# RELATIVE $L$-ORDER OF AN ENTIRE FUNCTION 

Chinmay Ghosh*, Anirban Bandyopadhyay, and Soumen Mondal


#### Abstract

In this paper we introduce relative $L$-order of a nonconstant entire function $f$ with respect to another nonconstant entire function $g$. Also we investigate the existence of relative $L$-proximate order of $f$ with respect to $g$.


## 1. Introduction

Let $f$ be a nonconstant entire function defined on $\mathbb{C}$. Then the maximum modulus function $M_{f}(r)$ of $f$, defined by $M_{f}(r)=\max _{|z|=r}|f(z)|$ is continuous and strictly increasing. In such case the inverse function $M_{f}^{-1}:(|f(0)|, \infty) \rightarrow(0, \infty)$ exists and is also continuous, strictly increasing and $\lim _{s \rightarrow \infty} M_{f}^{-1}(s)=\infty$. The growth of an entire function $f$ is generally measured by its order and type.

In 1988, Luis Bernal [1] introduced the order of growth of a nonconstant entire function $f$ relative to another entire function $g$, which is defined by

$$
\begin{aligned}
\rho_{g}(f) & =\inf \left\{\mu>0: M_{f}(r)<M_{g}\left(r^{\mu}\right), \text { for all } r>r_{0}\right\} \\
& =\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log r}
\end{aligned}
$$

Received February 14, 2020. Revised July 2, 2020. Accepted August 29, 2020. 2010 Mathematics Subject Classification: 30D20, 30D30, 30D35.
Key words and phrases: entire function, property $(A)$, relative $L$-order, relative $L$-proximate order.

* Corresponding author.
(c) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

In 1988, D. Somasundaram and R. Thamizharasi [4] introduced the $L$ - order of an entire function $f$, defined by

$$
\rho_{L}=\limsup _{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log (r L(r))},
$$

where $L(r)$ is a positive continuous function, increasing slowly i.e. $L(a r) \sim$ $L(r)$ as $r \rightarrow \infty$, for all $a>0$, given by Singh and Bekar [3]. The function, $L(r)$ is called slowly increasing function.

In 1923, Valiron [5] initiated the terminology and generalized the concept of proximate order and in 1946, S.M. Shah [2] defined it in more justified form and gave a simple proof of its existence.

In this paper we introduce relative $L$-order of a nonconstant entire function $f$ with respect to another nonconstant entire function $g$. Also we investigate the existence of relative $L$-proximate order of $f$ with respect to $g$.

## 2. Basic definitions and preliminary lemmas

Here we give some definitions and lemmas.
Definition 2.1. Let $f$ be a nonconstant entire function. We say that $f$ satisfies the property $(A)$ if and only if for each $\sigma>1$,

$$
M_{f}(r)^{2} \leq M_{f}\left(r^{\sigma}\right)
$$

exists.
For example, $f(z)=\exp (z)$ satisfies property $(A)$. But no polynomial satisfies property $(A)$. Moreover, there are some transcendental functions which do not satisfy property $(A)$.

Lemma 2.2. [1] If $f$ is a nonconstant entire function, then $f$ satisfies the property $(A)$ if and only if for each $\sigma>1$ and positive integer $n$,

$$
M_{f}(r)^{n} \leq M_{f}\left(r^{\sigma}\right), \text { for all } r>0
$$

Lemma 2.3. [1] Let $f$ be a nonconstant entire function, $\alpha>1,0<$ $\beta<\alpha, s>1,0<\mu<\lambda$ and $n$ be a positive integer. Then
a) $\quad M_{f}(\alpha r)>\beta M_{f}(r)$,
b) There exists $K=K(s, f)>0$ such that

$$
f(r)^{s} \leq K M_{f}\left(r^{s}\right), \text { for all } r>0,
$$

c) $\quad \lim _{r \rightarrow \infty} \frac{M_{f}\left(r^{s}\right)}{M_{f}(r)}=\infty=\lim _{r \rightarrow \infty} \frac{M_{f}\left(r^{\lambda}\right)}{M_{f}\left(r^{\mu}\right)}$,
d) If $f$ is transcendental, then $\lim _{r \rightarrow \infty} \frac{M_{f}\left(r^{s}\right)}{r^{n} M_{f}(r)}=\infty=\lim _{r \rightarrow \infty} \frac{M_{f}\left(r^{\lambda}\right)}{r^{n} M_{f}\left(r^{\mu}\right)}$.

Lemma 2.4. [1] Suppose that $f$ and $g$ are entire functions, $f(0)=0$ and $h=g \circ f$. Then there exists $c \in(0,1)$, independent of $f$ and $g$, such that

$$
M_{h}(r)>M_{g}\left(c M_{f}\left(\frac{r}{2}\right)\right), \text { for all } r>0 .
$$

Lemma 2.5. [1] Let $R>0, \eta \in\left(0, \frac{3 e}{2}\right)$ and $f$ is analytic in $|z| \leq 2 e R$ with $f(0)=1$. Then on the disc $|z| \leq R$, excluding a family of discs the sum of whose radii is not greater than $4 \eta R$,

$$
\log |f(z)|>-T(\eta) \log M_{f}(2 e R)
$$

where $T(\eta)=2+\log \left(\frac{3 e}{2 \eta}\right)$.
Lemma 2.6. [1] If $f$ is a nonconstant entire function and $A(r)=$ $\max \{\operatorname{Re} f(z):|z|=r\}$, then

$$
M_{f}(r)<A(145 r) .
$$

Lemma 2.7. [1] If $f$ is a nonconstant entire function, then

$$
T(r) \leq \log ^{+} M_{f}(r) \leq\left(\frac{R+r}{R-r}\right) T(r), \text { for } 0<r<R
$$

## 3. Main Results

In this section we defined relative $L$-order of $f$ with respect to $g$, relative $L$-lower order of $f$ with respect to $g$ and established some theorems related to these. Also we prove the existence of relative $L$-proximate order of $f$ with respect to $g$.

Definition 3.1 (Relative L-order of f with respect to g ). Let $f$ and $g$ be entire functions and $L(r)$ be a positive slowly increasing function. The relative $L$-order of $f$ with respect to $g$ is given by

$$
\begin{aligned}
& \rho_{g}^{L}(f)=\inf \left\{\mu>0: M_{f}(r)<M_{g}\left((r L(r))^{\mu}\right), \text { for all } r>r_{0}(\mu)>0\right\} \\
&=\limsup _{r \rightarrow \infty}^{\log M_{g}^{-1}\left(M_{f}(r)\right)} \\
& \log (r L(r))
\end{aligned}
$$

Definition 3.2 (Relative L-lower order of f with respect to g ). Let $f$ and $g$ be entire functions and $L(r)$ be a positive slowly increasing function. The relative $L$-lower order of $f$ with respect to $g$ is given by

$$
\lambda_{g}^{L}(f)=\liminf _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))} .
$$

Theorem 3.3. Let $f, g, h$ be nonconstant entire functions and $L_{i}(i=$ $1,2,3,4)$ be nonconstant linear functions, i.e. $L_{i}(z)=a_{i} z+b_{i}$, for all $z \in \mathbb{C}$, with $a_{i}, b_{i} \in \mathbb{C}, a_{i} \neq 0(i=1,2,3,4)$. Then
a) If $g$ is a polynomial and $f$ is a transcendental, $\rho_{g}^{L}(f)=\infty$,
b) If $g$ is a transcendental and $f$ is a polynomial, $\rho_{g}^{L}(f)=0$,
c) If $f$ and $g$ are polynomials, $\rho_{g}^{L}(f)=\frac{\operatorname{deg}(f)}{\operatorname{deg}(g)}$,
d) If $M_{f}(r) \leq M_{g}(r), \rho_{h}^{L}(f) \leq \rho_{h}^{L}(g)$,
e) If $M_{g}(r) \leq M_{h}(r), \rho_{g}^{L}(f) \geq \rho_{h}^{L}(f)$,
f) $\rho_{\left(L_{4} \circ g \circ L_{3}\right)}^{L}\left(L_{2} \circ f \circ L_{1}\right)=\rho_{g}^{L}(f)$.

Proof. a) Let the degree of $g$ be $n$. Then $M_{f}(r)>K r^{m}$ and $M_{g}(r) \leq$ $K_{1} r^{n}$, where $K, K_{1}$ are constant and $m>0$ be any real number, for sufficiently large $r$.

