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OSCILLATION AND NONOSCILLATION CRITERIA

FOR DIFFERENTIAL EQUATIONS OF SECOND

ORDER

RakJoong Kim

Abstract. We give necessary and sufficient conditions such that
the homogeneous differential equations of the type:

(r(t)x′(t))′ + q(t)x′(t) + p(t)x(t) = 0

are nonoscillatory where r(t) > 0 for t ∈ I = [α,∞), α > 0. Under
the suitable conditions we show that the above equation is nonoscil-
latory if and only if for γ > 0,

(r(t)x′(t))′ + q(t)x′(t) + p(t)x(t− γ) = 0

is nonoscillatory. We obtain several comparison theorems.

1. Introduction

The main purpose of this paper is to find necessary and sufficient
conditions for the differential equations of the type:

(A1) (r(t)x′(t))
′
+ q(t)x′(t) + p(t)x(t) = 0

are oscillatory or nonoscillatory where r(t) > 0 for t ∈ I = [α,∞),
α > 0. We shall restrict our attention to the solutions of (A1) that exist
on some ray of the form [t, ∞) where t ≥ α. Throughout of this paper
the coefficients p(t), q(t) and r(t) satisfy the conditions

(A) p(t) is real valued and locally integrable over I and not identically
zero in any neighborhood of ∞.

(B) q(t) is real valued and locally integrable over I.
(C) For all t ∈ I, r(t) > 0 and

∫∞
α

1
r(t)

dt = ∞.
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By a solution to (A1) we mean a real valued function u that satisfies
(A1) in I and that u and u′ are locally absolutely continuous over I. We
consider only nontrivial solutions of (A1). The usual existence theorems
hold(see Naimark[9]).

Definition. A solution x(t) of (1) is said to be oscillatory if it has
arbitrarily large zeros over I, otherwise it is said to be nonoscillatory.

It is well known (see Reid[10]) that either all the solutions of (1) are
nonoscillatory, or all the solutions are oscillatory. In the former case, we
call the differential equation (1) nonoscillatory and in the later case, (1)
oscillatory.

The investigation of the oscillation for the equation

(A2) (p(t)x′(t))
′
+ q(t)x(t) = 0

may be done in the following many directions([1], [2]-[7], [11]) : among
these, an often considered way is to determine ”integral tests” involving
functions p and q in order to obtain oscillatory criteria. An example is
the following well-known Leighton’s result(see [8]) : The every solution
of (A2) is oscillatory if

(R1)

∫ ∞

0

1

p(σ)
dσ = ∞,

∫ ∞

0

q(σ) dσ = ∞.

We note that the equation x′′(t) + q(t)x(t) = 0 is oscillatory on I if∫∞
α

q(σ) dσ = ∞. The main purpose of this paper is to establish the
nonoscillatory characterizations of solutions by using Ricatti transform.
Using these nonoscillatory characterizations and a differential inequality,
we derive some comparison theorems and give examples.

2. Main results

Consider a Ricatti transform of the equation (A1). Put

(1) W (t) =
r(t)x′(t)

x(t)
.

We have

W ′(t) = −W 2(t)

r(t)
− q(t)W (t)

r(t)
− p(t)

= − 1

r(t)

[
W (t) +

q(t)

2

]2
−
[
p(t)− q2(t)

4r(t)

]
.

(2)
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Put E(t) = exp
∫ t

α
q(σ)
r(σ)

dσ and Φ(t) =
∫∞
t

[
p(σ)− q2(σ)

4r(σ)

]
dσ ≥ 0 for

t ≥ α. We immediately obtain the following.

Theorem 2.1. The equation (A1) is oscillatory if for t ≥ α, p(t) ≥ 0
and ∫ ∞

α

1

E(σ)r(σ)
dσ = ∞,(3)

Φ(α) = ∞.(4)

Proof. Since E ′(t) = q(t)
r(t)

E(t), the equation (A1) is reduced to

(5) (E(t)r(t)x′(t))
′
+ E(t)p(t)x(t) = 0.

