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RELATIVE L-ORDER OF AN ENTIRE FUNCTION

Chinmay Ghosh∗, Anirban Bandyopadhyay, and
Soumen Mondal

Abstract. In this paper we introduce relative L−order of a non-
constant entire function f with respect to another nonconstant entire
function g. Also we investigate the existence of relative L−proximate
order of f with respect to g.

1. Introduction

Let f be a nonconstant entire function defined on C. Then the max-
imum modulus function Mf (r) of f , defined by Mf (r) = max

|z|=r
|f(z)| is

continuous and strictly increasing. In such case the inverse function
M−1

f : (|f(0)| ,∞) → (0,∞) exists and is also continuous, strictly in-

creasing and lim
s→∞

M−1
f (s) = ∞. The growth of an entire function f is

generally measured by its order and type.
In 1988, Luis Bernal [1] introduced the order of growth of a noncon-

stant entire function f relative to another entire function g, which is
defined by

ρg(f) = inf{µ > 0 : Mf (r) < Mg(r
µ), for all r > r0}

= lim sup
r→∞

logM−1
g (Mf (r))

log r
.
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In 1988, D. Somasundaram and R. Thamizharasi [4] introduced the
L− order of an entire function f , defined by

ρL = lim sup
r→∞

log logMf (r)

log(rL(r))
,

where L(r) is a positive continuous function, increasing slowly i.e. L(ar) ∼
L(r) as r →∞, for all a > 0, given by Singh and Bekar [3]. The function,
L(r) is called slowly increasing function.

In 1923, Valiron [5] initiated the terminology and generalized the con-
cept of proximate order and in 1946, S.M. Shah [2] defined it in more
justified form and gave a simple proof of its existence.

In this paper we introduce relative L−order of a nonconstant entire
function f with respect to another nonconstant entire function g. Also
we investigate the existence of relative L−proximate order of f with
respect to g.

2. Basic definitions and preliminary lemmas

Here we give some definitions and lemmas.

Definition 2.1. Let f be a nonconstant entire function. We say that
f satisfies the property (A) if and only if for each σ > 1,

Mf (r)
2 ≤Mf (r

σ)

exists.

For example, f(z) = exp(z) satisfies property (A). But no polyno-
mial satisfies property (A). Moreover, there are some transcendental
functions which do not satisfy property (A).

Lemma 2.2. [1] If f is a nonconstant entire function, then f satisfies
the property (A) if and only if for each σ > 1 and positive integer n,

Mf (r)
n ≤Mf (r

σ), for all r > 0.

Lemma 2.3. [1] Let f be a nonconstant entire function, α > 1, 0 <
β < α, s > 1, 0 < µ < λ and n be a positive integer. Then

a) Mf (αr) > βMf (r),
b) There exists K = K(s, f) > 0 such that

f(r)s ≤ KMf (r
s), for all r > 0,



Relative L-order of an entire function 461

c) lim
r→∞

Mf (r
s)

Mf (r)
=∞ = lim

r→∞
Mf (r

λ)

Mf (rµ)
,

d) If f is transcendental, then lim
r→∞

Mf (r
s)

rnMf (r)
=∞ = lim

r→∞
Mf (r

λ)

rnMf (rµ)
.

Lemma 2.4. [1] Suppose that f and g are entire functions, f(0) = 0
and h = g ◦f . Then there exists c ∈ (0, 1), independent of f and g, such
that

Mh(r) > Mg

(
cMf

(r
2

))
, for all r > 0.

Lemma 2.5. [1] Let R > 0, η ∈
(
0, 3e

2

)
and f is analytic in |z| ≤ 2eR

with f(0) = 1. Then on the disc |z| ≤ R, excluding a family of discs the
sum of whose radii is not greater than 4ηR,

log |f(z)| > −T (η) logMf (2eR),

where T (η) = 2 + log
(

3e
2η

)
.

Lemma 2.6. [1] If f is a nonconstant entire function and A(r) =
max{Re f(z) : |z| = r}, then

Mf (r) < A(145r).

Lemma 2.7. [1] If f is a nonconstant entire function, then

T (r) ≤ log+Mf (r) ≤
(
R + r

R− r

)
T (r), for 0 < r < R.

3. Main Results

In this section we defined relative L−order of f with respect to g, rela-
tive L−lower order of f with respect to g and established some theorems
related to these. Also we prove the existence of relative L−proximate
order of f with respect to g.

Definition 3.1 (Relative L-order of f with respect to g). Let f and
g be entire functions and L(r) be a positive slowly increasing function.
The relative L−order of f with respect to g is given by

ρLg (f) = inf{µ > 0 : Mf (r) < Mg((rL(r))µ), for all r > r0(µ) > 0}

= lim sup
r→∞

logM−1
g (Mf (r))

log(rL(r))
.
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Definition 3.2 (Relative L-lower order of f with respect to g). Let
f and g be entire functions and L(r) be a positive slowly increasing
function. The relative L−lower order of f with respect to g is given by

λLg (f) = lim inf
r→∞

logM−1
g (Mf (r))

log(rL(r))
.

