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ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED
INTEGRAL OPERATOR

GHULAM FARID AND YASIR MEHBOOB

ABSTRACT. Opial inequality and its consequences are useful in establishing exis-
tence and uniqueness of solutions of initial and boundary value problems for differ-
ential and difference equations. In this paper we analyze Opial-type inequalities for
convex functions. We have studied different versions of these inequalities for a gener-
alized integral operator. Further difference of Opial-type inequalities are utilized to
obtain generalized mean value theorems, which further produce various interesting
derivations for fractional and conformable integral operators.

1. Introduction and Preliminary Results

Opial obtained the following integral inequality in 1960 [22].

THEOREM 1.1. Let g € C*(0,h] be such that g(0) = g(h) = 0 and g(t) > 0 for
t € (0,h). Then

h h
/0 l9(t)g' ()]dt < % /0 (¢'(t))?dt.

h
Here 1 is a best possibility constant.

Many researchers have given generalizations and extensions of this well known
Opial inequality in different time spans, see [5-7,9, 20,23, 24]. Recently Opial-type
inequalities are studied for fractional derivatives and integral operators involving Ca-
puto, Canavati and Riemann-Liouville, see [2-4,10] and the references therein. In
this paper our aim is to produce new Opial-type inequalities for convex functions
using a generalized integral operator. The differences of these inequalities have been
investigated by mean value theorems. To proceed further, we need the following
characterizations [25]:

Andri¢ at el. in [4] gave the following Opial-type inequality for convex functions.

THEOREM 1.2. Let ¢ : [0,00) — R be a differentiable function such that for
q > 1 the function ¢(z'/?) is convex and $(0) = 0. Let n € U (0, K) where

Received February 9, 2020. Revised November 7, 2020. Accepted May 24, 2021.

2010 Mathematics Subject Classification: 26A51, 26A33, 33E12.

Key words and phrases: Convex function, Opial inequality, Integral operators, Fractional integral
operators, Conformable integral operators.

(© The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribu-
tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits un-
restricted non-commercial use, distribution and reproduction in any medium, provided the original
work is properly cited.



228 Ghulam Farid and Yasir Mehboob

(fax(K(x,t))pdt)l/p < M and % +% = 1. Then

/ab|77(x)|1_q¢/(|77(9€)|)|6(x)|‘1dx < %gb (M </b|0($)|qdw> 1/q>

< s || 0 - @ niotw) s

If the function ¢(x'/ ) is concave, then the inequality holds in reverse direction.

The following extensions of Opial-type inequalities of Mitrinovi¢ and Pecarié¢ are
given by Farid et al. in [11]:

THEOREM 1.3. Let ¢, g : [0,00) — R be differentiable convex and increasing
functions with ¢(g(0)) = 0. Also let n € Uy(go 8, K) and |K(z,t)| < M, where M is
a constant. Then the following inequalities hold:

®
[ 6 @ (s o)l < 3o ( (31 [ e stiar))

< s | otata1 - alg vy

THEOREM 1.4. Let ¢ : [0,00) — R be a differentiable convex and increasing
function with ¢(g(0)) = 0. Also let n € Uy(0, K) and |K(z,t)| < M, where M is
a constant. Then for ¢ > 1 the following inequalities hold:

(3) / ¢ ((In(ONH ()| |6t dt

< iMqa ((M /b |0(t)|th)q>
| oo - prya

The following mean value theorems are given in [13]:

THEOREM 1.5. [13] Let ¢, g : [0,00) — R be differentiable convex and increasing
functions with ¢(g(0)) = 0. Also letn € Uy(go0,K) and |K (x,t)| < M. If ¢ € C*(I),
where I C (0,00) is compact interval. Then there exists & € I such that the following
equation holds:

/!
@ 000 = T8 w000, =12
THEOREM 1.6. [13] Let ¢1, ¢ and g be the functions with assumptions of Theorem
1.5. If ¢1, ¢ € C*(I), where I C (0,00) is a compact interval and gFfQ(n,H; M) #0,
then there exists &; € I such that we have
o7 (0, 6; M) _ (&)
QF?Q (77, 0; M) %H(&) ’

Provided denominators are not zero.

