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ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED

INTEGRAL OPERATOR

Ghulam Farid and Yasir Mehboob

Abstract. Opial inequality and its consequences are useful in establishing exis-
tence and uniqueness of solutions of initial and boundary value problems for differ-
ential and difference equations. In this paper we analyze Opial-type inequalities for
convex functions. We have studied different versions of these inequalities for a gener-
alized integral operator. Further difference of Opial-type inequalities are utilized to
obtain generalized mean value theorems, which further produce various interesting
derivations for fractional and conformable integral operators.

1. Introduction and Preliminary Results

Opial obtained the following integral inequality in 1960 [22].

Theorem 1.1. Let g ∈ C1[0, h] be such that g(0) = g(h) = 0 and g(t) > 0 for
t ∈ (0, h). Then ∫ h

0

|g(t)g′(t)|dt ≤ h

4

∫ h

0

(g′(t))2dt.

Here
h

4
is a best possibility constant.

Many researchers have given generalizations and extensions of this well known
Opial inequality in different time spans, see [5–7, 9, 20, 23, 24]. Recently Opial-type
inequalities are studied for fractional derivatives and integral operators involving Ca-
puto, Canavati and Riemann-Liouville, see [2–4, 10] and the references therein. In
this paper our aim is to produce new Opial-type inequalities for convex functions
using a generalized integral operator. The differences of these inequalities have been
investigated by mean value theorems. To proceed further, we need the following
characterizations [25]:

Andrić at el. in [4] gave the following Opial-type inequality for convex functions.

Theorem 1.2. Let φ : [0,∞) → R be a differentiable function such that for
q > 1 the function φ(x1/q) is convex and φ(0) = 0. Let η ∈ U1(θ,K) where
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a

(K(x, t))pdt
)1/p ≤M and 1

p
+ 1

q
= 1. Then∫ b

a

|η(x)|1−qφ′(|η(x)|)|θ(x)|qdx ≤ q

M q
φ

(
M

(∫ b

a

|θ(x)|qdx
)1/q

)
(1)

≤ q

M q(b− a)

∫ b

a

φ((b− a)1/qM |θ(x)|)dx.

If the function φ(x1/q) is concave, then the inequality holds in reverse direction.

The following extensions of Opial-type inequalities of Mitrinović and Pečarić are
given by Farid et al. in [11]:

Theorem 1.3. Let φ, g : [0,∞) → R be differentiable convex and increasing
functions with φ(g(0)) = 0. Also let η ∈ U1(g ◦ θ,K) and |K(x, t)| ≤ M , where M is
a constant. Then the following inequalities hold:

∫ b

a

φ
′
(g(|η(x)|))g′(|η(x)|)|g ◦ θ(x)|dx ≤ 1

M
φ

(
g

(
M

∫ b

a

|g ◦ θ(x)|dx
))(2)

≤ 1

M(b− a)

∫ b

a

φ(g(M(b− a)|g ◦ θ(x)|))dx.

Theorem 1.4. Let φ : [0,∞) → R be a differentiable convex and increasing
function with φ(g(0)) = 0. Also let η ∈ U1(θ,K) and |K(x, t)| ≤ M , where M is
a constant. Then for q > 1 the following inequalities hold:∫ b

a

φ
′
((|η(t)|)q)|η(t)|q−1|θ(t)|qdt(3)

≤ 1

qM
φ

((
M

∫ b

a

|θ(t)|qdt
)q)

≤ 1

qM(b− a)

∫ b

a

φ((M(b− a) |θ(t)|q)q)dt.

The following mean value theorems are given in [13]:

Theorem 1.5. [13] Let φ, g : [0,∞)→ R be differentiable convex and increasing
functions with φ(g(0)) = 0. Also let η ∈ U1(g◦θ,K) and |K(x, t)| ≤M . If φ ∈ C2(I),
where I ⊆ (0,∞) is compact interval. Then there exists ξi ∈ I such that the following
equation holds:

(4) gFφi (η, θ;M) =
φ′′(ξi)

2
gFx

2

i (η, θ;M), i = 1, 2.