Then,

$$
\begin{aligned}
\rho_{g}^{L}(f) & =\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))}>\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(K r^{m}\right)}{\log (r L(r))} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log \left(\frac{1}{K_{1}}\left(K r^{m}\right)^{\frac{1}{n}}\right)}{\log (r L(r))}=\limsup _{r \rightarrow \infty} \frac{\log \left(\frac{K^{\frac{1}{n}}}{K_{1}} r^{\frac{m}{n}}\right)}{\log (r L(r))} \\
& =\limsup _{r \rightarrow \infty} \frac{\log \frac{K^{\frac{1}{n}}}{K_{1}}+\log r^{\frac{m}{n}}}{\log (r L(r))}=\frac{m}{n} \limsup _{r \rightarrow \infty} \frac{\log r}{\log (r L(r))} .
\end{aligned}
$$

Hence,

$$
\rho_{g}^{L}(f)>\frac{m}{n}, \text { for all real } m .
$$

Therefore,

$$
\rho_{g}^{L}(f)=\infty .
$$

b) Let the degree of $f$ be $n$. Then $M_{f}(r) \leq K r^{n}$ and $M_{g}(r)>K_{1} r^{m}$, where $K, K_{1}$ are constant and $m>0$ be any real number, for sufficiently
large $r$. Then we have for $\mu>0$ and for sufficiently large $r$

$$
\begin{aligned}
M_{g}\left((r L(r))^{\mu}\right) & >K_{1}\left((r L(r))^{\mu}\right)^{m} \\
& =K_{1}(r L(r))^{\mu m} \\
& >K r^{n}, \text { for choosing suitable large } m \\
& \geq M_{f}(r)
\end{aligned}
$$

Which implies,

$$
\rho_{g}^{L}(f)=0 .
$$

c) Let $f(z)=a_{0} z^{m}+a_{1} z^{m-1}+\ldots+a^{m}, a_{0} \neq 0$ and $g(z)=b_{0} z^{n}+$ $b_{1} z^{n-1}+\ldots+b^{n}, b_{0} \neq 0$. Then $M_{f}(r) \leq K_{1} r^{m}$ and $M_{g}(r)>\frac{1}{2}\left|b_{0}\right| r^{n}$, where $K_{1}$ is a constant, for sufficiently large $r$.

Then,

$$
\begin{aligned}
\rho_{g}^{L}(f) & =\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))} \leq \limsup _{r \rightarrow \infty} \frac{\log \left(\frac{2 K_{1} r^{m}}{\left|b^{\prime}\right|}\right)^{\frac{1}{n}}}{\log (r L(r))} \\
& =\limsup _{r \rightarrow \infty} \frac{\log \left(\frac{2 K_{1}}{\left|b_{0}\right|}\right)^{\frac{1}{n}}+\log r^{\frac{m}{n}}}{\log (r L(r))}=\frac{m}{n} \limsup _{r \rightarrow \infty} \frac{\log r}{\log (r L(r))} .
\end{aligned}
$$

Hence,

$$
\rho_{g}^{L}(f) \leq \frac{m}{n}
$$

Again we can write, $M_{f}(r)>\frac{1}{2}\left|a_{0}\right| r^{m}$ and $M_{g}(r) \leq K_{2} r^{n}$, where $K_{2}$ is a constant, for sufficiently large $r$.

Then interchanging the role of $M_{f}(r)$ and $M_{g}(r)$, we get

$$
\rho_{g}^{L}(f) \geq \frac{m}{n}
$$

Thus,

$$
\rho_{g}^{L}(f)=\frac{m}{n}=\frac{\operatorname{deg}(f)}{\operatorname{deg}(g)}
$$

3.1. Relative L-order of composition. The following theorem solves the problem of the relative $L$-order on the composition of entire functions.

Theorem 3.4. Let $f, f_{1}, f_{2}, g$ and $m$ be nonconstant entire functions and $h=g \circ f$, then
a) $\rho_{g \circ f_{2}}^{L}\left(g \circ f_{1}\right)=\rho_{f_{2}}^{L}\left(f_{1}\right)$,
b) $\max \left\{\rho_{m}^{L}(f), \rho_{m}^{L}(g)\right\} \leq \rho_{m}^{L}(h)$,

Proof. a) Let $h_{i}=g \circ f_{i},(i=1,2)$, then $h_{i}$ is nonconstant entire function.

We can suppose that $f_{i}(0)=0$, if not we take $f_{i}^{*}(z)=f_{i}(z)-f_{i}(0)$ and $g_{i}^{*}(z)=g\left(z+f_{i}(0)\right)$ and we would have $h_{i}=g_{i}^{*} \circ f_{i}^{*}$, and by Theorem $3.3(\mathbf{f})$, we get $\rho_{f_{2}^{*}}^{L}\left(f_{1}^{*}\right)=\rho_{f_{2}}^{L}\left(f_{1}\right)$.

So, without loss of generality we take $f_{i}(0)=0$.
We have by Lemma 2.4, there exists $c \in(0,1)$ such that

$$
M_{h_{i}}(r) \geq M_{g}\left(c M_{f_{i}}\left(\frac{r}{2}\right)\right), \text { for all } r>0, i=1,2 .
$$

Again using Lemma 2.3 with $\alpha=\frac{1}{d}, \beta=\frac{1}{c}$ we have

$$
\begin{gathered}
M_{f_{i}}\left(\frac{1}{d} \cdot \frac{d r}{2}\right)>\frac{1}{c} \cdot M_{f_{i}}\left(\frac{d r}{2}\right) \\
\Rightarrow M_{f_{i}}\left(\frac{r}{2}\right)>\frac{1}{c} M_{f_{i}}\left(\frac{d r}{2}\right) \text { for all } d \in(0, c) \text { since } M_{h_{i}} \leq M_{g} \circ M_{f_{i}} .
\end{gathered}
$$

Then

$$
\begin{equation*}
M_{h_{i}}(r)>M_{g}\left(M_{f_{i}}\left(\frac{d r}{2}\right)\right) \geq M_{h_{i}}\left(\frac{d r}{2}\right), i=1,2 . \tag{1}
\end{equation*}
$$

Again from (1)

$$
\begin{aligned}
M_{h_{1}}(r) & >M_{g}\left(M_{f_{1}}\left(\frac{d r}{2}\right)\right) \\
\Rightarrow M_{h_{2}}^{-1}\left(M_{h_{1}}(r)\right) & >M_{h_{2}}^{-1}\left(M_{g}\left(M_{f_{1}}\left(\frac{d r}{2}\right)\right)\right)
\end{aligned}
$$

Again

$$
M_{h_{2}}^{-1} \circ M_{g}(t) \geq M_{f_{2}}^{-1}(t)
$$

Therefore
(2) $M_{h_{2}}^{-1}\left(M_{h_{1}}(r)\right)>M_{h_{2}}^{-1}\left(M_{g}\left(M_{f_{1}}\left(\frac{d r}{2}\right)\right)\right)>M_{f 2}^{-1}\left(M_{f_{1}}\left(\frac{d r}{2}\right)\right)$.

In (1), for $i=2$, we put $M_{h_{2}}(r)=t$. i.e., $r=M_{h_{2}}^{-1}(t)$ and we get

$$
\begin{aligned}
t & >M_{g}\left(M_{f_{2}}\left(\frac{d}{2} M_{h_{2}}^{-1}(t)\right)\right) \\
M_{f_{2}}^{-1}\left(M_{g}^{-1}(t)\right) & >\frac{d}{2} M_{h_{2}}^{-1}(t) \Rightarrow M_{h_{2}}^{-1}(t)<\frac{2}{d} M_{f_{2}}^{-1}\left(M_{g}^{-1}(t)\right) .
\end{aligned}
$$

Putting $t=M_{h_{1}}(r)$, we have

$$
\begin{equation*}
M_{h_{2}}^{-1}\left(M_{h_{1}}(r)\right)<\frac{2}{d} M_{f_{2}}^{-1}\left(M_{g}^{-1}\left(M_{h_{1}}(r)\right)\right) \leq \frac{2}{d} M_{f_{2}}^{-1}\left(M_{f_{1}}(r)\right) . \tag{3}
\end{equation*}
$$

Combining (2) and (3) we have,

$$
M_{f_{2}}^{-1}\left(M_{f_{1}}\left(\frac{d r}{2}\right)\right)<M_{h_{2}}^{-1}\left(M_{h_{1}}(r)\right)<\frac{2}{d} M_{f_{2}}^{-1}\left(M_{f_{1}}(r)\right) .
$$

Taking logarithm and dividing by $\log (r L(r))$ and taking limsup as $r \rightarrow \infty$, we get

$$
\rho_{g \circ f_{2}}^{L}\left(g \circ f_{1}\right)=\rho_{f_{2}}^{L}\left(f_{1}\right) .
$$

b) As in part (a), we can assume that $f(0)=0$.