Theorem 3.3. Let f, g, h be nonconstant entire functions and Li(i =
1, 2, 3, 4) be nonconstant linear functions, i.e. Li(z) = aiz + bi, for all
z ∈ C , with ai, bi ∈ C, ai 6= 0(i = 1, 2, 3, 4). Then

a) If g is a polynomial and f is a transcendental, ρLg (f) =∞,
b) If g is a transcendental and f is a polynomial, ρLg (f) = 0,

c) If f and g are polynomials, ρLg (f) = deg(f)
deg(g)

,

d) If Mf (r) ≤Mg(r), ρ
L
h (f) ≤ ρLh (g),

e) If Mg(r) ≤Mh(r), ρ
L
g (f) ≥ ρLh (f),

f) ρL(L4◦g◦L3)
(L2 ◦ f ◦ L1) = ρLg (f).

Proof. a) Let the degree of g be n. Then Mf (r) > Krm and Mg(r) ≤
K1r

n, where K,K1 are constant and m > 0 be any real number, for
sufficiently large r.

Then,

ρLg (f) = lim sup
r→∞

logM−1
g (Mf (r))

log(rL(r))
> lim sup

r→∞

logM−1
g (Krm)

log(rL(r))

≥ lim sup
r→∞

log
(

1
K1

(Krm)
1
n

)
log(rL(r))

= lim sup
r→∞

log
(
K

1
n

K1
r
m
n

)
log(rL(r))

= lim sup
r→∞

log K
1
n

K1
+ log r

m
n

log(rL(r))
=
m

n
lim sup
r→∞

log r

log(rL(r))
.

Hence,

ρLg (f) >
m

n
, for all real m.

Therefore,

ρLg (f) =∞.

b) Let the degree of f be n. Then Mf (r) ≤ Krn and Mg(r) > K1r
m,

where K,K1 are constant and m > 0 be any real number, for sufficiently
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large r. Then we have for µ > 0 and for sufficiently large r

Mg((rL(r))µ) > K1((rL(r))µ)m

= K1 (rL(r))µm

> Krn, for choosing suitable large m

≥ Mf (r).

Which implies,

ρLg (f) = 0.

c) Let f(z) = a0z
m + a1z

m−1 + ... + am, a0 6= 0 and g(z) = b0z
n +

b1z
n−1 + ... + bn, b0 6= 0. Then Mf (r) ≤ K1r

m and Mg(r) >
1
2
|b0| rn,

where K1 is a constant, for sufficiently large r.
Then,

ρLg (f) = lim sup
r→∞

logM−1
g (Mf (r))

log(rL(r))
≤ lim sup

r→∞

log
(

2K1rm

|b0|

) 1
n

log(rL(r))

= lim sup
r→∞

log
(

2K1

|b0|

) 1
n

+ log r
m
n

log(rL(r))
=
m

n
lim sup
r→∞

log r

log(rL(r))
.

Hence,

ρLg (f) ≤ m

n
.

Again we can write, Mf (r) >
1
2
|a0| rm and Mg(r) ≤ K2r

n, where K2

is a constant, for sufficiently large r.
Then interchanging the role of Mf (r) and Mg(r), we get

ρLg (f) ≥ m

n
.

Thus,

ρLg (f) =
m

n
=

deg(f)

deg(g)
.

3.1. Relative L-order of composition. The following theorem solves
the problem of the relative L−order on the composition of entire func-
tions.
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Theorem 3.4. Let f, f1, f2, g and m be nonconstant entire functions
and h = g ◦ f, then

a) ρLg◦f2(g ◦ f1) = ρLf2(f1),

b) max{ρLm(f), ρLm(g)} ≤ ρLm(h),

Proof. a) Let hi = g ◦ fi, (i = 1, 2), then hi is nonconstant entire
function.

We can suppose that fi(0) = 0, if not we take f ∗i (z) = fi(z) − fi(0)
and g∗i (z) = g(z+fi(0)) and we would have hi = g∗i ◦f ∗i , and by Theorem
3.3(f), we get ρLf∗2 (f ∗1 ) = ρLf2(f1).

So, without loss of generality we take fi(0) = 0.
We have by Lemma 2.4, there exists c ∈ (0, 1) such that

Mhi(r) ≥Mg

(
cMfi

(r
2

))
, for all r > 0, i = 1, 2.

Again using Lemma 2.3 with α = 1
d
, β = 1

c
we have

Mfi

(
1

d
.
dr

2

)
>

1

c
.Mfi

(
dr

2

)
⇒Mfi

(r
2

)
>

1

c
Mfi

(
dr

2

)
for all d ∈ (0, c) since Mhi ≤Mg ◦Mfi .

Then

(1) Mhi(r) > Mg

(
Mfi

(
dr

2

))
≥Mhi

(
dr

2

)
, i = 1, 2.

Again from (1)

Mh1(r) > Mg

(
Mf1

(
dr

2

))
⇒M−1

h2
(Mh1(r)) > M−1

h2

(
Mg

(
Mf1

(
dr

2

)))
Again

M−1
h2
◦Mg(t) ≥M−1

f2
(t).