Theorem 1.6. [13] Let φ1, φ2 and g be the functions with assumptions of Theorem

1.5. If φ1, φ2 ∈ C2(I), where I ⊆ (0,∞) is a compact interval and gF
x2

i (η, θ;M) 6= 0,
then there exists ξi ∈ I such that we have

gFφ1i (η, θ;M)

gFφ2i (η, θ;M)
=
φ1′′(ξi)
φ2′′(ξi)

, i = 1, 2.

Provided denominators are not zero.
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Further the following functionals due to nonnegative differences of inequalities (1)
are studied by Farid et al. in [1, 12]:

F φ
1 (η, θ,M) =

q

M q
φ

(
M

(∫ b

a

|θ(t)|qdt
)1/q

)
−
∫ b

a

|η(t)|1−qφ′(|η(t)|)|θ(x)|qdt

F φ
2 (η, θ,M) =

q

M q(b− a)

∫ b

a

φ((b− a)1/qM |θ(t)|)dt−
∫ b

a

|η(t)|1−qφ′(|η(t)|)|θ(t)|qdt.

Theorem 1.7. Let φ : [0,∞)→ R be a differentiable function such that for q > 1

the function φ(x
1
q ) is convex and φ(0) = 0. Let η ∈ U1(θ,K) where

(∫ x
a

(K(x, t))pdt
) 1
p ≤

M and 1
p

+ 1
q

= 1. If φ ∈ C2(I), where I ⊂ R+ is a compact interval. Then there

exists ξi ∈ I such that the following result holds

Fφi (η, θ,M) =
ξiφ
′′(ξi)− (q − 1)φ′(ξi)

2q2(ξ2q−1
i )

Fx2i (η, θ,M), i = 1, 2.(5)

Theorem 1.8. Let φ1, φ2 : [0,∞) → R be differentiable functions such that for

q > 1 the function φi(x
1
q ) is convex and φi(0) = 0, i = 1, 2. Let η ∈ U1(θ,K) where(∫ x

a
(K(x, t))pdt

) 1
p ≤ M and 1

p
+ 1

q
= 1. If φ ∈ C2(I), where I ⊂ R+ is a compact

interval and Fx2i (η, θ,M) 6= 0, then there exists ξi ∈ I such that we have

Fφ1i (η, θ,M)

Fφ2i (η, θ,M)
=
ξiφ
′′
1(ξi)− (q − 1)φ′1(ξi)

ξiφ′′2(ξi)− (q − 1)φ′2(ξi)
, i = 1, 2.

Provided the denominators are not zero.

Next we present fractional integral operators which we will utilize to prove the
fractional calculus results.

Definition 1. [17] Let f : [a, b] → R be an integrable function. Let h be an
increasing and positive function on [a, b], having a continuous derivatives h′ on (a, b).
The left-sided and right-sided fractional integrals of a function f with respect to
another function h on [a, b] of order α, k > 0 are defined by

(6) Iα,kh,a+f(x) =
1

kΓk(α)

∫ x

a

(h(x)− h(t))
α
k
−1h′(t)f(t)dt, x > a,

and

(7) Iα,kh,b−
f(x) =

1

kΓk(α)

∫ b

x

(h(t)− h(x))
α
k
−1h′(t)f(t)dt, x < b.