Since $f$ and $g$ are nonconstant, there exists $\alpha>0$ such that $M_{f}(r)>$ $\alpha r$ and $M_{g}(r)>\alpha r$.

Applying the Lemma 2.4, there exists $c \in(0,1)$ such that

$$
\begin{equation*}
M_{h}(r) \geq M_{g}\left(c M_{f}\left(\frac{r}{2}\right)\right)>M_{g}\left(\frac{c \alpha r}{2}\right)>M_{g}\left(r^{\sigma}\right), \tag{4}
\end{equation*}
$$

for each $\sigma \in(0,1)$ and for sufficiently large $r$.
Again,

$$
\begin{equation*}
M_{h}(r) \geq M_{g}\left(c M_{f}\left(\frac{r}{2}\right)\right)>\text { ג.c. } M_{f}\left(\frac{r}{2}\right)>M_{f}\left(r^{\sigma}\right), \tag{5}
\end{equation*}
$$

for each $\sigma \in(0,1)$ and for sufficiently large $r$.
From (4), we have

$$
M_{m}^{-1}\left(M_{g}\left(r^{\sigma}\right)\right) \leq M_{m}^{-1}\left(M_{h}(r)\right)
$$

Taking logarithms and dividing by $\log (r L(r))$, for sufficiently large $r$, we get

$$
\begin{gathered}
\frac{\log M_{m}^{-1}\left(M_{g}\left(r^{\sigma}\right)\right)}{\log (r L(r))} \leq \frac{\log M_{m}^{-1}\left(M_{h}(r)\right)}{\log (r L(r))} \\
\Rightarrow \frac{\log M_{m}^{-1}\left(M_{g}(r)\right)}{\log \left((r L(r))^{\frac{1}{\sigma}}\right)}<\frac{\log M_{m}^{-1}\left(M_{g}\left(r^{\sigma}\right)\right)}{\log (r L(r))} \leq \frac{\log M_{m}^{-1}\left(M_{h}(r)\right)}{\log (r L(r))} \\
\Rightarrow \frac{\log M_{m}^{-1}\left(M_{g}(r)\right)}{\log (r L(r))} \leq \frac{1 \log M_{m}^{-1}\left(M_{h}(r)\right)}{\sigma} \\
\log (r L(r))
\end{gathered}
$$

since $L(r)^{\alpha}>L\left(r^{\alpha}\right)$, for $\alpha>1$.
Now taking limsup as $r \rightarrow \infty$, we get

$$
\rho_{m}^{L}(g) \leq \frac{1}{\sigma} \rho_{m}^{L}(h)
$$

Similarly from (5), we get

$$
\rho_{m}^{L}(f) \leq \frac{1}{\sigma} \rho_{m}^{L}(h) .
$$

From the above two results (b) follows.
3.2. Relative L-order of sum and product. We know that the classical order of a finite sum of entire functions is generally the highest of the orders of them. This is also true for relative $L$-order. Likewise, the order of a finite product of entire functions is generally the highest of the orders of them. But the same result is not valid for the relative $L$-order. For this, we have to introduce some restriction on the functions.

Theorem 3.5. Let $f, f_{1}, f_{2}$ and $g$ are nonconstant entire functions, then
a) $\rho_{g}^{L}\left(f_{1}+f_{2}\right) \leq \max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\}$, equality occurs if $\rho_{g}^{L}\left(f_{1}\right) \neq$ $\rho_{g}^{L}\left(f_{2}\right)$,
b) if $f$ is a transcendental and $P$ is a polynomial then, $\rho_{g}^{L}(P f)=$ $\rho_{g}^{L}(f)$,
c) $\rho_{g}^{L}(f) \leq \rho_{g}^{L}\left(f^{n}\right) \leq n . \rho_{g}^{L}(f)$,
d) if $g$ satisfies property $(A)$, then $\rho_{g}^{L}\left(f_{1} f_{2}\right) \leq \max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\}$, equality occurs if $\rho_{g}^{L}\left(f_{1}\right) \neq \rho_{g}^{L}\left(f_{2}\right)$.

Proof. a) Let $h=f_{1}+f_{2}, \rho^{L}=\rho_{g}^{L}(h), \rho_{i}^{L}=\rho_{g}^{L}\left(f_{i}\right),(i=1,2)$.
If $h$ is constant, the case is trivial.

Suppose that $h$ is not a constant.
Without loss of generality we may take $\rho_{1}^{L} \leq \rho_{2}^{L}$.
If $\rho_{2}^{L}=\infty$, the case is trivial.
So, we take $\rho_{1}^{L} \leq \rho_{2}^{L}<\infty$.
Given $\varepsilon>0$,

$$
\begin{aligned}
M_{f_{1}}(r) & \left.\left.\leq M_{g}(r L(r))^{\rho_{1}^{L}+\varepsilon}\right) \leq M_{g}(r L(r))^{\rho_{2}^{L}+\varepsilon}\right) \\
\text { and } M_{f_{2}}(r) & \left.\leq M_{g}(r L(r))^{\rho_{2}^{L}+\varepsilon}\right), \text { for } r>r_{0}
\end{aligned}
$$

Then,

$$
\begin{aligned}
M_{h}(r) & \leq M_{f_{1}}(r)+M_{f_{2}}(r) \\
& \left.\leq 2 M_{g}(r L(r))^{\rho_{2}^{L}+\varepsilon}\right) \leq M_{g}\left(3(r L(r))^{\rho_{2}^{L}+\varepsilon}\right), \text { using Lemma 2.3(a)} \\
& \Rightarrow \frac{\log M_{g}^{-1}\left(M_{h}(r)\right)}{\log (r L(r))} \leq \frac{\log 3+\left(\rho_{2}^{L}+\varepsilon\right) \log (r L(r))}{\log (r L(r))}
\end{aligned}
$$

Now taking $\lim \sup$ as $r \rightarrow \infty$, we get $\rho^{L} \leq \rho_{2}^{L}+\varepsilon$, for each $\varepsilon>0$.
Consequently, $\rho^{L} \leq \rho_{2}^{L}=\max \left\{\rho_{1}^{L}, \rho_{2}^{L}\right\}$.
Now suppose that, $\rho_{1}^{L}<\rho_{2}^{L}$ and let's take $\lambda, \mu$ such that $\rho_{1}^{L}<\mu<$ $\lambda<\rho_{2}^{L}$.

Then $\left.M_{f_{1}}(r) \leq M_{g}(r L(r))^{\mu}\right)$ and there is a sequence $\left\{r_{n}\right\}$ tending to infinity with $\left.M_{f_{2}}\left(r_{n}\right)>M_{g}\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right)$, for all $n$.

Now by Lemma 2.3(c)

$$
\left.\left.M_{g}(r L(r))^{\lambda}\right)>2 M_{g}(r L(r))^{\mu}\right), \text { for all } n
$$

Therefore
$\left.\left.2 M_{f_{1}}\left(r_{n}\right)<2 M_{g}\left(r_{n} L\left(r_{n}\right)\right)^{\mu}\right)<M_{g}\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right)<M_{f_{2}}\left(r_{n}\right)$ for sufficiently large $n$. and so by Lemma 2.3(a)

$$
\begin{aligned}
M_{h}\left(r_{n}\right) & \geq M_{f_{2}}\left(r_{n}\right)-M_{f_{1}}\left(r_{n}\right) \geq \frac{1}{2} M_{f_{2}}\left(r_{n}\right) \\
& \left.\left.>\frac{1}{2} M_{g}\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right)>M_{g}\left(\frac{1}{3}\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right)\right) \text { for sufficiently large } n \\
& \Rightarrow \frac{\log M_{g}^{-1}\left(M_{h}\left(r_{n}\right)\right)}{\log \left(r_{n} L\left(r_{n}\right)\right)}>\frac{\log \frac{1}{3}+\lambda \log \left(r_{n} L\left(r_{n}\right)\right)}{\log \left(r_{n} L\left(r_{n}\right)\right)}
\end{aligned}
$$

