, we have the following.

 $c(n^2 - n) = 1$, since otherwise $[(n, \ldots, n), (n^2 - n, n), n^2] \in S_c(\mathcal{E}),$ $c(n^2 - 2n) = 1$, since otherwise $[(n, ..., n), (n^2 - 2n, 2n), n^2] \in$ $S_c(\mathcal{E})$, $c(n-1) = 1$, since otherwise $[(1, \ldots, 1, n^2), (n^2, n-1), n^2 + n - 1]$ $\in S_c(\mathcal{E}),$ $c(n + 1) = 1$, since otherwise $[(1, \ldots, 1, n + 1), (n, n), 2n] \in S_c(\mathcal{E}),$ $c(n^2 - n + 2) = 0$, since otherwise $[(n + 1, \ldots, n + 1, 2, 2), (n^2$ $n, 2), n^2 - n + 2 \in S_c(\mathcal{E}).$ $c(n-2) = 1$, since otherwise $[(n, \ldots, n), (n^2 - n + 2, n - 2), n^2]$ $\in S_c(\mathcal{E}),$ $c(n^2 - n - 1) = 0$, since otherwise $[(n - 1, \ldots, n - 1, n - 2), (n^2 2n, n-1, n^2 - n - 1 \in S_c(\mathcal{E}),$

Thus, $[(1, \ldots, 1, n^2), (n^2 - n - 1, 2n), n^2 + n - 1] \in S_c(\mathcal{E})$, This is a contradiction.

Case (5): $c(n) = 0$, $c(2) = 1$, $c(2n) = c(n^2) = 0$, $c(n^2 + n - 1) = 1$. From the assumption, we have the following.

 $c(n + 1) = 1$, since otherwise $[(1, \ldots, 1, n + 1), (n, n), 2n] \in S_c(\mathcal{E}),$ $c(n^2 - n) = 1$, since otherwise $[(n, \ldots, n), (n^2 - n, n), n^2] \in S_c(\mathcal{E}),$ $c(n^2+1) = 1$, since otherwise $[(n, \ldots, n, 2n, 1), (n^2, 1), n^2+1] \in$ $S_c(\mathcal{E})$,

Thus, $[(n+1,...,n+1,2),(n^2-n,n+1),n^2+1] \in S_c(\mathcal{E})$, This is a contradiction.

Case (6): $c(n) = 0$, $c(2) = 1$, $c(2n) = 0$, $c(n^2) = 1$, $c(n^2 + 2) = 0$. From the assumption, we have the following.

 $c(n + 1) = 1$, since otherwise $[(1, \ldots, 1, n + 1), (n, n), 2n] \in S_c(\mathcal{E}),$

2-color Rado number for $x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$ 383

 $c(n^2 - n + 2) = 1$, since otherwise $[(n, \ldots, n, 2n, 2n, 1, 1), (n^2 - n +$ $[2, n), n^2 + 2] \in S_c(\mathcal{E}),$ $c(n^2-2n+2)=1$, since otherwise $[(n,\ldots,n,2n,2n,1,1),(n^2 2n + 2, 2n$, $n^2 + 2 \in S_c(\mathcal{E}),$ $c(n^2+1) = 1$, since otherwise $[(n, \ldots, n, 2n, 2n, 1, 1), (n^2+1, 1), n^2+1]$ $2 \in S_c(\mathcal{E}),$ $c(n-1) = 0$, since otherwise $[(n+1, \ldots, n+1, 2), (n^2 - n + 2, n - 1)]$ 1), $n^2 + 1 \in S_c(\mathcal{E}),$ $c(2n-1) = 1$, since otherwise $[(1, \ldots, 1, n), (n, n-1), 2n-1] \in$ $S_c(\mathcal{E}),$ Thus, $[(n+1,\ldots,n+1,2),(n^2-2n+2,2n-1),n^2+1] \in S_c(\mathcal{E})$, This is a contradiction. **Case** (7): $c(n) = 0$, $c(2) = 1$, $c(2n) = 0$, $c(n^2) = c(n^2 + 2) = 1$. From the assumption, we have the following.