A new generalized integral operator is defined in the following definition:

Definition 2. [14] Let f, h : [a, b] → R be the functions such that f be positive
and f ∈ L1[a, b], and h be differentiable and increasing. Also let Φ

x
be an increasing

function on [0,∞). Then for x ∈ [a, b] the left and right integral operators are defined
by

(8)
(
FΦ,h
a+ f

)
(x) =

∫ x

a

Φ(h(x)− h(t))

h(x)− h(t)
h′(t)f(t)dt, x > a

and

(9)
(
FΦ,h
b−

f
)

(x) =

∫ b

x

Φ(h(t)− h(x))

h(t)− h(x)
h′(t)f(t)dt, x < b.
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The following lemma is given in [12]:

Lemma 1.9. Let φ ∈ C2(I), where I ⊆ (0,∞) and g(x) = xq, q > 1 with

(10) γ ≤ ξφ′′(ξ)− (q − 1)φ′(ξ)

q2ξ2q−1
≤ Γ for all ξ ∈ I.

Then the functions φ1, φ2 defined as φ1(x) = Γx2

2
−φ(x), φ2(x) = φ(x)− γx2

2
, are convex

functions with respect to g(x) = xq, that is φi(x
1
q ), i = 1, 2, are convex functions.

Lemma 1.10. [13] Let φ ∈ C2(I), where I ⊆ (0,∞), γ′ ≤ φ′′(y) ≤ Γ′ for all y ∈ I.
Then the functions φ1(x) = Γ′x2

2
−φ(x), φ2(x) = φ(x)− γ′x2

2
, are convex functions.

The paper is organized as follows:
In Section 2 new Opial-type inequalities for convex functions using generalized integral
operators (8) and (9) are obtained. In Section 3, Opial-type inequalities are obtained
for fractional operators by defining particular kernels. In Section 4, mean value the-
orems are given for the differences of Opial-type inequalities containing generalized,
fractional and conformable integral operators.

2. Opial-type inequalities for a generalized integral operator

Theorem 2.1. Let φ, g : [0,∞) → R be the functions with assumptions of The-
orem 1.3. Also let Φ be positive and Φ

x
, h are increasing functions on [0,∞). If

θ ∈ L1[a, b], 0 ≤ a < b and h′ ∈ L∞[a, b], then the following inequalities hold:∫ b

a

φ
′
(
g
(∣∣∣FΦ,h

a+ θ(t)
∣∣∣)) g′ (∣∣∣FΦ,h

a+ θ(t)
∣∣∣) |g ◦ θ(t)|dt(11)

≤ h(b)− h(a)

Φ(h(b)− h(a))||h′||∞
φ

(
g

(
Φ(h(b)− h(a))||h′||∞

h(b)− h(a)

∫ b

a

|g ◦ θ(t)|dt
))

≤ h(b)− h(a)

(b− a)Φ(h(b)− h(a))||h′||∞

×
∫ b

a

φ

(
g

(
(b− a)Φ(h(b)− h(a))||h′||∞

h(b)− h(a)
|g ◦ θ(t)|

))
dt.

Proof. For x ∈ [a, b], we define the following kernel:

K(x, t) =


Φ(h(x)− h(t))

h(x)− h(t)
h′(t), a ≤ t ≤ x,

0, x < t ≤ b.

Also define the function η by

(12) η(x) = FΦ,h
a+ θ(x) =

∫ x

a

Φ(h(x)− h(t))

h(x)− h(t)
h′(t)θ(t)dt.

Then we have

(13) |K(x, t)| ≤ Φ(h(x)− h(t))

h(x)− h(t)
||h′||∞.
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As Φ
x

and h are increasing on [a, b], therefore we have

(14) |K(x, t)| ≤ Φ(h(b)− h(a))

h(b)− h(a)
||h′||∞ = M.

Hence applying Theorem 1.3 we get inequalities in (11).

For right sided generalized operator following result holds.