Now taking lim sup as $r \rightarrow \infty$, we get $\rho^{L} \geq \lambda$, for each $\lambda \in\left(\rho_{1}^{L}, \rho_{2}^{L}\right)$.
So, $\rho^{L} \geq \rho_{2}^{L}=\max \left\{\rho_{1}^{L}, \rho_{2}^{L}\right\}$.
Hence, $\rho^{L}=\rho_{2}^{L}=\max \left\{\rho_{1}^{L}, \rho_{2}^{L}\right\}$ for $\rho_{1}^{L}<\rho_{2}^{L}$.
b) Since $P(z)$ is a polynomial and $h=P f$, taking $0<\alpha<1$ and $s>1$, we get

$$
\begin{align*}
M_{f}(\alpha r) & <2 \alpha M_{f}(r), \text { using Lemma 2.3(a) } \\
& <|P(z)| M_{f}(r), \text { on }|z|=r \\
& =M_{h}(r) \\
& <r^{n} M_{f}(r) \\
& <M_{f}\left(r^{s}\right), \text { using Lemma 2.3(d), for sufficiently large } r . \tag{6}
\end{align*}
$$

Consequently,

$$
\begin{gathered}
M_{g}^{-1}\left(M_{f}(\alpha r)\right)<M_{g}^{-1}\left(M_{h}(r)\right)<M_{g}^{-1}\left(M_{f}\left(r^{s}\right)\right) \\
\Rightarrow \frac{\log M_{g}^{-1}\left(M_{f}(\alpha r)\right)}{\log (r L(r))} \leq \frac{\log M_{g}^{-1}\left(M_{h}(r)\right)}{\log (r L(r))} \leq \frac{\log M_{g}^{-1}\left(M_{h}\left(r^{s}\right)\right)}{\log (r L(r))} \\
\Rightarrow \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(\frac{r}{\alpha} L\left(\frac{r}{\alpha}\right)\right)} \leq \frac{\log M_{g}^{-1}\left(M_{h}(r)\right)}{\log (r L(r))} \leq \frac{\log M_{g}^{-1}\left(M_{h}(r)\right)}{\log \left(r^{\frac{1}{s}} L\left(r^{\frac{1}{s}}\right)\right)} \leq \frac{\log M_{g}^{-1}\left(M_{h}(r)\right)}{\log (r L(r))^{\frac{1}{s}}} .
\end{gathered}
$$

Now taking limsup as $r \rightarrow \infty$, we get

$$
\begin{aligned}
\rho_{g}^{L}(f) & \leq \rho_{g}^{L}(h) \leq s \rho_{g}^{L}(f), \text { for all } s>1 \\
& \Rightarrow \rho_{g}^{L}(f)=\rho_{g}^{L}(h) .
\end{aligned}
$$

c) We know that,

$$
\max \left\{\left|f^{n}(z)\right|:|z|=r\right\}=M_{f}(r)^{n} \leq K M_{f}\left(r^{n}\right)<M_{f}\left((K+1) r^{n}\right),
$$

using Lemma 2.3(b) and 2.3(a).
Therefore,

$$
\begin{aligned}
\frac{\log M_{g}^{-1}\left(\left(M_{f}(r)\right)^{n}\right)}{\log (r L(r))} & \leq \frac{\log M_{g}^{-1}\left(M_{f}\left((K+1) r^{n}\right)\right)}{\log (r L(r))} \\
& =\frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(\frac{1}{(K+1)^{\frac{1}{n}}} r^{\frac{1}{n}} L\left(\frac{1}{(K+1)^{\frac{1}{n}}} r^{\frac{1}{n}}\right)\right)} \\
& <\frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(\left(\frac{r}{K+1}\right)^{\frac{1}{n}} L\left(\frac{r}{K+1}\right)^{\frac{1}{n}}\right)} \\
& =n \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(\left(\frac{r}{K+1}\right) L\left(\frac{r}{K+1}\right)\right)} .
\end{aligned}
$$

Now taking limsup as $r \rightarrow \infty$, we get

$$
\begin{aligned}
\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\left(M_{f}(r)\right)^{n}\right)}{\log (r L(r))} & \leq n \cdot \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(\left(\frac{r}{K+1}\right) L\left(\frac{r}{K+1}\right)\right)} \\
& =n \cdot \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))} \\
& \Rightarrow \rho_{g}^{L}\left(f^{n}\right) \leq n \cdot \rho_{g}^{L}(f) .
\end{aligned}
$$

Again,

$$
\begin{gathered}
\left(M_{f}(r)\right) n>M_{f}(r) \\
\Rightarrow \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\left(M_{f}(r)\right)^{n}\right)}{\log (r L(r))} \geq \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))} \\
\Rightarrow \rho_{g}^{L}\left(f^{n}\right) \geq \rho_{g}^{L}(f) .
\end{gathered}
$$

d) Let $f_{1}, f_{2}$ are transcendental, otherwise it would be trivial.

Denote $h=f_{1} f_{2}, \rho^{L}=\rho_{g}^{L}(h), \rho_{i}^{L}=\rho_{g}^{L}\left(f_{i}\right),(i=1,2)$.
Without loss of generality we may take $\rho_{1}^{L} \leq \rho_{2}^{L}$.
If $\rho_{2}^{L}=\infty$, the case is trivial.
So, we take $\rho_{1}^{L} \leq \rho_{2}^{L}<\infty$.
Given $\varepsilon>0$,

$$
\left.M_{f_{i}}(r) \leq M_{g}(r L(r))^{\rho_{2}^{L}+\frac{\varepsilon}{2}}\right) \text { for sufficiently large } r,(i=1,2)
$$

Then,

$$
\left.M_{h}(r) \leq M_{f_{1}}(r) M_{f_{2}}(r)<M_{g}(r L(r))^{\rho_{2}^{L}+\frac{\varepsilon}{2}}\right)^{2}
$$

Applying property $(A)$, with $\sigma=\frac{\rho_{2}^{L}+\varepsilon}{\rho_{2}^{L}+\frac{\varepsilon}{2}}>1$, we get

$$
\begin{aligned}
M_{h}(r) & \left.\leq M_{g}(r L(r))^{\rho_{2}^{L}+\varepsilon}\right), \text { for sufficiently large } r \\
& \Rightarrow \rho^{L} \leq \rho_{2}^{L}=\max \left\{\rho_{1}^{L}, \rho_{2}^{L}\right\} .
\end{aligned}
$$

Now suppose that, $\rho_{1}^{L}<\rho_{2}^{L}$.
Again we have, the product of $f$ by a factor $\frac{c}{z^{n}}$ does not alter its order, so we can assume without loss of generality that $f_{i}(0)=1$.

Take $\lambda, \mu$ with $\rho_{1}^{L}<\mu<\lambda<\rho_{2}^{L}$.
Then there is a sequence $\left\{R_{n}\right\}$ tending to $\infty$ such that

$$
\left.M_{f_{2}}\left(R_{n}\right)>M_{g}\left(R_{n} L\left(R_{n}\right)\right)^{\lambda}\right)
$$

for all $n$ and $\left.M_{f_{1}}(r)<M_{g}(r L(r))^{\mu}\right)$, for sufficiently large $r$.

Now by Lemma 2.5, taking $f=f_{1}, R=2 R_{n}, \eta=\frac{1}{16}$, we get,

$$
\log \left|f_{1}(z)\right|>-T\left(\frac{1}{16}\right) \log M_{f_{1}}\left(4 e R_{n}\right) .
$$

where $T\left(\frac{1}{16}\right)=2+\log \left(\frac{3 e}{2 \cdot \frac{1}{16}}\right)=2+\log (24 e)$.
Therefore,

$$
\log \left|f_{1}(z)\right|>-(2+\log (24 e)) \log M_{f_{1}}\left(4 e R_{n}\right),
$$

on the disc $|Z| \leq 2 R_{n}$, excluding a family of discs, the sum of radii is not greater than $\frac{R_{n}}{2}$.