Note that (A1) is oscillatory if and only if (5) is oscillatory. Assume that
(A1) is nonoscillatory. Then there exists a nonoscillatory solution x(t)
of (A1). So we may assume that x(t) > 0 on [t1,∞) for some t1 ≥ α. In
the case that x(t) < 0, put y(t) = −x(t). We show that x′(t) > 0 for
t ≥ t1. Since

(E(t)r(t)x′(t))
′ ≤ 0

E(t)r(t)x′(t) is not increasing for t ≥ t1. Assume that E(t2)r(t2)x
′(t2) <

0 for some t2 ≥ t1. Put A := E(t2)r(t2)x
′(t2). Then for t ≥ t2, we have

E(t)r(t)x′(t) ≤ A. Dividing both sides by E(t)r(t) and integrating from
t2 to t (> t2) we obtain

x(t) ≤ x(t2) + A

∫ t

t2

1

E(σ)r(σ)
dσ.

Thus it follows that x(t) < 0 for sufficiently large t, which is a contra-
diction. So we have x′(t) > 0 for t ≥ t1. We use Ricatti transform (1).
Then we have the equality (2). Integrating (2) from t1 to t(> t1) we
have

W (t)−W (t1)+

∫ t

t1

[
p(σ)− q2(σ)

4r(σ)

]
dσ = −

∫ t

t1

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ.

By means of (4) there exists a t3 ≥ t1 such that for t ≥ t3,

W (t) ≤ −
∫ t

t1

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ,

which is impossible because W (t) > 0 for t ≥ t1.

We note that the results of Theorem 1 is more general form than those
of Horng–Jaan[5] and Kulenovic[6].
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Theorem 2.2. The equation (A1) is nonoscillatory if and only if there
exists a continuously differentiable function W(t) in t ∈ I = [t1,∞) for
some t1 > α such that a Ricatti differential inequality

(6) W ′(t) +
W 2(t)

r(t)
+

q(t)W (t)

r(t)
+ p(t) ≤ 0

is valid.

Proof. Let x(t) be a nonoscillatory solution of (A1). We may assume
that there exists a t1 ≥ α such that x(t) > 0 for t ≥ t1. In the case
of x(t) < 0, we can apply the analogous method to y(t) = −x(t). (1)
satisfies a Ricatti equation

(A4) W ′(t) +
W 2(t)

r(t)
+

q(t)W (t)

r(t)
+ p(t) = 0.

This proves ”only if ” part of theorem. If there exists a continuously
differentiable function W(t) on I satisfying (6), let p0(t) = W ′(t) +
W 2(t)
r(t)

+ q(t)W (t)
r(t)

+ p(t). Then p0(t) ≤ 0 and

W ′(t) +
W 2(t)

r(t)
+

q(t)W (t)

r(t)
+ p(t)− p0(t) = 0

which is a Ricatti equation for (r(t)x′(t))′+q(t)x′(t)+(p(t)− p0(t))x(t) =
0. It follows that

(7) (E(t)r(t)x′(t))
′
+ E(t)(p(t)− p0(t))x(t) = 0.

We compare this equation with (5). Since p0(t) ≤ 0, (7) is a Sturm
majorant for (5). On the other hand, (7) possesses a positive solution

x(t) = exp

∫ t

α

W (σ)

r(σ)
dσ.

This shows that (5) is nonoscillatory and thus (A1) is nonoscillatory.

Lemma 2.3. Assume that for t ≥ α, p(t) ≥ 0, q(t) ≥ 0 and (3) are
valid. If the differential equation (A1) has a positive solution, we have

lim
t→∞

r(t)x′(t)

x(t)
= 0.

Proof. Let x(t) > 0 be a solution of (A1). As seen in the proof of
Theorem 2.1, it follows from (3) and p(t) ≥ 0 for t ≥ α that there exists
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a t1 ≥ α such that x′(t) > 0 for t ≥ t1. Put W (t) = r(t)x′(t)
x(t)

> 0 for

t ≥ t1 and consider the Ricatti equation (A4). It is obvious that

−W ′(t)

W 2(t)
≥ 1

r(t)
.

Integrating the above formula over [t1, ∞) and considering the condition
(C), we see lim

t→∞
W (t) = 0.

In Theorem 2.1 we proved the equation (A1) is oscillatory under the
assumption Φ(α) = ∞. We consider the remaining case.

Theorem 2.4. Assume that for t ≥ α, p(t) ≥ 0, q(t) ≥ 0, |Φ(α)| < ∞
and (3) are valid. The following two statements are equivalent.