=1,2.
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Further the following functionals due to nonnegative differences of inequalities (1)
are studied by Farid et al. in [1,12]:

F{ (0.0, M) = ( ( / o(oat) M)— /bIn(t)ll“’cb'(ln(t)I)IO(I)I"dt

FS (0,6, M) = Mq—/¢ (o=@ ariotolyat — [ o)1= (atoDioc

THEOREM 1.7. Let ¢ : [0,00) — R be a differentiable function such that for ¢ > 1
1
the function (;5(1:%) is convex and ¢(0) = 0. Letn € Uy (0, K) where ([ (K (z,t))Pdt)” <
M and 117 + % = 1. If € C*(I), where I C R, is a compact interval. Then there
exists & € I such that the following result holds

:5z¢'/(fi) (Z —11)415/(&)1@?2(77797 M), i=1,2.
2¢*(&")

THEOREM 1.8. Let ¢1,¢2 : [0,00) — R be differentiable functions such that for

q > 1 the function qbz(x%) is convex and ¢;(0) =0, i = 1,2. Let n € U,(0, K) where

(f;(K(x,t))pdt)% < M and % +% = 1. If ¢ € C*(I), where I C R, is a compact
interval and F**(n, 0, M) # 0, then there exists & € I such that we have

Iﬁ‘fl(n,e, M) . &1 (&) — (¢ — 1)1 (&)

Ffz(n, 0, M) L&) — (¢ —1)¢h(&)

Provided the denominators are not zero.

(5) F{(n,0, M)

=1,2.

Next we present fractional integral operators which we will utilize to prove the
fractional calculus results.

DEFINITION 1. [17] Let f : [a,b] — R be an integrable function. Let h be an
increasing and positive function on [a, b], having a continuous derivatives h’ on (a, b).
The left-sided and right-sided fractional integrals of a function f with respect to
another function h on [a,b] of order «, k > 0 are defined by

) B 1@ = s [ ) = k@) W00, >
and

o,k 1 ’ X _1q1
@ B 1@ = g [ B0 = h)E @0, @ <.

A new generalized integral operator is defined in the following definition:

DEFINITION 2. [14] Let f,h : [a,b] — R be the functions such that f be positive
and f € Lia,b], and h be differentiable and increasing. Also let % be an increasing

function on [0, 00). Then for x € [a, b] the left and right integral operators are defined
by

) (241) ) = [ S of 0, o> 0
and
) () ) = [ H S s, « <.
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The following lemma is given in [12]:
LEMMA 1.9. Let ¢ € C*(I), where I C (0,00) and g(x) = z%, ¢ > 1 with

q2€201

<TI forall £€l.

Then the functions ¢1, ¢ defined as ¢1(z) = FT
functions with respect to g(x) = 9, that is ¢;(x

1
q

d(x), go(z) = ¢(z )—ﬁ are convex
)

1 = 1,2, are convex functions.

LEMMA 1.10. [13] Let ¢ € C*(I), where I C (0,00), v < ¢"(y) <T" forall y € I.
Then the functions ¢, (z) = FIQQ —o(x), Pa(x) = p(x) — l—x2 are convex functions.

The paper is organized as follows:
In Section 2 new Opial-type inequalities for convex functions using generalized integral
operators (8) and (9) are obtained. In Section 3, Opial-type inequalities are obtained
for fractional operators by defining particular kernels. In Section 4, mean value the-
orems are given for the differences of Opial-type inequalities containing generalized,
fractional and conformable integral operators.

2. Opial-type inequalities for a generalized integral operator

THEOREM 2.1. Let ¢, g :[0,00) — R be the functions with assumptions of The-
orem 1.3. Also let & be positive and %, h are increasing functions on [0,00). If
0 € Ly|a,b], 0 <a <bandh' € Lyla,b], then the following inequalities hold:

iy [ (o([Erem])) o (|Ftow]) o ool

W) — h(a) (h(6) — h(a) ||h'||oo
< @(h(b)—h<a>>||hf||oo¢(g< h(B) — ha / lg¢ 'dt»
h(b) — h(a)

< (
— (b= a)®(h(b) — h(a))||'[]o
o (B )

Proof. For = € [a,b], we define the following kernel:

®(h(z) — h(t))
K(z,t) = Oh(x)—h(t) t<b
: T < .