 $c(n + 1) = 1$, since otherwise $[(1, \ldots, 1, n + 1), (n, n), 2n] \in S_c(\mathcal{E}),$ $c(n+2) = 0$, since otherwise $[(n+1, \ldots, n+1, n+2, 2), (n^2, 2), n^2+2]$ $\in S_c(\mathcal{E}),$

 $c(3) = 0$, since otherwise $[(n+1, \ldots, n+1, 3), (n^2, 2), n^2+2] \in S_c(\mathcal{E}),$ $c(n-1) = 1$, since otherwise $[(1, \ldots, 1, 3), (n-1, 3), n+2] \in S_c(\mathcal{E}),$ $c(n^2-2n+4) = 0$, since otherwise $[(2,\ldots,2,n^2-2n+4),(n^2,2),n^2+$ $2 \in S_c(\mathcal{E}),$

 $c(n^2-2n+1) = 1$, since otherwise $[(n,\ldots,n,1,3),(n^2-2n+1)]$ $1, 3), n^2 - 2n + 4 \in S_c(\mathcal{E}),$

 $c(n^2-2n+3) = 1$, since otherwise $[(n,\ldots,n,1,3),(n^2-2n+3)]$ $3, 1), n^2 - 2n + 4 \in S_c(\mathcal{E}),$

Thus, $[(n-1,\ldots,n-1,2),(n^2-2n+1,2),n^2-2n+3] \in S_c(\mathcal{E})$, This is a contradiction.

Case (8): $c(n) = 0$, $c(2) = c(2n) = 1$, $c(n^2) = 0$.

From the assumption, we have the following.

 $c(2n-2) = 0$, since otherwise $[(2, \ldots, 2), (2n-2, 2), 2n] \in S_c(\mathcal{E}),$ $c(n-1) = 1$, since otherwise $[(1, \ldots, 1, n-1), (n-1, n-1), 2n-2]$ $\in S_c(\mathcal{E}),$ $c(n^2 - 1) = 1$, since otherwise $[(n, ..., n), (n^2 - 1, 1), n^2] \in S_c(\mathcal{E}),$ $c(n^2+1)=0$, since otherwise $[(n,\ldots,n-1,2n),(n^2-1,2),n^2+1]$ $\in S_c(\mathcal{E}),$ $c(n + 1) = 1$, since otherwise $[(n, \ldots, n, n + 1), (n^2, 1), n^2 + 1] \in$ $S_c(\mathcal{E}),$

Thus, $[(2,\ldots,2),(n-1,n+1),2n] \in S_c(\mathcal{E})$, This is a contradiction.

Case (9): $c(n) = 0$, $c(2) = c(2n) = c(n^2) = 1$, $c(n^2 + n - 1) = 0$. We have $c(2n-2) = 0$ and $c(n-1) = 1$ by the same method as in Case (8). Also we have

 $c(n+1) = 0$, since otherwise $[(2, \ldots, 2), (n+1, n-1), 2n] \in S_c(\mathcal{E}),$ $c(n^2-2) = 1$, since otherwise $[(n+1,...,n+1,n),(n^2-2,n+1)]$ 1), $n^2 + n - 1 \in S_c(\mathcal{E}),$ $c(2n-1) = 0$, since otherwise $[(n-1, \ldots, n-1, 2n-1), (n^2-2, 2), n^2]$ $\in S_c(\mathcal{E})$,

 $c(n-2) = 0$, since otherwise $[(n-1, \ldots, n-1, n-2, 2n), (n^2-1, n-2, 2n)]$ $[2,2), n^2] \in S_c(\mathcal{E}),$

Thus, $[(1,\ldots,1,n),(n-2,n+1),2n-1] \in S_c(\mathcal{E})$, This is a contradiction. Case (10): $c(n) = 0$, $c(2) = c(2n) = c(n^2) = c(n^2 + n - 1) = 1$.

We have $c(n-1) = 1$ and $c(2n-2) = 0$ by the same method as in Case (9). Also we have $c(n^2 - n + 1) = 0$, since otherwise $[(2, ..., 2, n^2 (n + 1), (n^2, n - 1), n^2 + n - 1] \in S_c(\mathcal{E})$. We have $c(n^2 - n) = 1$, since otherwise $[(n, ..., n, 1), (n^2 - n, 1), n^2 - n + 1] \in S_c(\mathcal{E})$.