Therefore there exists $r_{n} \in\left(R_{n}, 2 R_{n}\right)$ such that $|z|=r_{n}$, it does not intersect any of the excluded discs, then

$$
\begin{aligned}
\log \left|f_{1}(z)\right| & >-7 \log M_{f_{1}}\left(4 e R_{n}\right) \text { in }|z|=r_{n} \\
& \Rightarrow\left|f_{1}(z)\right|>M_{f_{1}}\left(4 e R_{n}\right)^{-7} \text { in }|z|=r_{n} .
\end{aligned}
$$

Also,

$$
\left.M_{f_{2}}\left(r_{n}\right)>M_{f_{2}}\left(R_{n}\right)>M_{g}\left(R_{n} L\left(R_{n}\right)\right)^{\lambda}\right)>M_{g}\left(\left(\frac{r_{n}}{2}\right)^{\lambda} L\left(\frac{r_{n}}{2}\right)^{\lambda}\right) .
$$

If $z_{r}$ is a point in $|z|=r$ with $M_{f_{2}}(r)=\left|f_{2}\left(z_{r}\right)\right|$, we have

$$
M_{h}(r) \geq\left|f_{1}\left(z_{r}\right)\right| M_{f_{2}}(r) .
$$

And therefore,

$$
\begin{aligned}
M_{h}\left(r_{n}\right) & >M_{g}\left(\left(\frac{r_{n}}{2}\right)^{\lambda} L\left(\frac{r_{n}}{2}\right)^{\lambda}\right) \cdot M_{f_{1}}\left(4 e R_{n}\right)^{-7} \\
& >M_{g}\left(\left(\frac{r_{n}}{2}\right)^{\lambda} L\left(\frac{r_{n}}{2}\right)^{\lambda}\right) \cdot\left(M_{g}\left(4 e R_{n} L\left(R_{n}\right)\right)^{\mu}\right)^{-7}, \text { for sufficiently large } n \\
& >M_{g}\left(\left(\frac{r_{n}}{2}\right)^{\lambda} L\left(\frac{r_{n}}{2}\right)^{\lambda}\right) \cdot\left(M_{g}\left(4 e r_{n} L\left(r_{n}\right)\right)^{\mu}\right)^{-7}, \text { since } r_{n}>R_{n} .
\end{aligned}
$$

Now taking $\nu \in(\mu, \lambda)$ and applying Lemma 2.2 for $\sigma=\frac{\nu}{\mu}>1, n=8$ and $r=\left(4 e r_{n} L\left(r_{n}\right)\right)^{\mu}$ we obtain,

$$
\begin{aligned}
M_{h}\left(r_{n}\right) & \left.>M_{g}\left(4 e r_{n} L\left(r_{n}\right)\right)^{\nu}\right) \cdot\left(M_{g}\left(4 e r_{n} L\left(r_{n}\right)\right)^{\mu}\right)^{-7} \\
& \left.>M_{g}\left(4 e r_{n} L\left(r_{n}\right)\right)^{\mu}\right)^{8} \cdot\left(M_{g}\left(4 e r_{n} L\left(r_{n}\right)\right)^{\mu}\right)^{-7}, \\
& \left.=M_{g}\left(4 e r_{n} L\left(r_{n}\right)\right)^{\mu}\right) \\
& \left.>M_{g}\left(r_{n} L\left(r_{n}\right)\right)^{\mu}\right), \text { for sufficiently large } n .
\end{aligned}
$$

Consequently,

$$
\mu \leq \rho^{L} \text { for each } \mu<\rho_{2}^{L} \text {. }
$$

So,

$$
\rho^{L}=\rho_{2}^{L} .
$$

3.3. Relative L-order of derivative. We know that the classical order of an entire function is same as that of its derivative. But in our case, this result is false if both of the entire functions be polynomials.

Theorem 3.6. Let $f$ and $g$ be two nonconstant entire functions such that at least one of them is transcendental. Then $\rho_{g}^{L}\left(f^{\prime}\right)=\rho_{g}^{L}(f)$.

Proof. We can assume that $f$ and $g$ are transcendental, the other cases are trivial.

We can assume that $f(0)=0$.
Let $\widetilde{M}_{f}(r)=\max \left\{\left|f^{\prime}(z)\right|:|z|=r\right\}$
We know that

$$
f(z)=\int_{0}^{z} f^{\prime}(t) d t
$$

where we have taken the integral over the segment that joins the origin with $z$.

$$
\begin{aligned}
|f(z)| & \leq \int_{0}^{z}\left|f^{\prime}(t)\right| d t \leq \widetilde{M}_{f}(r) \cdot r \\
& \Rightarrow M_{f}(r) \leq \widetilde{M}_{f}(r) \cdot r
\end{aligned}
$$

Using Cauchy's formula,

$$
\begin{aligned}
f^{\prime}(z) & =\frac{1}{2 \pi i} \oint_{c} \frac{f(t)}{(t-z)^{2}} d t, \text { where }|z|=r, c=\{t:|t-z|=r\} \\
& \Rightarrow\left|f^{\prime}(z)\right| \leq \frac{1}{2 \pi} \frac{M_{f}(r)}{r^{2}} \cdot 2 \pi<M_{f}(2 r) \\
& \Rightarrow \widetilde{M}_{f}(r)<M_{f}(2 r) .
\end{aligned}
$$

Therefore

$$
\frac{M_{f}(r)}{r}<\widetilde{M}_{f}(r)<M_{f}(2 r), \text { for each } r>0
$$

Let $\sigma \in(0,1)$, from Lemma 2.3(d) and taking $\lambda=1, \mu=\sigma$, we get

$$
\begin{gathered}
\lim _{r \rightarrow \infty} \frac{M_{f}(r)}{r M_{f}\left(r^{\sigma}\right)}=\infty \\
\Rightarrow M_{f}(r)>r M_{f}\left(r^{\sigma}\right), \text { for sufficiently large } r .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
M_{f}\left(r^{\sigma}\right)<\widetilde{M}_{f}(r)<M_{f}(2 r) \\
\Rightarrow M_{g}^{-1}\left(M_{f}\left(r^{\sigma}\right)\right)<M_{g}^{-1}\left(\widetilde{M}_{f}(r)\right)<M_{g}^{-1}\left(M_{f}(2 r)\right) .
\end{gathered}
$$

Taking logarithm and dividing by $\log (r L(r))$, we get

$$
\begin{gathered}
\frac{\log M_{g}^{-1}\left(M_{f}\left(r^{\sigma}\right)\right)}{\log (r L(r))}<\frac{\log M_{g}^{-1}\left(\widetilde{M}_{f}(r)\right)}{\log (r L(r))}<\frac{\log M_{g}^{-1}\left(M_{f}(2 r)\right)}{\log (r L(r))} \\
\Rightarrow \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))^{\frac{1}{\sigma}}}<\frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(r^{\frac{1}{\sigma}} L\left(r^{\frac{1}{\sigma}}\right)\right)}<\frac{\log M_{g}^{-1}\left(\widetilde{M}_{f}(r)\right)}{\log (r L(r))}<\frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \left(\frac{r}{2} L\left(\frac{r}{2}\right)\right)}
\end{gathered}
$$

taking limsup as $r \rightarrow \infty$, we have

$$
\begin{aligned}
\sigma . \rho_{g}^{L}(f) & \leq \rho_{g}^{L}\left(f^{\prime}\right) \leq \rho_{g}^{L}(f) \quad \text { for each } \sigma \in(0,1) \\
& \Rightarrow \rho_{g}^{L}\left(f^{\prime}\right)=\rho_{g}^{L}(f)
\end{aligned}
$$

3.4. Relative L-order of real and imaginary parts. The relative $L$-order is completely determined by the real and imaginary parts of given functions.

Theorem 3.7. Let $f$ and $g$ be two nonconstant entire functions. Denote

$$
\begin{aligned}
& A(r)=\max \{\operatorname{Re} f(z):|z|=r\}, \\
& B(r)=\max \{\operatorname{Im} f(z):|z|=r\}, \\
& C(r)=\max \{\operatorname{Re} g(z):|z|=r\}, \\
& D(r)=\max \{\operatorname{Im} g(z):|z|=r\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\rho_{g}^{L}(f) & =\inf \left\{\mu>0: M(r)<N\left((r L(r))^{\mu}\right)\right. \\
& =\limsup _{r \rightarrow \infty} \frac{\log N^{-1}(M(r))}{\log (r L(r))},
\end{aligned}
$$

where $M$ is any of the functions $A, B \circ M_{f}$ and $N$ is any of the functions $C, D \circ M_{g}$.

Proof. It is known that $A, B, C$ and $D$ are continuous, strictly increasing, then $A^{-1}, B^{-1}, C^{-1}$ and $D^{-1}$ are exist.