Therefore

(2) M−1
h2

(Mh1(r)) > M−1
h2

(
Mg

(
Mf1

(
dr

2

)))
> M−1

f2

(
Mf1

(
dr

2

))
.
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In (1), for i = 2, we put Mh2(r) = t. i.e., r = M−1
h2

(t) and we get

t > Mg

(
Mf2

(
d

2
M−1

h2
(t)

))
M−1

f2
(M−1

g (t)) >
d

2
M−1

h2
(t)⇒M−1

h2
(t) <

2

d
M−1

f2
(M−1

g (t)).

Putting t = Mh1(r), we have

(3) M−1
h2

(Mh1(r)) <
2

d
M−1

f2
(M−1

g (Mh1(r))) ≤
2

d
M−1

f2
(Mf1(r)).

Combining (2) and (3) we have,

M−1
f2

(
Mf1

(
dr

2

))
< M−1

h2
(Mh1(r)) <

2

d
M−1

f2
(Mf1(r)).

Taking logarithm and dividing by log(rL(r)) and taking lim sup as
r →∞, we get

ρLg◦f2(g ◦ f1) = ρLf2(f1).

b) As in part (a), we can assume that f(0) = 0.

Since f and g are nonconstant, there exists α > 0 such that Mf (r) >
αr and Mg(r) > αr.

Applying the Lemma 2.4, there exists c ∈ (0, 1) such that

(4) Mh(r) ≥Mg

(
cMf

(r
2

))
> Mg

(cαr
2

)
> Mg(r

σ),

for each σ ∈ (0, 1) and for sufficiently large r.

Again,

(5) Mh(r) ≥Mg

(
cMf

(r
2

))
> α.c.Mf

(r
2

)
> Mf (r

σ),

for each σ ∈ (0, 1) and for sufficiently large r.

From (4), we have

M−1
m (Mg(r

σ)) ≤M−1
m (Mh(r)).
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Taking logarithms and dividing by log(rL(r)), for sufficiently large r,
we get

logM−1
m (Mg(r

σ))

log(rL(r))
≤ logM−1

m (Mh(r))

log(rL(r))

⇒ logM−1
m (Mg(r))

log
(

(rL(r))
1
σ

) <
logM−1

m (Mg(r
σ))

log(rL(r))
≤ logM−1

m (Mh(r))

log(rL(r))
,

⇒ logM−1
m (Mg(r))

log(rL(r))
≤ 1

σ

logM−1
m (Mh(r))

log(rL(r))
,

since L(r)α > L(rα), for α > 1.
Now taking lim sup as r →∞, we get

ρLm(g) ≤ 1

σ
ρLm(h).

Similarly from (5), we get

ρLm(f) ≤ 1

σ
ρLm(h).

From the above two results (b) follows.

3.2. Relative L-order of sum and product. We know that the clas-
sical order of a finite sum of entire functions is generally the highest of
the orders of them. This is also true for relative L−order. Likewise, the
order of a finite product of entire functions is generally the highest of the
orders of them. But the same result is not valid for the relative L−order.
For this, we have to introduce some restriction on the functions.

Theorem 3.5. Let f, f1, f2 and g are nonconstant entire functions,
then

a) ρLg (f1 + f2) ≤ max{ρLg (f1), ρ
L
g (f2)}, equality occurs if ρLg (f1) 6=

ρLg (f2),

b) if f is a transcendental and P is a polynomial then, ρLg (Pf) =

ρLg (f),

c) ρLg (f) ≤ ρLg (fn) ≤ n.ρLg (f),

d) if g satisfies property (A), then ρLg (f1f2) ≤ max{ρLg (f1), ρ
L
g (f2)},

equality occurs if ρLg (f1) 6= ρLg (f2).

Proof. a) Let h = f1 + f2, ρ
L = ρLg (h), ρLi = ρLg (fi), (i = 1, 2).

If h is constant, the case is trivial.
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Suppose that h is not a constant.
Without loss of generality we may take ρL1 ≤ ρL2 .
If ρL2 =∞, the case is trivial.
So, we take ρL1 ≤ ρL2 <∞.
Given ε > 0,

Mf1(r) ≤ Mg

(
rL(r))ρ

L
1 +ε
)
≤Mg

(
rL(r))ρ

L
2 +ε
)

and Mf2(r) ≤ Mg

(
rL(r))ρ

L
2 +ε
)
, for r > r0

Then,

Mh(r) ≤ Mf1(r) +Mf2(r)

≤ 2Mg

(
rL(r))ρ

L
2 +ε
)
≤Mg

(
3(rL(r))ρ

L
2 +ε
)
, using Lemma 2.3(a).

⇒
logM−1

g (Mh(r))

log(rL(r))
≤ log 3 + (ρL2 + ε) log(rL(r))

log(rL(r))
.