Also we have $c(n^2-2n+1)=0$, since otherwise $[(n-1,\ldots,n-1)]$ 1), $(n^2 - 2n + 1, n - 1), n^2 - n] \in S_c(\mathcal{E})$. And we have $c(n^2 - n + 1) = 1$, since otherwise $[(n, ..., n, 1), (n^2 - 2n + 1, n), n^2 - n + 1] \in S_c(\mathcal{E}),$

Thus, $[(2,\ldots,2,n^2-n+1),(n^2,n-1),n^2+n-1] \in S_c(\mathcal{E})$. This is a contradiction.

Case (11): $c(n) = 1$, $c(n^2) = c(n+1) = 0$.

From the assumption, we have the following.

 $c(n^2-1)=1$, since otherwise $[(n+1,\ldots,n+1,1),(n^2-1,1),n^2]$ $\in S_c(\mathcal{E}),$ $c(n^2 - n - 1) = 1$, since otherwise $[(n+1, \ldots, n+1, 1), (n^2 - n 1, n + 1), n^2 \in S_c(\mathcal{E}),$ $c(n-1) = 0$, since otherwise $[(n, \ldots, n, n-1), (n^2 - n - 1, n), n^2 - 1]$ $\in S_c(\mathcal{E}),$ $c(n^2 - n + 1) = 1$, since otherwise $[(n+1, \ldots, n+1, 1), (n^2 - n +$ $1, n-1), n^2] \in S_c(\mathcal{E}),$ $c(2) = 1$, since otherwise $[(1, \ldots, 1, 2), (n-1, 2), n+1] \in S_c(\mathcal{E}),$ $c(2n) = 1$, since otherwise $[(1, \ldots, 1, n+1), (n-1, n+1), 2n] \in$ $S_c(\mathcal{E}),$

Thus, $[(2,\ldots,2),(n,n),2n] \in S_c(\mathcal{E})$, This is a contradiction.

Case (12): $c(n) = 1$, $c(n^2) = 0$, $c(n+1) = 1$, $c(n^2 + n - 1) =$ $c(n+2) = 0.$

From the assumption, we have the following.

2-color Rado number for $x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$ 385

 $c(n-1) = 1$, since otherwise $[(n+2,...,n+2,1),(n^2,n-1),n^2+$ $n-1 \in S_c(\mathcal{E})$, $c(n^2 + n - 2) = 1$, since otherwise $[(n+2,...,n+2,1),(n^2+n-2)]$ $2, 1), n^2 + n - 1 \in S_c(\mathcal{E}),$ $c(n^2-2) = 0$, since otherwise $[(n+1, \ldots, n+1, n, n), (n^2-2, n), n^2+$ $n-2 \in S_c(\mathcal{E}),$ $c(n^2-3) = 0$, since otherwise $[(n+1,...,n+1,n,n),(n^2-3,n+1,n^2,n+1,n^$ 1), $n^2 + n - 2 \in S_c(\mathcal{E}),$

Thus, $[(n+2,...,n+2,1,1),(n^2-3,1),n^2-2] \in S_c(\mathcal{E})$, This is a contradiction.

Case (13): $c(n) = 1$, $c(n^2) = 0$, $c(n+1) = 1$, $c(n^2 + n - 1) =$ 0, $c(n+2)=1$, $c(2n)=0$.

From the assumption, we have $c(n-1) = c(n^2 - n - 1) = c(n^2 + n - 2) =$ 1, since otherwise $[(1, \ldots, 1, n^2), (n^2, n-1), n^2 + n - 1] \in S_c(\mathcal{E})$, and $n^2 + (n-1) = (n^2 - n - 1) + 2n = (n^2 + n - 2) + 1$. We also have the following