From Lemma 2.6, there exists $\alpha>0$ such that

$$
M(r) \leq M_{f}(r) \leq M(\alpha r) \text { and } N(r) \leq M_{g}(r) \leq N(\alpha r)
$$

Let us take $\rho^{L}=\rho_{g}^{L}(f)$ and $\beta=\inf \left\{\mu>0: M(r)<N\left((r L(r))^{\mu}\right)\right\}$.
Let us first prove that $\beta \leq \rho$.
If $\rho=\infty$, then it is trivial.
If $\rho$ be finite, take $\lambda, \mu$ such that $\rho<\lambda<\mu<\infty$.
Therefore, $M_{f}(r)<M_{g}\left((r L(r))^{\lambda}\right)$ and

$$
\begin{aligned}
M(r) & \leq M_{f}(r)<M_{g}\left((r L(r))^{\lambda}\right)<N\left(\alpha^{\lambda}(r L(r))^{\lambda}\right) \\
& <N\left((r L(r))^{\mu}\right), \text { for sufficiently large } r \\
& \Rightarrow \mu \geq \beta, \text { for all } \mu>\rho \\
& \Rightarrow \beta \leq \rho
\end{aligned}
$$

Now we prove that $\beta \geq \rho$.
If $\rho=0$, it is trivial.
If $\rho>0$, then take $\lambda, \mu$ such that $0<\mu<\lambda<\rho$.
Then for a sequence of values of $r_{n}$ tending to $\infty$ such that

$$
M_{f}\left(r_{n}\right)>M_{g}\left(\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right), \text { for all } n
$$

So,

$$
\begin{aligned}
M\left(\alpha r_{n}\right) & >M_{f}\left(r_{n}\right)>M_{g}\left(\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right)>M_{g}\left(\left(\alpha r_{n} L\left(\alpha r_{n}\right)\right)^{\mu}\right) \\
& \geq N\left(\left(\alpha r_{n} L\left(\alpha r_{n}\right)\right)^{\mu}\right), \text { for sufficiently large } n \\
& \Rightarrow \beta \geq \mu \text { with for all } \mu<\rho \\
& \Rightarrow \beta \geq \rho .
\end{aligned}
$$

3.5. Relative L-order of Nevanlinna. The following theorem generalizes the concepts of classical order to relative $L$-order determined by $T(r)$.

Theorem 3.8. Let $f$ and $g$ be two nonconstant entire functions. Then

$$
\begin{aligned}
\rho_{g}^{L}(f) & =\inf \left\{\mu>0: T_{f}(r)<T_{g}\left((r L(r))^{\mu}\right)\right\} \\
& =\limsup _{r \rightarrow \infty} \frac{\log T_{g}^{-1}\left(T_{f}(r)\right)}{\log (r L(r))}
\end{aligned}
$$

Proof. Let $\rho^{L}=\rho_{g}^{L}(f)$ and $\alpha=\inf \left\{\mu>0: T_{f}(r)<T_{g}\left((r L(r))^{\mu}\right)\right\}$
Let us prove that $\alpha \leq \rho^{L}$.
If $\rho^{L}=\infty$, the case is trivial.
So, we take $\rho^{L}$ be finite and let's take $\gamma, \delta, \lambda, \mu$ such that $\rho^{L}<\gamma<$ $\delta<\lambda<\mu<\infty$.

Now for sufficiently large $r$, it is clear that

$$
\frac{\gamma}{\delta}<\frac{(r L(r))^{\mu}-(r L(r))^{\lambda}}{(r L(r))^{\mu}+(r L(r))^{\lambda}}
$$

By Lemma 2.3(b) and 2.3(c) applying to $M_{g}$, taking $s=\frac{\delta}{\gamma}$, gives

$$
M_{g}\left(r^{\gamma}\right)^{s} \leq K M_{g}\left(r^{\delta}\right)<M_{g}\left(r^{\lambda}\right)
$$

and

$$
\begin{aligned}
M_{g}\left((r L(r))^{\gamma}\right)^{s} & =M_{g}\left((r L(r))^{\gamma}\right)^{\frac{\delta}{\gamma}} \leq K M_{g}\left(r^{\delta}\left(L\left(r^{\frac{\delta}{\gamma}}\right)\right)^{\gamma}\right) \\
& \leq K M_{g}\left(r^{\delta}(L(r))^{\delta}\right), \text { for sufficiently large } r \\
& <M_{g}\left((r L(r))^{\lambda}\right) .
\end{aligned}
$$

Therefore,

$$
\frac{\delta}{\gamma} \log M_{g}\left((r L(r))^{\gamma}\right)<\log M_{g}\left((r L(r))^{\lambda}\right)
$$

Which implies

$$
\begin{aligned}
\log M_{g}\left((r L(r))^{\gamma}\right) & <\frac{\gamma}{\delta} \log M_{g}\left((r L(r))^{\lambda}\right) \\
& <\frac{(r L(r))^{\mu}-(r L(r))^{\lambda}}{(r L(r))^{\mu}+(r L(r))^{\lambda}} \log M_{g}\left((r L(r))^{\lambda}\right) \\
& \leq T_{g}\left((r L(r))^{\mu}\right)
\end{aligned}
$$

Again from Lemma 2.7

$$
\begin{aligned}
T_{f}(r) & \leq \log M_{f}(r)<\log M_{g}\left((r L(r))^{\lambda}\right) \\
& \Rightarrow T_{f}(r)<T_{g}\left((r L(r))^{\mu}\right) \\
& \Rightarrow \mu \geq \alpha, \text { for all } \mu>\rho^{L} \\
& \Rightarrow \rho^{L} \geq \alpha .
\end{aligned}
$$

Next let us prove, $\alpha \geq \rho^{L}$.
If $\rho^{L}=0$, the case is trivial.
So let $\rho^{L}>0$, and take $\gamma, \delta, \mu$ with $0<\mu<\lambda<\gamma<\rho^{L}$.
Then there exist $\left\{r_{n}\right\}$ tending to $\infty$ such that

$$
M_{f}\left(r_{n}\right)>M_{g}\left(\left(r_{n} L\left(r_{n}\right)\right)^{\gamma}\right), \text { for all } n
$$

$c \in\left(\frac{\lambda}{\gamma}, 1\right)$ and $d>\frac{1+c}{1-c}$.
Then

$$
\begin{aligned}
T_{f}\left(d r_{n}\right) & >\frac{d r_{n}-r_{n}}{d r_{n}+r_{n}} \log M_{f}\left(r_{n}\right) \\
& =\frac{d-1}{d+1} \log M_{f}\left(r_{n}\right) \\
& >c \log M_{f}\left(r_{n}\right) \\
& >\log M_{g}\left(\left(r_{n} L\left(r_{n}\right)\right)^{\gamma}\right)^{c} \\
& >\log \frac{M_{g}\left(\left(r_{n} L\left(r_{n}\right)\right)^{\gamma c}\right)}{K}, \text { using Lemma 2.3(b) for } c<1 \\
& >\log M_{g}\left(\left(r_{n} L\left(r_{n}\right)\right)^{\lambda}\right), \text { as } c>\frac{\lambda}{\gamma} \\
& \geq \log M_{g}\left(\left(d r_{n} L\left(d r_{n}\right)\right)^{\mu}\right), \text { for sufficiently large } n \\
& \geq T_{g}\left(\left(d r_{n} L\left(r_{n}\right)\right)^{\mu}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
T_{f}\left(d r_{n}\right) & >T_{g}\left(\left(d r_{n} L\left(r_{n}\right)\right)^{\mu}\right), \text { for sufficiently large } n \\
& \Rightarrow \alpha \geq \mu, \text { for all } \mu<\rho^{L} \\
& \Rightarrow \alpha \geq \rho^{L} .
\end{aligned}
$$

Hence,

$$
\rho^{L}=\alpha=\left\{\mu>0: T_{f}(r)<T_{g}\left((r L(r))^{\mu}\right)\right\}
$$

3.6. Relative L-proximate order. Here we define relative $L$-proximate order of $f$ with respect to $g$ and relative $L$-lower proximate order of $f$ with respect to $g$ and then give simple prove of their existence.

Definition 3.9 (Relative L-proximate order of f with respect to g ). Let $f(z)$ be an integral function of finite $L$-order of growth of $f$ relative to $g, \rho_{g}^{L}(f)$.