Now taking lim sup as r →∞, we get ρL ≤ ρL2 + ε, for each ε > 0.
Consequently, ρL ≤ ρL2 = max{ρL1 , ρL2 }.
Now suppose that, ρL1 < ρL2 and let’s take λ, µ such that ρL1 < µ <

λ < ρL2 .
Then Mf1(r) ≤ Mg(rL(r))µ) and there is a sequence {rn} tending to

infinity with Mf2(rn) > Mg(rnL(rn))λ), for all n.
Now by Lemma 2.3(c)

Mg(rL(r))λ) > 2Mg(rL(r))µ), for all n.

Therefore

2Mf1(rn) < 2Mg(rnL(rn))µ) < Mg(rnL(rn))λ) < Mf2(rn) for sufficiently large n.

and so by Lemma 2.3(a)

Mh(rn) ≥ Mf2(rn)−Mf1(rn) ≥ 1

2
Mf2(rn)

>
1

2
Mg(rnL(rn))λ) > Mg

(
1

3
(rnL(rn))λ)

)
for sufficiently large n.

⇒
logM−1

g (Mh(rn))

log(rnL(rn))
>

log 1
3

+ λ log(rnL(rn))

log(rnL(rn))
.

Now taking lim sup as r →∞, we get ρL ≥ λ, for each λ ∈ (ρL1 , ρ
L
2 ).

So, ρL ≥ ρL2 = max{ρL1 , ρL2 }.
Hence, ρL = ρL2 = max{ρL1 , ρL2 } for ρL1 < ρL2 .
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b) Since P (z) is a polynomial and h = Pf, taking 0 < α < 1 and
s > 1, we get

Mf (αr) < 2αMf (r), using Lemma 2.3(a)

< |P (z)|Mf (r), on |z| = r

= Mh(r)

< rnMf (r)

< Mf (r
s), using Lemma 2.3(d), for sufficiently large r.(6)

Consequently,

M−1g (Mf (αr)) < M−1g (Mh(r)) < M−1g (Mf (rs))

⇒
logM−1g (Mf (αr))

log(rL(r))
≤

logM−1g (Mh(r))

log(rL(r))
≤

logM−1g (Mh(rs))

log(rL(r))

⇒
logM−1g (Mf (r))

log
(
r
αL
(
r
α

)) ≤
logM−1g (Mh(r))

log(rL(r))
≤

logM−1g (Mh(r))

log
(
r

1
sL
(
r

1
s

)) ≤ logM−1g (Mh(r))

log(rL(r))
1
s

.

Now taking lim sup as r →∞, we get

ρLg (f) ≤ ρLg (h) ≤ sρLg (f), for all s > 1

⇒ ρLg (f) = ρLg (h).

c) We know that,

max{|fn(z)| : |z| = r} = Mf (r)
n ≤ KMf (r

n) < Mf ((K + 1)rn),

using Lemma 2.3(b) and 2.3(a).
Therefore,

logM−1
g ((Mf (r))

n)

log(rL(r))
≤

logM−1
g (Mf ((K + 1)rn))

log(rL(r))

=
logM−1

g (Mf (r))

log

(
1

(K+1)
1
n
r

1
nL

(
1

(K+1)
1
n
r

1
n

))
<

logM−1
g (Mf (r))

log
((

r
K+1

) 1
n L
(

r
K+1

) 1
n

)
= n

logM−1
g (Mf (r))

log
((

r
K+1

)
L
(

r
K+1

)) .
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Now taking lim sup as r →∞, we get

lim sup
r→∞

logM−1
g ((Mf (r))

n)

log(rL(r))
≤ n. lim sup

r→∞

logM−1
g (Mf (r))

log
((

r
K+1

)
L
(

r
K+1

))
= n. lim sup

r→∞

logM−1
g (Mf (r))

log(rL(r))

⇒ ρLg (fn) ≤ n.ρLg (f).

Again,

(Mf (r))n > Mf (r)

⇒ lim sup
r→∞

logM−1
g ((Mf (r))

n)

log(rL(r))
≥ lim sup

r→∞

logM−1
g (Mf (r))

log(rL(r))

⇒ ρLg (fn) ≥ ρLg (f).

d) Let f1, f2 are transcendental, otherwise it would be trivial.
Denote h = f1f2, ρ

L = ρLg (h), ρLi = ρLg (fi), (i = 1, 2).

Without loss of generality we may take ρL1 ≤ ρL2 .
If ρL2 =∞, the case is trivial.
So, we take ρL1 ≤ ρL2 <∞.
Given ε > 0,

Mfi(r) ≤Mg

(
rL(r))ρ

L
2 +

ε
2

)
for sufficiently large r, (i = 1, 2).

Then,

Mh(r) ≤Mf1(r)Mf2(r) < Mg

(
rL(r))ρ

L
2 +

ε
2

)2
.