(i) The equation (A1) is nonoscillatory on I.
(ii) There exist a T > α and a continuously differentiable function W (t) for

t ∈ I1 = [T,∞) satisfying

W (t) = Φ(t) +

∫ ∞

t

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ.

Proof. Let the equation (A1) be nonoscillatory on I. We may assume
that there exist a t1 ≥ α and a solution x(t) of (A1) such that x(t) > 0
for t ≥ t1. In the case of x(t) < 0, we can apply the same method to
y(t) = −x(t). From (3) we can deduce that there exists a t2 ≥ t1 such
that x′(t) > 0 for t ≥ t2. Considering a Ricatti transform (1), we obtain
(A4). It follow that

−W ′(t) =

[
p(t)− q2(t)

r(t)

]
+

1

r(t)

[
W (t) +

q(t)

2

]2
.

Integrating this equality over [t, ∞), t ≥ t2 and taking account of
Lemma 2.3, we obtain (ii). Conversely, if (ii) is valid, immediately we
obtain (A4). Then it follows from theorem 2.2 that the differential equa-
tion (A1) is nonoscillatory on I.

Set ϕ(t) =
∫∞
t

p(σ) dσ.

Theorem 2.5. Assume that for t ≥ α, p(t) ≥ 0, q(t) ≤ 0, ϕ(α) <
∞ and |Φ(α)| < ∞ are valid. Two statements in Theorem 2.4 are
equivalent.
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Proof. We only prove that (i) ⇒ (ii) of Theorem 2.4. We may assume
that there exists a t0 ≥ α such that for t ≥ t0, x(t) > 0 is a nonoscil-

latory solution of (A1). Putting W (t) = r(t)x′(t)
x(t)

for t ≥ t0, we obtain a

Ricatti equation (A4). Our proof is analogous to those of Wintner[12].
Integrating (A4) on [t, ξ], we have

(8) W (ξ)−W (t) +

∫ ξ

t

[
p(σ)− q2(σ)

4r(σ)

]
dσ+∫ ξ

t

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ = 0.

Two cases arise:

(a)
∫∞
t

1
r(σ)

[
W (σ) + q(σ)

2

]2
dσ < ∞,

(b)
∫∞
t

1
r(σ)

[
W (σ) + q(σ)

2

]2
dσ = ∞.

Assume that (b) is valid. There exists a t1 ≥ t0 such that

W (ξ) +

∫ ξ

t1

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ = W (t)

−
∫ ξ

t

[
p(σ)− q2(σ)

4r(σ)

]
dσ −

∫ t1

t

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ ≤ −1

for ξ ≥ t1. Thus it follows that

(9) −W (ξ) ≥ 1 +

∫ ξ

t1

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ, ξ ≥ t1.

We see that W (ξ) < 0 for ξ ≥ t1 and lim
ξ→∞

W (ξ) = −∞. It follows that[
W (ξ) + q(ξ)

2

]2
r(ξ)

(
1 +

∫ ξ

t1

1
r(σ)

[
W (σ) + q(σ)

2

]2
dσ

)
≥ W 2(ξ)

r(ξ)

(
1 +

∫ ξ

t1
1

r(σ)

[
W (σ) + q(σ)

2

]2
dσ

)
≥ −W (ξ)

r(ξ)
= −x′(ξ)

x(ξ)
.
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Integrating over [t1, ξ], we have

log

[
1 +

∫ ξ

t1

1

r(σ)

[
W (σ) +

q(σ)

2

]2
dσ

]
≥ log

x(t1)

x(ξ)
.

Considering (9), we obtain −W (ξ) = − r(ξ)x′(ξ)
x(ξ)

≥ x(t1)
x(ξ)

. Since x′(ξ) ≤
−x(t1)

r(ξ)
, by means of the condition (C) we see x(ξ) < 0 for sufficiently

large ξ, which is a contradiction. Thus (a) holds. Using the condition
(C), we have

lim
ξ→∞

[
W (ξ) +

q(ξ)

2

]
= 0.

From ϕ(α) < ∞, |Φ(α)| < ∞ and the condition (C) it follows that
limξ→∞ q(ξ) = 0 and limξ→∞W (ξ) = 0, from which we obtain (ii) of
Theorem 2.4.

Theorem 2.6. Under the assumption of theorem 2.4 the following
are equivalent.