Theorem 2.2. Let φ, g : [0,∞) → R be the functions with assumptions of The-
orem 1.3. Also let Φ be positive and Φ

x
, h are increasing functions on [0,∞). If

θ ∈ L1[a, b], 0 ≤ a < b and h′ ∈ L∞[a, b], then the following inequalities hold:∫ b

a

φ
′
(
g
(∣∣∣FΦ,h

b−
θ(t)

∣∣∣)) g′ (∣∣∣FΦ,h
b−

θ(t)
∣∣∣) |g ◦ θ(t)|dt(15)

≤ h(b)− h(a)

Φ(h(b)− h(a))||h′||∞
φ

(
g

(
Φ(h(b)− h(a))||h′||∞

h(b)− h(a)

∫ b

a

|g ◦ θ(t)|dt
))

≤ h(b)− h(a)

(b− a)Φ(h(b)− h(a))||h′||∞

×
∫ b

a

φ

(
g

(
(b− a)Φ(h(b)− h(a))||h′||∞

h(b)− h(a)
|g ◦ θ(t)|

))
dt.

Proof. The proof is similar to the proof of Theorem 2.1 with kernel

K(x, t) =

 0, a ≤ t ≤ x,
Φ(h(t)− h(x))

h(t)− h(x)
h′(t), x < t ≤ b.

Next we present the results for power function.

Theorem 2.3. Under the assumptions of Theorem 2.1. If q > 1, then the following
inequalities hold:

∫ b

a

φ
′
(∣∣∣FΦ,h

a+ θ(t)
∣∣∣q) ∣∣∣FΦ,h

a+ θ(t)
∣∣∣q−1

|θ(t)|qdt

(16)

≤ h(b)− h(a)

Φ(h(b)− h(a))||h′||∞q
φ

((
Φ(h(b)− h(a))||h′||∞

h(b)− h(a)

∫ b

a

|θ(t)|qdt
)q)

≤ h(b)− h(a)

q(b− a)Φ(h(b)− h(a))||h′||∞

∫ b

a

φ

((
(b− a)Φ(h(b)− h(a))||h′||∞

h(b)− h(a)
|θ(t)|q

)q)
dt.

Proof. Let g(t) = tq in Theorem 2.1. Then g is convex and increasing for q >
1. Therefore using this power function g in inequalities (11) we get inequalities in
(16).

For right sided generalized operator following result holds.
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Theorem 2.4. Under the assumptions of Theorem 2.1. If q > 1, then the following
inequalities hold:

∫ b

a

φ
′
(∣∣∣FΦ,h

b−
θ(t)

∣∣∣q) ∣∣∣FΦ,h
b−

θ(t)
∣∣∣q−1

|θ(t)|qdt

(17)

≤ h(b)− h(a)

Φ(h(b)− h(a))||h′||∞q
φ

((
Φ(h(b)− h(a))||h′||∞

h(b)− h(a)

∫ b

a

|θ(t)|qdt
)q)

≤ h(b)− h(a)

(b− a)Φ(h(b)− h(a))||h′||∞q

∫ b

a

φ

((
(b− a)Φ(h(b)− h(a))||h′||∞

h(b)− h(a)
|θ(t)|q

)q)
dt.

Proof. The proof is similar to the proof of Theorem 2.3.

3. Opial-type inequalities for fractional integral operators

In this section we present different fractional versions of results proved in Section
2.

Theorem 3.1. Let φ, g : [0,∞) → R be functions with assumption of Theorem
1.3. Also let θ ∈ L1[a, b], 0 ≤ a < b, α ≥ k, k > 0 and h be an increasing and
positive function on (a, b], having a continuous derivative on (a, b). Then the following
inequalities hold:∫ b

a

φ
′
(
g
(∣∣∣Iα,kh,a+θ(t)

∣∣∣)) g′ (∣∣∣Iα,kh,a+θ(t)
∣∣∣) |g ◦ θ(t)|dt(18)

≤ kΓk(α)

(h(b)− h(a))
α
k
−1||h′||∞

φ

(
g

(
(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)

∫ b

a

|g ◦ θ(t)|dt
))

≤ kΓk(α)

(b− a)(h(b)− h(a))
α
k
−1||h′||∞

×
∫ b

a

φ

(
g

(
(b− a)(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)
|g ◦ θ(t)|

))
dt.

Proof. If we put Φ(t) = t
α
k

kΓk(α)
in Theorem 2.1, then required result is obtained.