 $c(2n-1) = 0$, since otherwise $[(n+1,...,n+1,n,n),(n^2-n-1)]$ $1, 2n - 1, n^2 + n - 2 \in S_c(\mathcal{E}),$ $c(2) = 1$, since otherwise $[(2, \ldots, 2), (2n - 1, 1), 2n] \in S_c(\mathcal{E}),$ $c(n^2 - n + 1) = 0$, since otherwise $[(n - 1, \ldots, n - 1, n), (n^2 - n [1, 2), n^2 - n + 1] \in S_c(\mathcal{E}),$ $c(n^2-1) = 0$, since otherwise $[(n+1, \ldots, n+1, n-1), (n^2-1, n-1)]$ 1), $n^2 + n - 2 \in S_c(\mathcal{E}),$

Thus, $[(1, ..., 1, n^2-n+1), (n^2-1, 1), n^2] \in S_c(\mathcal{E})$, This is a contradiction. Case (14): $c(n) = 1$, $c(n^2) = 0$, $c(n+1) = 1$, $c(n^2 + n - 1) =$ 0, $c(n+2) = c(2n) = 1$.

From the assumption, we have the following.

 $c(n-1) = 1$, since otherwise $[(1, \ldots, 1, n^2), (n^2, n-1), n^2 + n - 1]$ $\in S_c(\mathcal{E}),$ $c(2) = 0$, since otherwise $[(2, \ldots, 2), (n + 1, n - 1), 2n] \in S_c(\mathcal{E}),$ $c(n^2+n-2)=1$, since otherwise $[(1,\ldots,1,n^2),(n^2+n-2,1),n^2+$ $n-1 \in S_c(\mathcal{E}),$ $c(n^2-2) = 0$, since otherwise $[(n+1, \ldots, n+1, n, n), (n^2-2, n), n^2 +$ $n-2 \in S_c(\mathcal{E}),$ $c(n^2 - n - 2) = 0$, since otherwise $[(n+1, \ldots, n+1, n, n), (n^2 - n 2, 2n, n^2 + n - 2 \in S_c(\mathcal{E}),$

Thus, $[(1, \ldots, 1, 2, 2, 2, n^2 - n - 2), (n^2 - 2, 2), n^2] \in S_c(\mathcal{E})$, This is a contradiction.

Case (15): $c(n) = 1$, $c(n^2) = 0$, $c(n+1) = c(n^2 + n - 1) = 1$. From the assumption, we have the following. $c(n^2-1) = 0$, since otherwise $[(n+1, \ldots, n+1, n), (n^2-1, n), n^2 +$ $n-1$] $\in S_c(\mathcal{E}),$ $c(n^2-2) = 0$, since otherwise $[(n+1,...,n+1,n),(n^2-2,n+1)]$ 1), $n^2 + n - 1 \in S_c(\mathcal{E})$, $c(n^2-n+1)=1$, since otherwise $[(1,\ldots,1,n^2-n+1),(n^2-1,1),n^2]$ $\in S_c(\mathcal{E})$, $c(2n-2) = 0$, since otherwise $[(n+1, \ldots, n+1, n), (n^2 - n + 1, 2n -$ 2), $n^2 + n - 1 \in S_c(\mathcal{E}),$ $c(n-1) = 1$, since otherwise $[(1, \ldots, 1, n-1), (n-1, n-1), 2n-2]$ $\in S_c(\mathcal{E}),$ $c(n^2 - 2n) = 0$, since otherwise $[(n - 1, \ldots, n - 1, n), (n^2 - 2n, n +$ 1), $n^2 - n + 1 \in S_c(\mathcal{E}),$ $c(n^2 - n - 1) = 1$, since otherwise $[(1, \ldots, 1, n^2 - n - 1), (n^2 2n, 2n-2, n^2-2 \in S_c(\mathcal{E}),$ $c(2) = 1$, since otherwise $[(2, \ldots, 2, n^2-2n), (n^2-2n, 2n-2), n^2-2]$ $\in S_c(\mathcal{E}),$

Thus, $[(n-1, \ldots, n-1, n), (n^2 - n - 1, 2), n^2 - n + 1] \in S_c(\mathcal{E})$, This is a contradiction.

Case (16): $c(n) = c(n^2) = 1$, $c(n^2 - 1) = 0$. From the assumption, we have the following.