(i) The equation (A1) is nonoscillatory on I.
(ii) There exist a T > α and a continuously differentiable function U(t) for

t ∈ I1 = [T,∞) satisfying

U(t) ≥ ϕ(t) +

∫ ∞

t

U2(σ) + q(σ)U(σ)

r(σ)
dσ.

Proof. It follows from Theorem 2.4 that (i) implies (ii). We show that
”(ii) ⇒ (i)”. Set

Γ = {v ∈ C(I) | 0 ≤ v(t) ≤ U(t), t ∈ I}.
For t ∈ I and v ∈ Γ, we consider an operator T defined by:

Tv(t) = ϕ(t) +

∫ ∞

t

v2(σ) + q(σ)v(σ)

r(σ)
dσ.

It is obvious that Γ is a nonempty, closed, bounded, convex subset of
C(I) with topology of the uniform convergence on every compact subin-
terval of I. We use the method of successive approximation. Consider

v0(t) = 0, vn(t) = Tvn−1(t), n ≥ 1.

Then since q(σ) ≥ 0 for t ∈ I, it is obvious that T : Γ → Γ is an
increasing operator. In particular, by induction we can show that the
sequence {vn} is increasing and bounded from above:

vn(t) ≤ vn+1(t) = Tvn(t), vn(t) ≤ U(t), for all n.
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Therefore lim
t→∞

vn(t) exists for t ∈ I, call it v(t). By Lebesgue dominated

convergence theorem we have

v(t) = lim
n→∞

vn+1(t) = ϕ(t) + lim
n→∞

∫ ∞

t

v2n(σ) + q(σ)vn(σ)

r(σ)
dσ = Tv(t).

i.e., T has a fixed point v in Γ. Thus theorem 2.4 implies that the
equation (A1) is nonoscillatory.

Consider a Leighton transform s =
∫ t

α
1/r(σ) dσ. Then the equa-

tion (A1) is reduced to

(A5)
d2X

ds2
+Q(s)

dX

ds
+R(s)P (s)X(s) = 0.

where X(s) = x(t(s)), P (s) = p(t(s)), Q(s) = q(t(s)), R(s) = r(t(s)).

Corollary 2.7. The equation (A1) is oscillatory if for s ≥ 0, P (s) ≥
0 and ∫ ∞

0

exp

∫ σ

0

Q(τ) dτdσ = ∞,∫ ∞

0

[
P (σ)R(σ)− Q2(σ)

4

]
dσ = ∞.

Consider the equation (5) and a transform ρ =
∫ t

α
1

E(σ)r(σ)
dσ. Put

X1(ρ) = x(t(ρ)), P1(ρ) = p(t(ρ)), Q1(ρ) = q(t(ρ)), R1(ρ) = r(t(ρ)) and
E1(ρ) = E(t(ρ)). Then the equation (A1) is reduced to the form

d2X1

dρ2
+ E2

1(ρ)P1(ρ)R1(ρ)X1(ρ) = 0.

Thus we obtain

Corollary 2.8. The equation (A1) is oscillatory if for ρ ≥ 0,
P1(ρ) ≥ 0 and ∫ ∞

0

E2
1(σ)P1(σ)R1(σ) dσ = ∞.

Compare this result with (R1).
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3. Comparison theorems

Consider the Ricattl differential inequality (6) : W ′(t) + W 2(t)
r(t)

+
q(t)W (t)

r(t)
+ p(t) ≤ 0.

Theorem 3.1. Consider a differential equation:

(A6) (r1(t)x
′(t))

′
+ q1(t)x

′(t) + p1(t)x(t) = 0.

Assume that for t ∈ I,

0 < r1(t) ≤ r(t), q(t) ≤ q1(t), p(t) ≤ p1(t).

The equation (A1) is nonoscillatory if the differential equation (A6) is
nonoscillatory and (A6) has a solution x(t) satisfying x(t) > 0, x′(t) ≥ 0
for t ∈ I.

Remark 3.2. In the above theorem the conditions p(t) ≤ p1(t) and
x′(t) ≥ 0 can be replaced by p1(t) ≥ p(t) ≥ 0 and the equality∫ ∞

α

1

E(σ)r(σ)
dσ = ∞.