Applying property (A), with σ =
ρL2 +ε

ρL2 + ε2
> 1, we get

Mh(r) ≤ Mg

(
rL(r))ρ

L
2 +ε
)
, for sufficiently large r

⇒ ρL ≤ ρL2 = max{ρL1 , ρL2 }.
Now suppose that, ρL1 < ρL2 .
Again we have, the product of f by a factor c

zn
does not alter its

order, so we can assume without loss of generality that fi(0) = 1.
Take λ, µ with ρL1 < µ < λ < ρL2 .
Then there is a sequence {Rn} tending to ∞ such that

Mf2(Rn) > Mg(RnL(Rn))λ),

for all n and Mf1(r) < Mg(rL(r))µ), for sufficiently large r.
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Now by Lemma 2.5, taking f = f1, R = 2Rn, η = 1
16

, we get,

log |f1(z)| > −T
(

1

16

)
logMf1(4eRn).

where T
(

1
16

)
= 2 + log

(
3e

2. 1
16

)
= 2 + log(24e).

Therefore,

log |f1(z)| > −(2 + log(24e)) logMf1(4eRn),

on the disc |Z| ≤ 2Rn, excluding a family of discs, the sum of radii is
not greater than Rn

2
.

Therefore there exists rn ∈ (Rn, 2Rn) such that |z| = rn, it does not
intersect any of the excluded discs, then

log |f1(z)| > −7 logMf1(4eRn) in |z| = rn

⇒ |f1(z)| > Mf1(4eRn)−7 in |z| = rn.

Also,

Mf2(rn) > Mf2(Rn) > Mg(RnL(Rn))λ) > Mg

((rn
2

)λ
L
(rn

2

)λ)
.

If zr is a point in |z| = r with Mf2(r) = |f2(zr)|, we have

Mh(r) ≥ |f1(zr)|Mf2(r).

And therefore,

Mh(rn) > Mg

((rn
2

)λ
L
(rn

2

)λ)
.Mf1(4eRn)−7

> Mg

((rn
2

)λ
L
(rn

2

)λ)
.(Mg(4eRnL(Rn))µ)−7, for sufficiently large n

> Mg

((rn
2

)λ
L
(rn

2

)λ)
.(Mg(4ernL(rn))µ)−7, since rn > Rn.

Now taking ν ∈ (µ, λ) and applying Lemma 2.2 for σ = ν
µ
> 1, n = 8

and r = (4ernL(rn))µ we obtain,

Mh(rn) > Mg(4ernL(rn))ν).(Mg(4ernL(rn))µ)−7

> Mg(4ernL(rn))µ)8.(Mg(4ernL(rn))µ)−7,

= Mg(4ernL(rn))µ)

> Mg(rnL(rn))µ), for sufficiently large n.
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Consequently,
µ ≤ ρL for each µ < ρL2 .

So,
ρL = ρL2 .

3.3. Relative L-order of derivative. We know that the classical or-
der of an entire function is same as that of its derivative. But in our
case, this result is false if both of the entire functions be polynomials.

Theorem 3.6. Let f and g be two nonconstant entire functions such
that at least one of them is transcendental. Then ρLg (f ′) = ρLg (f).

Proof. We can assume that f and g are transcendental, the other
cases are trivial.

We can assume that f(0) = 0.

Let M̃f (r) = max{|f ′(z)| : |z| = r}
We know that

f(z) =

z∫
0

f ′(t)dt

where we have taken the integral over the segment that joins the origin
with z.

|f(z)| ≤
z∫

0

|f ′(t)| dt ≤ M̃f (r).r

⇒ Mf (r) ≤ M̃f (r).r

Using Cauchy’s formula,

f ′(z) =
1

2πi

∮
c

f(t)

(t− z)2
dt, where |z| = r, c = {t : |t− z| = r}

⇒ |f ′(z)| ≤ 1

2π

Mf (r)

r2
.2π < Mf (2r)

⇒ M̃f (r) < Mf (2r).

Therefore

Mf (r)

r
< M̃f (r) < Mf (2r), for each r > 0
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Let σ ∈ (0, 1), from Lemma 2.3(d) and taking λ = 1, µ = σ, we get

lim
r→∞

Mf (r)

rMf (rσ)
=∞

⇒Mf (r) > rMf (r
σ), for sufficiently large r.

Therefore

Mf (r
σ) < M̃f (r) < Mf (2r)

⇒M−1
g (Mf (r

σ)) < M−1
g (M̃f (r)) < M−1

g (Mf (2r)).

Taking logarithm and dividing by log(rL(r)), we get

logM−1g (Mf (rσ))

log(rL(r))
<

logM−1g (M̃f (r))

log(rL(r))
<

logM−1g (Mf (2r))

log(rL(r))

⇒
logM−1g (Mf (r))

log(rL(r))
1
σ

<
logM−1g (Mf (r))

log
(
r

1
σL
(
r

1
σ

)) <
logM−1g (M̃f (r))

log(rL(r))
<

logM−1g (Mf (r))

log
(
r
2L
(
r
2

))
taking lim sup as r →∞, we have

σ.ρLg (f) ≤ ρLg (f ′) ≤ ρLg (f) for each σ ∈ (0, 1)

⇒ ρLg (f ′) = ρLg (f)

3.4. Relative L-order of real and imaginary parts. The relative
L−order is completely determined by the real and imaginary parts of
given functions.

Theorem 3.7. Let f and g be two nonconstant entire functions.
Denote

A(r) = max{Re f(z) : |z| = r},
B(r) = max{Im f(z) : |z| = r},
C(r) = max{Re g(z) : |z| = r},
D(r) = max{Im g(z) : |z| = r}.