 $c(n^2 - n) = 0$, since otherwise $[(n, \ldots, n), (n^2 - n, n), n^2] \in S_c(\mathcal{E}),$ $c(n-1) = 1$, since otherwise $[(1, \ldots, 1, n^2-n), (n^2-n, n-1), n^2-1]$ $\in S_c(\mathcal{E})$, $c(n^2-2) = 1$, since otherwise $[(1, \ldots, 1, n^2-n), (n^2-2, 1), n^2-1]$ $\in S_c(\mathcal{E}),$ $c(2) = 0$, since otherwise $[(n, ..., n), (n^2 - 2, 2), n^2] \in S_c(\mathcal{E}),$ $c(n^2 - n - 1) = 0$, since otherwise $[(n, \ldots, n, n - 1, n - 1), (n^2$ $n-1, n-1, n^2-2 \in S_c(\mathcal{E}),$ $c(n + 1) = 1$, since otherwise $[(n + 1, \ldots, n + 1, 1, 1), (n^2 - n [1, 1), n^2 - n \in S_c(\mathcal{E}),$ $c(n^2 + n - 1) = 0$, since otherwise $[(n + 1, \ldots, n + 1, n), (n^2, n -$ 1), $n^2 + n - 1 \in S_c(\mathcal{E}),$ $c(n^2 + n - 2) = 1$, since otherwise $[(1, \ldots, 1, 2, n^2 - 1), (n^2 + n - 1)]$ $2, 1), n^2 + n - 1 \in S_c(\mathcal{E}),$

Thus, $[(n+1,...,n+1,n,n),(n^2-2,n),n^2+n-2] \in S_c(\mathcal{E})$, This is a contradiction.

2-color Rado number for $x_1 + x_2 + \cdots + x_n = y_1 + y_2 = z$ 387

Case (17): $c(n) = c(n^2) = c(n^2 - 1) = 1, c(n - 1) = 0.$

We have $c(n^2 - n) = 0$ by the same method as in Case (16). Also we have

 $c(n^2 - n - 1) = 1$, since otherwise $[(n - 1, \ldots, n - 1), (n^2 - n [1, 1), n^2 - n] \in S_c(\mathcal{E}),$ $c(n + 1) = 0$, since otherwise $[(n, \ldots, n), (n^2 - n - 1, n + 1), n^2]$ $\in S_c(\mathcal{E}),$ $c(2) = 1$, since otherwise $[(1, \ldots, 1, 2), (n-1, 2), n+1] \in S_c(\mathcal{E})$,

 $c(2n) = 0$, since otherwise $[(2, ..., 2), (n, n), 2n] \in S_c(\mathcal{E}),$

Thus, $[(1, \ldots, 1, n+1), (n-1, n+1), 2n] \in S_c(\mathcal{E})$, This is a contradiction. Case (18): $c(n) = c(n^2) = c(n^2 - 1) = c(n - 1) = 1$.

We have $c(n^2 - n) = 0$ by the same method as in Case (16). Also we have

 $c(n^2 - n - 1) = 0$, since otherwise $[(n, ..., n, n - 1), (n^2 - n [1, n), n^2 - 1] \in S_c(\mathcal{E}),$ $c(n + 1) = 1$, since otherwise $[(n + 1, \ldots, n + 1, 1, 1), (n^2 - n [1, 1), n^2 - n] \in S_c(\mathcal{E}),$ $c(n^2 - n + 1) = 0$, since otherwise $[(n, \ldots, n), (n^2 - n + 1, n - 1), n^2]$ $\in S_c(\mathcal{E}),$ $c(n^2-2n+1)=1$, since otherwise $[(1,\ldots,1,n^2-2n+1),(n^2-1)]$ $n-1, 1, n^2 - n \in S_c(\mathcal{E}),$ $c(2n-2) = 0$, since otherwise $[(n-1, \ldots, n-1, 2n-2), (n^2-2n+1)]$ $1, 2n - 2), n^2 - 1] \in S_c(\mathcal{E}),$ $c(n-2) = 1$, since otherwise $[(n-2, \ldots, n-2, 2n-2), (n^2 - n [1, 1), n^2 - n \in S_c(\mathcal{E}),$ $c(n^2 + n - 1) = 0$, since otherwise $[(n + 1, \ldots, n + 1, n), (n^2, n -$ 1), $n^2 + n - 1 \in S_c(\mathcal{E}),$ $c(2) = 1$, since otherwise $[(2, \ldots, 2, n^2 - n + 1), (n^2 - n + 1, 2n -$ 2), $n^2 + n - 1 \in S_c(\mathcal{E}),$ $c(n^2-n+2) = 0$, since otherwise $[(n, \ldots, n, n), (n^2-n+2, n-2), n^2]$ $\in S_c(\mathcal{E}),$ $c(n^2+1)=0$, since otherwise $[(n,\ldots,n,n+1),(n^2-1,2),n^2+1]$ $\in S_c(\mathcal{E}).$ $c(n^2-2n+3) = 1$, since otherwise $[(1, \ldots, 1, n^2-n+2), (n^2-2n+1)]$ $3, 2n - 2), n^2 + 1 \in S_c(\mathcal{E}),$