Kt), a<t<z

Also define the function 7 by

(12) n(z) = F%0(z) = /

Then we have

(13) K, p) < POy
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As % and h are increasing on [a, b], therefore we have

®(h(b) — h(a)) .,
14 K(x,t)| < Wllew = M
(14) O A
Hence applying Theorem 1.3 we get inequalities in (11). [

For right sided generalized operator following result holds.

THEOREM 2.2. Let ¢, g : [0,00) — R be the functions with assumptions of The-
orem 1.3. Also let ® be positive and £, h are increasing functions on [0,00). If
6 € Li[a,b], 0 <a<bandh € Lya,bl, then the following inequalities hold:

15 6 (o (jrra0)) o (|m2 o)) o oot

h(b) = h(a) (h(b) = ha)|IWllw [*
= B(h(b) - h<a>>uh'\|m¢(g( h(b) — ha) / lg 9<t>ldt))
h(b) — h(a)

~ (b= a)®(h(b) = h(a))[[I[|0
X/a y (g ((b—a)ééfzéf)_—hf(bé;b))\lh Hwygoe(t)\)) dL.

Proof. The proof is similar to the proof of Theorem 2.1 with kernel

0, a<t<u,

W), x<t<b.

Next we present the results for power function.

THEOREM 2.3. Under the assumptions of Theorem 2.1. If ¢ > 1, then the following
inequalities hold:

(16)

/ (|EEro)|") | Fare )‘ 10(¢)|“dt
h(b) — hla) ) Dl [y
= S0h) — (@) WTeq” (( (D) [0 "”))

h(b) - h(a) <b—a><1>< 8) — Bl )
b= a)B(h(s —h<a>>||h'||oo/a ¢’(< W) — ha) 6(0) ) >‘”‘

Proof. Let g(t) = t? in Theorem 2.1. Then ¢ is convex and increasing for g >
1. Therefore using this power function ¢ in inequalities (11) we get inequalities in

(16). O

For right sided generalized operator following result holds.
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THEOREM 2.4. Under the assumptions of Theorem 2.1. If ¢ > 1, then the following
inequalities hold:

(17)

/ (‘F‘MQ ’)‘F(th )’ 1|0(t)|th
h(b) — hla) (0l [
= S0b) — W) WlTeq” (( (o) / ot 'dt)>

ib) — h(a) ’ <b—a><1>< = n(a)IPllso 0"
= B a)(n() - h(a))\\mrmq/a ’ (( h(b) " hia) 62)] ) ) .

Proof. The proof is similar to the proof of Theorem 2.3. m

3. Opial-type inequalities for fractional integral operators

In this section we present different fractional versions of results proved in Section
2.

THEOREM 3.1. Let ¢, g : [0,00) — R be functions with assumption of Theorem
1.3. Also let 8 € Ly[a,b],0 < a < b, « > k, k > 0 and h be an increasing and
positive function on (a, b], having a continuous derivative on (a,b). Then the following

inequalities hold:
(18) /abcb( (|rmsom))) o ([kow)|) lgootar

KT (0) ((5) — h(@)E Wl [*)
S<h<b>—h<a>>%—l|rhf||oo¢(g( KTu(a) / 9060t ““))
I{:Fk(a)

= = ) (h(b) — h(a))F W1
</ a;(g((b‘“)(h(b)k;k’zg”’“ ||h||oo|909(t)|)>dt.

@

Proof. 1f we put ®(t) = #F(a) in Theorem 2.1, then required result is obtained. [

REMARK 3.2. In the above Theorem 3.1.
(ii) If k = 1 and h(z) = x, then we get [11, Theorem 3.1].

For right sided generalized Riemann-Liouville fractional integral we have the following
result.