A function $\rho_{g}^{L}(f)(r)$ is said to be a $L$-proximate order of growth of $f$ relative to $g$ if the following properties holds:
i) $\quad \rho_{g}^{L}(f)(r)$ is differentiable for $r>r_{0}$ except at isolated points at which $\rho_{L}^{\prime}(r-0)$ and $\rho_{L}^{\prime}(r+0)$ exist,
ii) $\quad \lim _{r \rightarrow \infty} \rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)$,
iii) $\quad \lim _{r \rightarrow \infty} r \cdot\left(\rho_{g}^{L}(f)\right)^{\prime}(r) \cdot \log \{r L(r)\}=0$,
iv) $\quad \limsup _{r \rightarrow \infty} \frac{M_{g}^{-1}\left(M_{f}(r)\right)}{\{r L(r)\}_{g}^{\rho(f)(r)}}=1$.

Theorem 3.10 (Existence of Relative L-proximate order of f with respect to g ). For every entire function $f(z)$ of finite $L$-order of growth of $f$ relative to $g, \rho_{g}^{L}(f)$, there exists a $L$-proximate order $\rho_{g}^{L}(f)(r)$.

Proof. Let

$$
\sigma(r)=\frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log \{r L(r)\}} .
$$

Then either $\sigma(r)>\rho_{g}^{L}(f)$ for a sequence of $r$ tending to infinity, or $\sigma(r) \leq \rho_{g}^{L}(f)$ for all large values of $r$.

Case A: $\sigma(r)>\rho_{g}^{L}(f)$ for a sequence of $r$ tending to infinity.
We define,

$$
\phi(r)=\max _{x \geq r}\{\sigma(x)\} .
$$

Since, $\sigma(r)$ is continuous, $\limsup _{r \rightarrow \infty} \sigma(r)=\rho_{g}^{L}(f)$, and $\sigma(r)>\rho_{g}^{L}(f)$ for a sequence of values of $r$ tending to infinity.

Therefore, $\phi(r)$ exists. $\phi(r)$ is a non-increasing function of $r$.
Let $r_{1}>0$ be such that $\phi\left(r_{1}\right)=\sigma\left(r_{1}\right)$. Such values will exist for a sequence of values of $r$ tending to infinity

Let $\rho_{g}^{L}(f)\left(r_{1}\right)=\phi\left(r_{1}\right)$. Let $t_{1}$ be the smallest integer not less than $r_{1}+1$ such that $\phi\left(r_{1}\right)>\phi\left(t_{1}\right)$ and let

$$
\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)\left(r_{1}\right)=\phi\left(r_{1}\right) \text { for } r_{1}<r \leq t_{1} .
$$

Define $u_{1}$ as follows:
$u_{1}>t_{1}$,
$\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)\left(r_{1}\right)-\log \log \log \{r L(r)\}+\log \log \log \left\{t_{1} L\left(t_{1}\right)\right\}$ for
$t_{1} \leq r \leq u_{1}$,
$\bar{\rho}_{g}^{L}(f)(r)=\phi(r)$ for $r=u_{1}$ but $\rho_{g}^{L}(f)(r)>\phi(r)$ for $t_{1} \leq r<u_{1}$.
Let $r_{2}$ be the smallest value of $r$ for which $r_{2} \geq u_{1}$ and $\phi\left(r_{2}\right)=\sigma\left(r_{2}\right)$.
If $r_{2}>u_{1}$ then let $\rho_{g}^{L}(f)(r)=\phi(r)$ for $u_{1} \leq r \leq r_{2}$. Since $\phi(r)$ is constant for $u_{1} \leq r \leq r_{2}$, therefore $\rho_{g}^{L}(f)(r)$ is constant for $u_{1} \leq r \leq r_{2}$.

We repeat the argument and obtain that $\rho_{g}^{L}(f)(r)$ is differentiable in adjacent intervals.

Further,
$\left(\rho_{g}^{L}(f)\right)^{\prime}(r)=0$ or $-\frac{1}{\log \log \{r L(r)\} \cdot \log \{r L(r)\} \cdot r L(r)}\left\{r L^{\prime}(r)+L(r)\right\}$.
Therefore,

$$
r \cdot\left(\rho_{g}^{L}(f)\right)^{\prime}(r) \cdot \log \{r L(r)\}=0 \text { or }-\frac{1}{\log \log \{r L(r)\}}\left\{\frac{r L^{\prime}(r)}{L(r)}+1\right\} .
$$

Hence,

$$
\lim _{r \rightarrow \infty} r \cdot\left(\rho_{g}^{L}(f)\right)^{\prime}(r) \log \{r L(r)\}=0 .
$$

Also note that, $\rho_{g}^{L}(f)(r) \geq \phi(r) \geq \sigma(r)$ for $r \geq r_{1}$.
Further, $\rho_{L}(r)=\phi(r)$ for $r=r_{1}, r_{2}, r_{3}, \ldots$ and $\rho_{L}(r)$ is non-increasing and $\lim _{r \rightarrow \infty} \phi(r)=\rho_{L}$.

Hence,

$$
\limsup _{r \rightarrow \infty} \rho_{g}^{L}(f)(r)=\lim _{r \rightarrow \infty} \rho_{L}(r)=\rho_{L}
$$

Again since, $M_{g}^{-1}\left(M_{f}(r)\right)=\{r L(r)\}^{\sigma(r)}=\{r L(r)\}^{\rho_{g}^{L}(f)(r)}$ for infinitely many values of $r$ and $M_{g}^{-1}\left(M_{f}(r)\right)<\{r L(r)\}^{\rho_{g}^{L}(f)(r)}$ for the remaining $r$.

Hence,

$$
\limsup _{r \rightarrow \infty} \frac{M_{g}^{-1}\left(M_{f}(r)\right)}{\{r L(r)\}^{L}(f)(r)}=1 .
$$

Case B: $\sigma(r) \leq \rho_{g}^{L}(f)$ for all large values of $r$.
Here, there are two possibilities:
Subcase B.1: $\sigma(r)=\rho_{g}^{L}(f)$, for at least a sequence of values of $r$ tending to infinity.

Here, we take $\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)$ for all large $r$.
Subcase B.2: $\sigma(r)<\rho_{g}^{L}(f)$, for all large $r$.

Let $X>0$ be such that $\sigma(r)<\rho_{g}^{L}(f)$ where $r \geq X$.
We define,

$$
\xi(r)=\max _{X \leq x \leq r}\{\sigma(x)\} .
$$

Therefore $\xi(r)$ is non-decreasing.
Take a suitable value $r_{1}>X$ and let
$\rho_{g}^{L}(f)\left(r_{1}\right)=\rho_{g}^{L}(f)$,
$\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)+\log \log \log \{r L(r)\}-\log \log \log \left\{r_{1} L\left(r_{1}\right)\right\}$ for $s_{1} \leq$ $r \leq r_{1}$,
where $s_{1}<r_{1}$ is such that $\xi\left(s_{1}\right)=\rho_{L}\left(s_{1}\right)$.
If $\xi\left(s_{1}\right) \neq \sigma\left(s_{1}\right)$, then we take $\rho_{g}^{L}(f)(r)=\xi(r)$ for $t_{1} \leq r \leq s_{1}$.
where $t_{1}$ is the nearest point (with $t_{1}<s_{1}$ ) at which $\xi\left(t_{1}\right)=\sigma\left(t_{1}\right)$.
Therefore $\rho_{g}^{L}(f)(r)$ is constant for $t_{1} \leq r \leq s_{1}$.
If $\xi\left(s_{1}\right)=\sigma\left(s_{1}\right)$, then let $t_{1}=s_{1}$.
Choose $r_{2}>r_{1}$ suitable large and let
$\rho_{g}^{L}(f)\left(r_{2}\right)=\rho_{g}^{L}(f)$,
$\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)+\log \log \log \{r L(r)\}-\log \log \log \left\{r_{2} L\left(r_{2}\right)\right\}$ for $s_{2} \leq$ $r \leq r_{2}$,
where $s_{2}\left(<r_{2}\right)$ is such that $\xi\left(s_{2}\right)=\rho_{g}^{L}(f)\left(s_{2}\right)$.
If $\xi\left(s_{2}\right) \neq \sigma\left(s_{2}\right)$, then we take $\rho_{g}^{L}(f)(r)=\xi(r)$ for $t_{2} \leq r \leq s_{2}$.
where $t_{2}$ is the nearest point (with $t_{2}<s_{2}$ ) at which $\xi\left(t_{2}\right)=\sigma\left(t_{2}\right)$.
If $\xi\left(s_{2}\right)=\sigma\left(s_{2}\right)$, then let $t_{2}=s_{2}$.
For $r<t_{2}$, let
$\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)\left(t_{2}\right)+\log \log \log \left\{t_{2} L\left(t_{2}\right)\right\}-\log \log \log \{r L(r)\}$ for $u_{1} \leq r \leq t_{2}$,
where $u_{2}\left(<t_{2}\right)$ is the point of intersection of $y=\rho_{g}^{L}(f)$ with $y=\rho_{g}^{L}(f)\left(t_{2}\right)+\log \log \log \left\{t_{2} L\left(t_{2}\right)\right\}-\log \log \log \{r L(r)\}$.