Remark 3.2. In the above Theorem 3.1.
(ii) If k = 1 and h(x) = x, then we get [11, Theorem 3.1].

For right sided generalized Riemann-Liouville fractional integral we have the following
result.

Theorem 3.3. Let φ, g : [0,∞) → R be functions with assumptions of Theorem
1.3. Also let θ ∈ L1[a, b], 0 ≤ a < b, α ≥ k, k > 0 and h be an increasing and
positive function on (a, b], having a continuous derivative on (a, b). Then the following
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inequalities hold:∫ b

a

φ
′
(
g
(∣∣∣Iα,kh,b−

θ(t)
∣∣∣)) g′ (∣∣∣Iα,kh,b−

θ(t)
∣∣∣) |g ◦ θ(t)|dt(19)

≤ kΓk(α)

(h(b)− h(a))
α
k
−1||h′||∞

φ

(
g

(
(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)

∫ b

a

|g ◦ θ(t)|dt
))

≤ kΓk(α)

(b− a)(h(b)− h(a))
α
k
−1||h′||∞

×
∫ b

a

φ

(
g

(
(b− a)(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)
|g ◦ θ(t)|

))
dt.

Proof. If we put Φ(t) = t
α
k

kΓk(α)
in Theorem 2.2, then required result is obtained.

Remark 3.4. In the above Theorem 3.3.
(ii) If k = 1 and h(x) = x, then we get [11, Theorem 3.2].

Theorem 3.5. Under the assumptions of Theorem 3.1. If q > 1, then the following
inequalities hold:∫ b

a

φ
′
(∣∣∣Iα,kh,a+θ(t)

∣∣∣q) ∣∣∣Iα,kh,a+θ(t)
∣∣∣q−1

|θ(t)|qdt(20)

≤ kΓk(α)

(h(b)− h(a))
α
k
−1||h′||∞q

φ

((
(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)

∫ b

a

|θ(t)|qdt
)q)

≤ kΓk(α)

(b− a)(h(b)− h(a))
α
k
−1||h′||∞q

×
∫ b

a

φ

((
(b− a)(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)
|θ(t)|q

)q)
dt.

Proof. Let g(t) = tq in Theorem 3.1. Then g is convex and increasing for q >
1. Therefore using this power function g in inequalities (18) we get inequalities in
(20).

Remark 3.6. In the above Theorem 3.5.
(ii) If k = 1 and h(x) = x, then we get [11, Theorem 3.3].

Theorem 3.7. Under the assumptions of Theorem 3.1. If q > 1, then the following
inequalities hold:∫ b

a

φ
′
(∣∣∣Iα,kh,b−

θ(t)
∣∣∣q) ∣∣∣Iα,kh,b−

θ(t)
∣∣∣q−1

|θ(t)|qdt(21)

≤ kΓk(α)

(h(b)− h(a))
α
k
−1||h′||∞q

φ

((
(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)

∫ b

a

|θ(t)|qdt
)q)

≤ kΓk(α)

(b− a)(h(b)− h(a))
α
k
−1||h′||∞q

×
∫ b

a

φ

((
(b− a)(h(b)− h(a))

α
k
−1||h′||∞

kΓk(α)
|θ(t)|q

)q)
dt.
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Proof. The proof is similar to the proof of Theorem 3.5, with kernel

K(x, t) =

{
0, a ≤ t ≤ x,

1
kΓk(α)

(h(t)− h(x))
α
k
−1h′(t), x < t ≤ b.

Remark 3.8. In the above Theorem 3.7.
(ii) If k = 1 and h(x) = x, then we get [11, Theorem 3.4].

4. generalized mean value theorems

In this section we present several mean value theorems for generalized, fractional
and conformable integral operators.