Then

ρLg (f) = inf{µ > 0 : M(r) < N((rL(r))µ)

= lim sup
r→∞

logN−1(M(r))

log(rL(r))
,
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where M is any of the functions A, B ◦Mf and N is any of the functions
C, D ◦Mg.

Proof. It is known that A,B,C and D are continuous, strictly in-
creasing, then A−1, B−1, C−1 and D−1 are exist.

From Lemma 2.6, there exists α > 0 such that

M(r) ≤Mf (r) ≤M(αr) and N(r) ≤Mg(r) ≤ N(αr)

Let us take ρL = ρLg (f) and β = inf{µ > 0 : M(r) < N((rL(r))µ)}.
Let us first prove that β ≤ ρ.

If ρ =∞, then it is trivial.

If ρ be finite, take λ, µ such that ρ < λ < µ <∞.
Therefore, Mf (r) < Mg((rL(r))λ) and

M(r) ≤ Mf (r) < Mg((rL(r))λ) < N(αλ(rL(r))λ)

< N((rL(r))µ), for sufficiently large r

⇒ µ ≥ β, for all µ > ρ

⇒ β ≤ ρ.

Now we prove that β ≥ ρ.

If ρ = 0, it is trivial.

If ρ > 0, then take λ, µ such that 0 < µ < λ < ρ.

Then for a sequence of values of rn tending to ∞ such that

Mf (rn) > Mg((rnL(rn))λ), for all n.

So,

M(αrn) > Mf (rn) > Mg((rnL(rn))λ) > Mg((αrnL(αrn))µ)

≥ N((αrnL(αrn))µ), for sufficiently large n

⇒ β ≥ µ with for all µ < ρ

⇒ β ≥ ρ.

3.5. Relative L-order of Nevanlinna. The following theorem gener-
alizes the concepts of classical order to relative L−order determined by
T (r).
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Theorem 3.8. Let f and g be two nonconstant entire functions.
Then

ρLg (f) = inf{µ > 0 : Tf (r) < Tg((rL(r))µ)}

= lim sup
r→∞

log T−1g (Tf (r))

log(rL(r))
.

Proof. Let ρL = ρLg (f) and α = inf{µ > 0 : Tf (r) < Tg((rL(r))µ)}
Let us prove that α ≤ ρL.

If ρL =∞, the case is trivial.

So, we take ρL be finite and let’s take γ, δ, λ, µ such that ρL < γ <
δ < λ < µ <∞.

Now for sufficiently large r, it is clear that

γ

δ
<

(rL(r))µ − (rL(r))λ

(rL(r))µ + (rL(r))λ
.

By Lemma 2.3(b) and 2.3(c) applying to Mg, taking s = δ
γ
, gives

Mg(r
γ)s ≤ KMg(r

δ) < Mg(r
λ).

and

Mg((rL(r))γ)s = Mg((rL(r))γ)
δ
γ ≤ KMg

(
rδ
(
L
(
r
δ
γ

))γ)
≤ KMg(r

δ(L(r))δ), for sufficiently large r

< Mg((rL(r))λ).

Therefore,

δ

γ
logMg((rL(r))γ) < logMg((rL(r))λ).

Which implies

logMg((rL(r))γ) <
γ

δ
logMg((rL(r))λ)

<
(rL(r))µ − (rL(r))λ

(rL(r))µ + (rL(r))λ
logMg((rL(r))λ)

≤ Tg((rL(r))µ).
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Again from Lemma 2.7

Tf (r) ≤ logMf (r) < logMg((rL(r))λ)

⇒ Tf (r) < Tg((rL(r))µ)

⇒ µ ≥ α, for all µ > ρL

⇒ ρL ≥ α.

Next let us prove, α ≥ ρL.
If ρL = 0, the case is trivial.
So let ρL > 0, and take γ, δ, µ with 0 < µ < λ < γ < ρL.
Then there exist {rn} tending to ∞ such that

Mf (rn) > Mg((rnL(rn))γ), for all n.

c ∈
(
λ
γ
, 1
)

and d > 1+c
1−c .

Then

Tf (drn) >
drn − rn
drn + rn

logMf (rn)

=
d− 1

d+ 1
logMf (rn)

> c logMf (rn)

> logMg((rnL(rn))γ)c

> log
Mg((rnL(rn))γc)

K
, using Lemma 2.3(b) for c < 1

> logMg((rnL(rn))λ), as c >
λ

γ

≥ logMg((drnL(drn))µ), for sufficiently large n

≥ Tg((drnL(rn))µ).

Therefore,

Tf (drn) > Tg((drnL(rn))µ), for sufficiently large n

⇒ α ≥ µ, for all µ < ρL

⇒ α ≥ ρL.

Hence,

ρL = α = {µ > 0 : Tf (r) < Tg((rL(r))µ)}.
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3.6. Relative L-proximate order. Here we define relative L−proximate
order of f with respect to g and relative L−lower proximate order of f
with respect to g and then give simple prove of their existence.