THEOREM 3.3. Let ¢, g : [0,00) — R be functions with assumptions of Theorem
1.3. Also let 0 € Ly[a,b],0 < a < b, « > k, k > 0 and h be an increasing and
positive function on (a, b], having a continuous derivative on (a,b). Then the following
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inequalities hold:

(19) / 6 (o |1zt 00))) o (|1t oo)]) 90 o6t

s(h(b)_,’jfjf)?_%,”wfb(g(W) il _1”h,||°°/ )
ETk ()

= = ) (h(b) — ha)F Wl
o ()

Proof. 1f we put ®(t) = #%(a) in Theorem 2.2, then required result is obtained. [

REMARK 3.4. In the above Theorem 3.3.
(ii) If k = 1 and h(x) = x, then we get [11, Theorem 3.2)].

THEOREM 3.5. Under the assumptions of Theorem 3.1. If ¢ > 1, then the following
inequalities hold:

20 [ (jrto]') ko] o

HTe() ((8) — h(@) e ¥ )
= ) — (@) E g (( T o) )

< kT ()
= (b= a)(h(b) — h(a))FH|W[og

) / o (L) )))z—wwum w(t)'q)‘I) "

Proof. Let g(t) = t? in Theorem 3.1. Then ¢ is convex and increasing for g >
1. Therefore using this power function ¢ in inequalities (18) we get inequalities in

(20). O

REMARK 3.6. In the above Theorem 3.5.
(ii) If k = 1 and h(z) = x, then we get [11, Theorem 3.3].

THEOREM 3.7. Under the assumptions of Theorem 3.1. If ¢ > 1, then the following
inequalities hold:

o [ (rteal)

HTe() ((B) = ha)E MWl [0 )
= ) = h@)E Wlleg” (( o [ o) >

< k;I‘k(a)
= (b—a)(h(b) — h(a)) ][I ]]og

) / NG a)(h(b)k}:égm_ll'h/"°° Wq)‘l) "

f;;f_e(t)]q 10(t)]0dt
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Proof. The proof is similar to the proof of Theorem 3.5, with kernel

0, a<t<ux,
K@J)Z{ L_(h(t) — h(z))E~'H(t), =<t <b.

kI'g(a)

REMARK 3.8. In the above Theorem 3.7.
(ii) If k = 1 and h(x) = x, then we get [11, Theorem 3.4].

4. generalized mean value theorems

In this section we present several mean value theorems for generalized, fractional
and conformable integral operators.

THEOREM 4.1. Let ¢, g : [0,00) — R be functions with assumptions of Theorem
1.5. If ¢ € C*(I), where I C R, is compact interval. Also let ® be positive and %, h
are increasing functions on [0,00). If 6 € Ly[a,b], 0 < a < b and I/ € Lyla,b], then
there exists an & € I, such that the following result holds:

_¢"(&)

(22) JL(EEM0,6; M) = > JE(ER"0,0, M), i =1,2,
®(h(b) — h(a))
here M = || oo-
where h(b) = hia) |7
Proof. 1t can easily be proved by using function 7 defined in (12) and M calculated
in (14) in Theorem 1.5. m

THEOREM 4.2. Let ¢1,¢9 and g be the functions with assumptions of Theorem
1.5. If ¢y, ¢ € C*(I), where I C R, is compact interval. Also let h be an increasing
function and h' € Ly[a,b]. If gFfz(Fﬁ’h@,@; M) # 0, i = 1,2, then there exists an
& € I, such that we have

JOESR0.0, M) pu(&s)

(23) a - Li=1,2,
J(ER0,0, M) dat1(&)
O(h(b) — h
where M = ((b) = h(a)) ||h||so- Provided the denominators are not zero.
h(b) — h(a)
Proof. 1t follows easily for the n defined by (12) and Theorem 1.6. O

THEOREM 4.3. Let ¢, g :[0,00) — R be functions with assumptions of Theorem
1.5. If ¢ € C*(I), where I C R, is compact interval. Also let h be an increasing
function and h' € L[a, b] has fractional integral of order o and k > 0. If a > k, then
there exists an &; € I, such that the following result holds:

_9"(&)

«, . x? (o, . y
(24) JFL(IE 0,0, M) = 5 o (I7%.0,0; M), i=1,2,
(A(b) — (a)) &~
here M = P ||oo-
where R () 1R/
Proof. 1t can easily be proved by taking ®(t) = #%(a) in Theorem 4.1. O



On Opial-type inequalities via a new generalized integral operator 235

REMARK 4.4. In the above Theorem 4.3.
(ii) If k = 1 and h(x) = x, then we get [13, Theorem 3.1].