Let $\rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)$ for $r_{1} \leq r \leq u_{1}$
It is always possible to choose $r_{2}$ so large that $r_{1}<u_{1}$.
We repeat the procedure and note that $\rho_{g}^{L}(f)(r)$ is differentiable in adjacent intervals

Further,

$$
\left(\rho_{g}^{L}(f)\right)^{\prime}(r)=0 \text { or } \pm \frac{1}{\log \log \{r L(r)\} \cdot \log \{r L(r)\} r \cdot L(r)}\left\{r L^{\prime}(r)+L(r)\right\} .
$$

Therefore,

$$
r \cdot\left(\rho_{g}^{L}(f)\right)^{\prime}(r) \cdot \log \{r L(r)\}=0 \text { or } \pm \frac{1}{\log \log \{r L(r)\}}\left\{\frac{r L^{\prime}(r)}{L(r)}+1\right\} .
$$

Hence,

$$
\lim _{r \rightarrow \infty} r \cdot\left(\rho_{g}^{L}(f)\right)^{\prime}(r) \cdot \log \{r L(r)\}=0 .
$$

Also, $\rho_{g}^{L}(f)(r) \geq \xi(r) \geq \sigma(r)$ for all large $r$ and $\rho_{g}^{L}(f)(r)=\sigma(r)$ for $r=t_{1}, t_{2}, t_{3}, \ldots$

Hence,

$$
\lim _{r \rightarrow \infty} \rho_{g}^{L}(f)(r)=\rho_{g}^{L}(f)
$$

And

$$
\limsup _{r \rightarrow \infty} \frac{M_{g}^{-1}\left(M_{f}(r)\right)}{\{r L(r)\}^{\rho_{g}^{L}(f)(r)}}=1
$$

Definition 3.11 (Relative L-lower proximate order of f with respect to g ). Let $f(z)$ be an integral function of finite $L$-lower order of growth of $f$ relative to $g, \lambda_{g}^{L}(f)$.

A function $\lambda_{g}^{L}(f)(r)$ is said to be a $L$-lower proximate order of growth of $f$ relative to $g$ if the following properties holds:
i) $\quad \lambda_{g}^{L}(f)(r)$ is differentiable for $r>r_{0}$ except at isolated points at which $\rho_{L}^{\prime}(r-0)$ and $\rho_{L}^{\prime}(r+0)$ exist,
ii) $\lim _{r \rightarrow \infty} \lambda_{g}^{L}(f)(r)=\lambda_{g}^{L}(f)$,
iii) $\lim _{r \rightarrow \infty} r \cdot\left(\lambda_{g}^{L}(f)\right)^{\prime}(r) \cdot \log \{r L(r)\}=0$,
iv) $\quad \liminf _{r \rightarrow \infty} \frac{M_{g}^{-1}\left(M_{f}(r)\right)}{\{r L(r)\}^{\}_{g}^{L(f)(r)}}}=1$.

Theorem 3.12 (Existence of Relative L-lower proximate order of f with respect to g ). For every entire function $f(z)$ of finite $L$-lower order of growth of $f$ relative to $g, \lambda_{g}^{L}(f)$, there exists a $L$-proximate order $\lambda_{g}^{L}(f)(r)$.

The proof of the above theorem is omitted because it can be carried out in the line of the previous theorem.
3.7. Some examples. In the following two examples we shall find out the relative $L$-order when $f$ and $g$ both are polynomial and both are transcendental respectively. The other two cases are trivial by Theorem $3.3(\mathbf{a})$ and $3.3(\mathbf{b})$.

Example 3.13. Let us consider a slowly increasing function, $L(r)=$ $\log r$.

Let $f(z)=z^{2}$ and $g(z)=z^{3}$.

Then $M_{f}(r)=r^{2}, M_{g}(r)=r^{3}$ and $M_{g}^{-1}(r)=r^{\frac{1}{3}}$.
Hence

$$
\begin{aligned}
\rho_{g}^{L}(f) & =\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))} \\
& =\limsup _{r \rightarrow \infty} \frac{\log r^{\frac{2}{3}}}{\log (r \log r)} \\
& =\frac{2}{3} \limsup _{r \rightarrow \infty} \frac{\log r}{\log r+\log \log r} \\
& =\frac{2}{3} .
\end{aligned}
$$

Note: Here $\rho_{g}^{L}(f)=\frac{2}{3}=\frac{\operatorname{deg}(f)}{\operatorname{deg}(g)}$.
Example 3.14. Let us consider another slowly increasing function, $L(r)=\log \log r$.

Let $f(z)=e^{z^{2}}$ and $g(z)=e^{z}$.
Then $M_{f}(r)=e^{r^{2}}, M_{g}(r)=e^{r}$ and $M_{g}^{-1}(r)=\log r$.
Hence

$$
\begin{aligned}
\rho_{g}^{L}(f) & =\underset{r \rightarrow \infty}{\limsup _{r \rightarrow \infty}} \frac{\log M_{g}^{-1}\left(M_{f}(r)\right)}{\log (r L(r))} \\
& =\limsup _{r \rightarrow \infty} \frac{\log \log e^{r^{2}}}{\log (r \log \log r)} \\
& =2 \limsup _{r \rightarrow \infty} \frac{\log r}{\log r+\log \log \log r} \\
& =2
\end{aligned}
$$

In the next example we shall show that Theorem 3.5(d) may not hold if $g$ does not satisfy property $(A)$. For this we take $g$ as a polynomial.

Example 3.15. Let us consider the slowly increasing function, $L(r)=$ $\log r$.

Let $f_{1}(z)=z^{2}, f_{2}(z)=z^{3}$ and $g(z)=z$.
Then $M_{f_{1}}(r)=r^{2}, M_{f_{2}}(r)=r^{3}, M_{g}(r)=r$ and $M_{g}^{-1}(r)=r$.
And also $f_{1}(z) f_{2}(z)=z^{5}, M_{f_{1} f_{2}}(r)=r^{5}$.
Now we see that, $\rho_{g}^{L}\left(f_{1}\right)=2, \rho_{g}^{L}\left(f_{2}\right)=3$ and $\rho_{g}^{L}\left(f_{1} f_{2}\right)=5$.
But

$$
5=\rho_{g}^{L}\left(f_{1} f_{2}\right) \not \leq \max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\}=\max \{2,3\}=3 .
$$

## References

[1] L. Bernal, Orden relative de crecimiento de funciones enteras, Collect. Math., 39 (03) (1988), 209-229.
[2] S.M. Shah, On proximate orders of integral functions, Bull. Amer. Math. Soc., 52 (1946), 326-328.
[3] S.K. Singh and G.P. Baker, Slowly changing functions and their applications, Indian J. Math., 19 (1977), 1-6.
[4] D. Somasundaram and R. Thamizharasi, A note on the entire functions of Lbounded index and L-type, Indian J. Pure Appl. Math., 19 (03) (1988), 284-293.
[5] G. Valiron, Lectures on the general theory of integral functions, Toulouse, (1923).

## Chinmay Ghosh

Department of Mathematics, Kazi Nazrul University
Nazrul Road, P.O.- Kalla C.H. Asansol-713340, West Bengal, India E-mail: chinmayarp@gmail.com

## Anirban Bandyopadhyay

53, Gopalpur Primary School, Raninagar-I, Murshidabad Pin-742304, West Bengal, India
E-mail: anirbanbanerjee010@gmail.com

## Soumen Mondal

28, Dolua Dakshinpara Haridas Primary School
Beldanga, Murshidabad, Pin-742133, West Bengal, India
E-mail: mondalsoumen79@gmail.com