Theorem 4.1. Let φ, g : [0,∞) → R be functions with assumptions of Theorem
1.5. If φ ∈ C2(I), where I ⊆ R+ is compact interval. Also let Φ be positive and Φ

x
, h

are increasing functions on [0,∞). If θ ∈ L1[a, b], 0 ≤ a < b and h′ ∈ L∞[a, b], then
there exists an ξi ∈ I, such that the following result holds:

gFφi (FΦ,h
a+ θ, θ;M) =

φ′′(ξi)

2
gFx

2

i (FΦ,h
a+ θ, θ;M), i = 1, 2,(22)

where M =
Φ(h(b)− h(a))

h(b)− h(a)
||h′||∞.

Proof. It can easily be proved by using function η defined in (12) and M calculated
in (14) in Theorem 1.5.

Theorem 4.2. Let φ1, φ2 and g be the functions with assumptions of Theorem
1.5. If φ1, φ2 ∈ C2(I), where I ⊆ R+ is compact interval. Also let h be an increasing

function and h′ ∈ L∞[a, b]. If gFx
2

i (FΦ,h
a+ θ, θ;M) 6= 0, i = 1, 2, then there exists an

ξi ∈ I, such that we have

(23)
gFφ1i (FΦ,h

a+ θ, θ;M)

gFφ2i (FΦ,h
a+ θ, θ;M)

=
φ1′′(ξi)
φ2′′(ξi)

, i = 1, 2,

where M =
Φ(h(b)− h(a))

h(b)− h(a)
||h′||∞. Provided the denominators are not zero.

Proof. It follows easily for the η defined by (12) and Theorem 1.6.

Theorem 4.3. Let φ, g : [0,∞) → R be functions with assumptions of Theorem
1.5. If φ ∈ C2(I), where I ⊆ R+ is compact interval. Also let h be an increasing
function and h′ ∈ L∞[a, b] has fractional integral of order α and k > 0. If α > k, then
there exists an ξi ∈ I, such that the following result holds:

gFφi (Iα,kh,a+θ, θ;M) =
φ′′(ξi)

2
gFx

2

i (Iα,kh,a+θ, θ;M), i = 1, 2,(24)

where M =
(h(b)− h(a))

α
k
−1

kΓk(α)
||h′||∞.

Proof. It can easily be proved by taking Φ(t) = t
α
k

kΓk(α)
in Theorem 4.1.
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Remark 4.4. In the above Theorem 4.3.
(ii) If k = 1 and h(x) = x, then we get [13, Theorem 3.1].

Theorem 4.5. Let φ1, φ2 and g be the functions with assumptions of Theorem
1.5. If φ1, φ2 ∈ C2(I), where I ⊆ R+ is compact interval. Also let h be an increasing

function and h′ ∈ L∞[a, b]. If α > k, where k > 0 and gFx
2

i (Iα,kh,a+θ, θ;M) 6= 0, i = 1, 2,
then there exists an ξi ∈ I, such that we have

(25)
gFφ1i (Iα,kh,a+θ, θ;M)

gFφ2i (Iα,kh,a+θ, θ;M)
=
φ1′′(ξi)
φ2′′(ξi)

, i = 1, 2,

where M =
(h(b)− h(a))

α
k
−1

kΓk(α)
||h′||∞. Provided the denominators are not zero.

Proof. It can easily be proved by taking Φ(t) = t
α
k

kΓk(α)
in Theorem 4.2.

Remark 4.6. In the above Theorem 4.5.
(ii) If k = 1 and h(x) = x, then we get [13, Theorem 3.2].

Theorem 4.7. Let φ : [0,∞) → R be a function with assumptions of Theorem
1.7. Further, let φ′ is increasing function and φ ∈ C2(I), where I ⊂ R+ is a compact
interval. Let 1

p
+ 1

q
= 1 and α > k

q
, where k > 0. If θ ∈ L1[a, b] and h′ ∈ L∞[a, b],

then there exists an ξi ∈ I such that the following result holds

Fφi (Iα,kh,a+θ, θ,M) =
ξφ′′(ξ)− (q − 1)φ′(ξ)

2q2(ξ2q−1)
Fx2i (Iα,kh,a+θ, θ,M),(26)

where M =
||h′||

1
q
∞(h(b)− h(a))

αq−k
kq

kΓk(α)
[
p
(
αq−k
kq

)] 1
p

.