THEOREM 4.5. Let ¢1,¢s and g be the functions with assumptions of Theorem
1.5. If ¢y, ¢ € C*(I), where I C R, is compact interval. Also let h be an increasing
function and h' € Lag[a,b]. If o > k, where k > 0 and (JF¥ (1% 0,0, M) #£0, i = 1,2,
then there exists an &; € I, such that we have

JFVIr 0,6, M) gyn(y)

h,a+

25 - Ci=1,2,
(25) JF (I 0,0, M) ¢211(&)
h(b) — h(a))*!
where M = (h(b) = h(a))* ||h'||oo. Provided the denominators are not zero.
/{ZFk(Oé)
Proof. 1t can easily be proved by taking ®(t) = #%(a) in Theorem 4.2. O

REMARK 4.6. In the above Theorem 4.5.
(ii) If k = 1 and h(xz) = x, then we get [13, Theorem 3.2)].

THEOREM 4.7. Let ¢ : [0,00) — R be a function with assumptions of Theorem
1.7. Further, let ¢ is increasing function and ¢ € C*(I), where I C R, is a compact
interval. Let é +% =1 and o > %, where k > 0. If 6 € Ly[a,b] and b/ € Lo[a,b],
then there exists an &; € I such that the following result holds

(26) ro(15k.0.0,00) =S 2N Z VI gt g ),

2¢*(£271)

[17/]] 4 (h(b) — h(a))

kTe(a) [p (252))]

Proof. Let us define for = € [a,b], the kernel K (z,t) as
(

K(x,t) = o (h(@) = h(©)F (1), a<t<uw,
: 0, vot<h

where M =

q
kq
1
P

1

Also if n is defined by

(27) o) = I75000) = T [ (o) = ho)E w00

@) pa = ([ weora) = s ([ e - worwora)

As h' € Ly|a,b], then we have

3 =

P(x) < —IL?J(%) (/I(h(m) — h(t))p(a’“k)(—h/(t))dt)

I (h() — ()
@) [p (%)

(29)

3=
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It is easy to see that for a > % the function P is increasing on [a, b], thus

ag—k

F11 ((b) — h(a))*F
kTw(a) [p (255) |7

Hence (fax(K(a:,t))pdt)% < M, which with the function 7 defined in (27) and
Theorem 1.7 gives us (26). O

(30) P(z) < = M.

Jun

REMARK 4.8. In the above Theorem 4.7.
(i) If i,k =1 and h(x) = x, then we get [1, Theorem 4.1].
(ii) If i = 2,k = 1 and h(x) = z, then we get [12, Theorem 6].
THEOREM 4.9. Let ¢1, ¢ and g be the functions with assumptions of Theorem 1.8.
If ¢1, 09 € C?*(I), where I C R, is compact interval. Let % +% =1, a> %, where
k>0 and F¥ (175,00, M) # 0,i = 1,2. If 0 € Ly[a,b] and I’ € Ly[a,b], then there
exists an £ € I such that the following result holds

F{ (00,0, M) ¢g7(€) — (g — 1) (€)

FP2(I050,0, M) £65(€) — (g — 1)¢h(€)’

agqg—k

[17/]1%(A(b) — h(a)) =
krx() [p (255 ]
Proof. 1t follows easily for the n defined by (27) and Theorem 1.8. [

where M = . Provided the denominators are not zero.

[

REMARK 4.10. In the above Theorem 4.9.

(i) If i,k =1 and h(x) = x, then we get [1, Theorem 4.2].
(ii) If i = 2,k = 1 and h(x) = x, then we get [12, Theorem 7].
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