Definition 3.9 (Relative L-proximate order of f with respect to g).
Let f(z) be an integral function of finite L−order of growth of f relative
to g, ρLg (f).

A function ρLg (f)(r) is said to be a L−proximate order of growth of
f relative to g if the following properties holds:

i) ρLg (f)(r) is differentiable for r > r0 except at isolated points at
which ρ′L(r − 0) and ρ′L(r + 0) exist,

ii) lim
r→∞

ρLg (f)(r) = ρLg (f),

iii) lim
r→∞

r.(ρLg (f))′(r). log{rL(r)} = 0,

iv) lim sup
r→∞

M−1
g (Mf (r))

{rL(r)}ρ
L
g (f)(r)

= 1.

Theorem 3.10 (Existence of Relative L-proximate order of f with
respect to g). For every entire function f(z) of finite L−order of growth
of f relative to g, ρLg (f), there exists a L−proximate order ρLg (f)(r).

Proof. Let

σ(r) =
logM−1

g (Mf (r))

log{rL(r)}
.

Then either σ(r) > ρLg (f) for a sequence of r tending to infinity, or

σ(r) ≤ ρLg (f) for all large values of r.

Case A: σ(r) > ρLg (f) for a sequence of r tending to infinity.
We define,

φ(r) = max
x≥r
{σ(x)}.

Since, σ(r) is continuous, lim sup
r→∞

σ(r) = ρLg (f), and σ(r) > ρLg (f) for

a sequence of values of r tending to infinity.
Therefore, φ(r) exists. φ(r) is a non-increasing function of r.
Let r1 > 0 be such that φ(r1) = σ(r1). Such values will exist for a

sequence of values of r tending to infinity.
Let ρLg (f)(r1) = φ(r1). Let t1 be the smallest integer not less than

r1 + 1 such that φ(r1) > φ(t1) and let

ρLg (f)(r) = ρLg (f)(r1) = φ(r1) for r1 < r ≤ t1.

Define u1 as follows:
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u1 > t1,
ρLg (f)(r) = ρLg (f)(r1) − log log log{rL(r)} + log log log{t1L(t1)} for

t1 ≤ r ≤ u1,
ρLg (f)(r) = φ(r) for r = u1 but ρLg (f)(r) > φ(r) for t1 ≤ r < u1.
Let r2 be the smallest value of r for which r2 ≥ u1 and φ(r2) = σ(r2).
If r2 > u1 then let ρLg (f)(r) = φ(r) for u1 ≤ r ≤ r2. Since φ(r) is

constant for u1 ≤ r ≤ r2, therefore ρLg (f)(r) is constant for u1 ≤ r ≤ r2.

We repeat the argument and obtain that ρLg (f)(r) is differentiable in
adjacent intervals.

Further,

(ρLg (f))′(r) = 0 or − 1

log log{rL(r)}. log{rL(r)}.rL(r)
{rL′(r) + L(r)}.

Therefore,

r.(ρLg (f))′(r). log{rL(r)} = 0 or − 1

log log{rL(r)}

{
rL′(r)

L(r)
+ 1

}
.

Hence,

lim
r→∞

r.(ρLg (f))′(r) log{rL(r)} = 0.

Also note that, ρLg (f)(r) ≥ φ(r) ≥ σ(r) for r ≥ r1.
Further, ρL(r) = φ(r) for r = r1, r2, r3, . . . and ρL(r) is non-increasing

and lim
r→∞

φ(r) = ρL.

Hence,

lim sup
r→∞

ρLg (f)(r) = lim
r→∞

ρL(r) = ρL.

Again since, M−1
g (Mf (r)) = {rL(r)}σ(r) = {rL(r)}ρLg (f)(r) for infin-

itely many values of r and M−1
g (Mf (r)) < {rL(r)}ρLg (f)(r) for the re-

maining r.
Hence,

lim sup
r→∞

M−1
g (Mf (r))

{rL(r)}ρLg (f)(r)
= 1.

Case B: σ(r) ≤ ρLg (f) for all large values of r.
Here, there are two possibilities:
Subcase B.1: σ(r) = ρLg (f), for at least a sequence of values of r

tending to infinity.
Here, we take ρLg (f)(r) = ρLg (f) for all large r.

Subcase B.2: σ(r) < ρLg (f), for all large r.
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Let X > 0 be such that σ(r) < ρLg (f) where r ≥ X.
We define,

ξ(r) = max
X≤x≤r

{σ(x)}.

Therefore ξ(r) is non-decreasing.
Take a suitable value r1 > X and let
ρLg (f)(r1) = ρLg (f),

ρLg (f)(r) = ρLg (f) + log log log{rL(r)} − log log log{r1L(r1)} for s1 ≤
r ≤ r1,

where s1 < r1 is such that ξ(s1) = ρL(s1).
If ξ(s1) 6= σ(s1), then we take ρLg (f)(r) = ξ(r) for t1 ≤ r ≤ s1.
where t1 is the nearest point (with t1 < s1) at which ξ(t1) = σ(t1).