Proof. Let us define for x ∈ [a, b], the kernel K(x, t) as

K(x, t) =

{
1

kΓk(α)
(h(x)− h(t))

α
k
−1h′(t), a ≤ t ≤ x,

0, x < t ≤ b.

Also if η is defined by

(27) η(x) = Iα,kh,a+θ(x) =
1

kΓk(α)

∫ x

a

(h(x)− h(t))
α
k
−1h′(t)θ(t)dt.

(28) P (x) =

(∫ x

a

(K(x, t))pdt

) 1
p

=
1

kΓk(α)

(∫ x

a

((h(x)− h(t))α−1h′(t))pdt

) 1
p

.

As h′ ∈ L∞[a, b], then we have

P (x) < − ||h
′||

1
q
∞

kΓk(α)

(∫ x

a

(h(x)− h(t))p(
α−k
k

)(−h′(t))dt
) 1

p

=
||h′||

1
q
∞(h(x)− h(a))

αq−k
kq

kΓk(α)
[
p
(
αq−k
kq

)] 1
p

.(29)
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It is easy to see that for α > k
q

the function P is increasing on [a, b], thus

(30) P (x) ≤ ||h
′||

1
q
∞(h(b)− h(a))

αq−k
kq

kΓk(α)
[
p
(
αq−k
kq

)] 1
p

= M.

Hence
(∫ x

a
(K(x, t))pdt

) 1
p ≤ M , which with the function η defined in (27) and

Theorem 1.7 gives us (26).

Remark 4.8. In the above Theorem 4.7.

(i) If i, k = 1 and h(x) = x, then we get [1, Theorem 4.1].
(ii) If i = 2, k = 1 and h(x) = x, then we get [12, Theorem 6].

Theorem 4.9. Let φ1, φ2 and g be the functions with assumptions of Theorem 1.8.
If φ1, φ2 ∈ C2(I), where I ⊆ R+ is compact interval. Let 1

p
+ 1

q
= 1, α > k

q
, where

k > 0 and Fx2i (Iα,kh,a+θ, θ,M) 6= 0, i = 1, 2. If θ ∈ L1[a, b] and h′ ∈ L∞[a, b], then there
exists an ξ ∈ I such that the following result holds

Fφ1i (Iα,kh,a+θ, θ,M)

Fφ2i (Iα,kh,a+θ, θ,M)
=
ξφ′′1(ξ)− (q − 1)φ′1(ξ)

ξφ′′2(ξ)− (q − 1)φ′2(ξ)
,

where M =
||h′||

1
q
∞(h(b)− h(a))

αq−k
kq

kΓk(α)
[
p
(
αq−k
kq

)] 1
p

. Provided the denominators are not zero.

Proof. It follows easily for the η defined by (27) and Theorem 1.8.

Remark 4.10. In the above Theorem 4.9.

(i) If i, k = 1 and h(x) = x, then we get [1, Theorem 4.2].
(ii) If i = 2, k = 1 and h(x) = x, then we get [12, Theorem 7].
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[2] M. Andrić, J. Pečarić, I. Perić, Improvement of composition rule for the Canavati fractional
derivatives and applications to Opial-type inequalities, Dynam. Systems. Appl., 20 (2011), 383–
394.
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[10] G. Farid, J. Pečarić, Opial type integral inequalities for fractional derivatives II, Fractional Differ.
Calc., 2 (2) (2012), 139–155.

[11] G. Farid, A. U. Rehman, S. Ullah, A. Nosheen, M. Waseem, Y. Mehboob, Opial-type inequalities
for convex functions and associated results in fractional calculus, Adv. Difference Equ., 2019
(2019), 2019:152.
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