Thus, $[(n-1,\ldots,n-1,2),(n^2-2n+1,2),n^2-2n+3] \in S_c(\mathcal{E})$, This is a contradiction.

Acknowledgement

The authors would like to thank anonymous referee for valuable comments and corrections.

References

- [1] T. Ahmed and D. Schaal, On generalized Schur numbers, Exp. Math. 25 (2016), 213–218.
- [2] A. Beutelspacher and W. Brestovansky, Generalized Schur number, Lecture Notes in Math. 969 (1982), 30–38.
- [3] W. Deuber, Developments based on Rado's dissertation 'Studien zur Kombinatorik', in: Survey Combin., Cambridge University Press, 52–74 (1989).
- [4] S. Guo and Z.-W. Sun, *Determination of the two-color Rado number for* $a_1x_1 +$ $\cdots + a_m x_m = x_0$, J. Combin. Theory Ser. A 115 (2008), 345–353.
- [5] M.J.H. Heule, Schur number five, The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18),(2018).
- [6] H. Harborth and S. Maasberg, Rado numbers for $a(x + y) = bz$, J. Combin. Theory Ser. A 80 (1997), 356–363.
- [7] H. Harborth and S. Maasberg, All two-color Rado numbers for $a(x + y) = bz$, Discrete Math. 197/198 (1999), 397–407.
- [8] B. Hopkins and D. Schaal, On Rado numbers for $\sum_{i=1}^{m-1} a_i x_i = x_m$, Adv. in Appl. Math. 35 (2005), 433–441.
- [9] W. Kosek and D. Schaal, A note on disjunctive Rado numbers, Adv. in Appl. Math. **31** (2003), 433-439.
- [10] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 424–480.
- [11] A. Robertson and K. Myers, Some two color, four variable Rado numbers, Adv. in Appl. Math. 41 (2008), 214–226.
- [12] A. Robertson and D. Schaal, *Off-diagonal generalized Schur numbers*, Adv. in Appl. Math. 26 (2001), 252–257.
- [13] D. Saracino, *The 2-color rado number of* $x_1 + x_2 + \cdots + x_n = y_1 + y_2 + \cdots + y_k$, Ars Combinatoria 129 (2016), 315–321.
- [14] D. Saracino, The 2-color rado number of $x_1 + x_2 + \cdots + x_{m-1} = ax_m$, Ars Combinatoria 113 (2014), 81–95.
- [15] D. Saracino, The 2-color rado number of $x_1 + x_2 + \cdots + x_{m-1} = ax_m$, II, Ars Combinatoria 119 (2015), 193–210.
- [16] D. Saracino and B. Wynne, *The 2-color Rado number of* $x + y + kz = 3w$, Ars Combinatoria 90 (2009), 119–127.
- [17] I. Schur, Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$, Jahresber. Deutsch. Math.-Verein. 25 (1916), 114–117.
- [18] W. Wallis, A. Street and J. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Math. 48, Springer (1972).

Byeong Moon Kim

Department of Mathematics Gangneung-Wonju National University Gangneung 25457, Korea E-mail: kbm@gwnu.ac.kr

Woonjae Hwang

Division of Applied Mathematical Sciences Korea University, Sejong 30019, Korea E-mail: woonjae@korea.ac.kr

Byung Chul Song

Department of Mathematics Gangneung-Wonju National University Gangneung 25457, Korea E-mail: bcsong@gwnu.ac.kr