Therefore ρLg (f)(r) is constant for t1 ≤ r ≤ s1.
If ξ(s1) = σ(s1), then let t1 = s1.
Choose r2 > r1 suitable large and let
ρLg (f)(r2) = ρLg (f),

ρLg (f)(r) = ρLg (f) + log log log{rL(r)} − log log log{r2L(r2)} for s2 ≤
r ≤ r2,

where s2(< r2) is such that ξ(s2) = ρLg (f)(s2).

If ξ(s2) 6= σ(s2), then we take ρLg (f)(r) = ξ(r) for t2 ≤ r ≤ s2.
where t2 is the nearest point (with t2 < s2) at which ξ(t2) = σ(t2).
If ξ(s2) = σ(s2), then let t2 = s2.
For r < t2, let
ρLg (f)(r) = ρLg (f)(t2) + log log log{t2L(t2)} − log log log{rL(r)} for

u1 ≤ r ≤ t2,
where u2(< t2) is the point of intersection of

y = ρLg (f) with y = ρLg (f)(t2) + log log log{t2L(t2)}− log log log{rL(r)}.
Let ρLg (f)(r) = ρLg (f) for r1 ≤ r ≤ u1
It is always possible to choose r2 so large that r1 < u1.
We repeat the procedure and note that ρLg (f)(r) is differentiable in

adjacent intervals
Further,

(ρLg (f))′(r) = 0 or ± 1

log log{rL(r)}. log{rL(r)}r.L(r)
{rL′(r) + L(r)}.

Therefore,

r.(ρLg (f))′(r). log{rL(r)} = 0 or ± 1

log log{rL(r)}

{
rL′(r)

L(r)
+ 1

}
.
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Hence,
lim
r→∞

r.(ρLg (f))′(r). log{rL(r)} = 0.

Also, ρLg (f)(r) ≥ ξ(r) ≥ σ(r) for all large r and ρLg (f)(r) = σ(r) for
r = t1, t2, t3, . . ..

Hence,
lim
r→∞

ρLg (f)(r) = ρLg (f).

And

lim sup
r→∞

M−1
g (Mf (r))

{rL(r)}ρLg (f)(r)
= 1.

Definition 3.11 (Relative L-lower proximate order of f with respect
to g). Let f(z) be an integral function of finite L−lower order of growth
of f relative to g, λLg (f).

A function λLg (f)(r) is said to be a L−lower proximate order of growth
of f relative to g if the following properties holds:

i) λLg (f)(r) is differentiable for r > r0 except at isolated points at
which ρ′L(r − 0) and ρ′L(r + 0) exist,

ii) lim
r→∞

λLg (f)(r) = λLg (f),

iii) lim
r→∞

r.(λLg (f))′(r). log{rL(r)} = 0,

iv) lim inf
r→∞

M−1
g (Mf (r))

{rL(r)}λ
L
g (f)(r)

= 1.

Theorem 3.12 (Existence of Relative L-lower proximate order of
f with respect to g). For every entire function f(z) of finite L−lower
order of growth of f relative to g, λLg (f), there exists a L−proximate

order λLg (f)(r).

The proof of the above theorem is omitted because it can be carried
out in the line of the previous theorem.

3.7. Some examples. In the following two examples we shall find out
the relative L−order when f and g both are polynomial and both are
transcendental respectively. The other two cases are trivial by Theorem
3.3(a) and 3.3(b).

Example 3.13. Let us consider a slowly increasing function, L(r) =
log r.

Let f(z) = z2 and g(z) = z3.
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Then Mf (r) = r2, Mg(r) = r3 and M−1
g (r) = r

1
3 .

Hence

ρLg (f) = lim sup
r→∞

logM−1
g (Mf (r))

log(rL(r))

= lim sup
r→∞

log r
2
3

log(r log r)

=
2

3
lim sup
r→∞

log r

log r + log log r

=
2

3
.

Note: Here ρLg (f) = 2
3

= deg(f)
deg(g)

.

Example 3.14. Let us consider another slowly increasing function,
L(r) = log log r.

Let f(z) = ez
2

and g(z) = ez.

Then Mf (r) = er
2
, Mg(r) = er and M−1

g (r) = log r.
Hence

ρLg (f) = lim sup
r→∞

logM−1
g (Mf (r))

log(rL(r))

= lim sup
r→∞

log log er
2

log(r log log r)

= 2 lim sup
r→∞

log r

log r + log log log r
= 2.

In the next example we shall show that Theorem 3.5(d) may not hold
if g does not satisfy property (A). For this we take g as a polynomial.

Example 3.15. Let us consider the slowly increasing function, L(r) =
log r.

Let f1(z) = z2, f2(z) = z3 and g(z) = z.
Then Mf1(r) = r2, Mf2(r) = r3, Mg(r) = r and M−1

g (r) = r.

And also f1(z)f2(z) = z5, Mf1f2(r) = r5.
Now we see that, ρLg (f1) = 2, ρLg (f2) = 3 and ρLg (f1f2) = 5.
But

5 = ρLg (f1f2) � max{ρLg (f1), ρ
L
g (f2)} = max{2, 3} = 3.
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