Theorem 3.3. The equation (A1) is nonoscillatory if the differential
inequality

(r(t)y′(t))
′
+ q(t)y′(t) + p(t)y(t) ≤ 0

has an eventually positive solution.

Proof. Assume that there exists a t1 ≥ α and that the inequality has
a solution y(t) > 0 for t ≥ t1. Put

p0(t) = (r(t)y′(t))
′
+ q(t)y′(t) + p(t)y(t).

Then y(t) > 0 for t ≥ t1 is a solution of the equation

(r(t)x′(t))
′
+ q(t)x′(t) +

(
p(t)− p0(t)

y(t)

)
x(t) = 0.

Considering a Ricatti transform W (t) = r(t)x′(t)
x(t)

, we obtain

W ′(t) +
W 2(t)

r(t)
+

q(t)W (t)

r(t)
+

(
p(t)− p0(t)

y(t)

)
= 0.

Since p0(t) ≤ 0, we have W ′(t) + W 2(t)
r(t)

+ q(t)W (t)
r(t)

+ p(t) ≤ 0. Therefore

(A1) is nonoscillatory by means of Theorem 2.2.
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Theorem 3.4. Assume that for t ≥ α, p(t) ≥ 0, q(t) + r′(t) ≥ 0,
γ > 0 and (3) are valid. The equation (A1) is nonoscillatory if and only
if the differential equation with a delayed argument

(A7) (r(t)x′(t))
′
+ q(t)x′(t) + p(t)x(t− γ) = 0.

is nonoscillatory.

Proof. Assume that (A7) is nonoscillatory. We may assume that there
exist a t1 ≥ α and a positive solution x(t) > 0 and x(t−γ) > 0 for t ≥ t1.
By (3) and the similar method to those in proof of Theorem 2.1 we can
show that x′(t) > 0 for t ≥ t1. Put

W (t) =
r(t)x′(t)

x(t− γ)
> 0 for t ≥ t1.

Then we have

W ′(t) = −q(t)

r(t)
W (t)− p(t)− r(t)x′(t)

x′(t− γ)

x2(t− γ)
.

Since r(t)x′′(t) = − (r′(t) + q(t))x′(t) − p(t)x(t) ≤ 0, it follows that
x′′(t) ≤ 0 for t ≥ t1. Immediately we see that there exists a t2 ≥ t1 such

that the inequality W ′(t) + W 2(t)
r(t)

+ q(t)W (t)
r(t)

+ p(t) ≤ 0 is valid for t ≥ t2,

which completes the ”only if” part of our theorem. Conversely, assume
that (A1) has a nonoscillatory solution x(t). We may assume that there
exists a t3 ≥ α such that x(t) > 0 and x(t− γ) > 0 are valid for t ≥ t3.
Since the equality (3) is valid, x′(t) > 0 and so x(t) ≥ x(t−γ) for t ≥ t3.
Thus from (A1) we obtain

(r(t)x′(t))
′
+ q(t)x′(t) + p(t)x(t− γ) ≤ 0

for t ≥ t3. Since this differential inequality has a positive solution x(t)
for t ≥ t3, by Theorem 3.3 (A7) is nonoscillatory.

Example 3.5. Let a, b and α be positive constants. Consider an
Euler differential equation:

(10) x′′(t) +
a

t
x′(t) +

b

t2
x(t) = 0 for t ≥ α,

and put Tv(t) = ϕ(t)+
∫∞
t

{v2(σ) + q(σ)v(σ)} /r(σ) dσ where q(t) = a/t,

p(t) = b/t2 and ϕ(t) =
∫∞
t

p(σ) dσ. Now we seek a relation between a
and b so that (10) is nonoscillatory and v ∈ L2[α, ∞). Set

v0(t) = 0, vn(t) = Tvn−1(t), for n ≥ 1.
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Immediately we obtain

v1(t) = ϕ(t) =
b

t
=

c1
t
,

v2(t) =
b

t
+

∫ ∞

t

c21 + ac1
σ2

dσ =
b+ c21 + ac1

t
=

c2
t
,

vn(t) =
b

t
+

∫ ∞

t

c2n−1 + acn−1

σ2
dσ =

b+ c2n−1 + acn−1

t
=

cn
t
.

Thus we get

cn = c2n−1 + acn−1 + b for n ≥ 1.

From a > 0 it follows that the sequence {cn} is increasing and cn > 0
for all n ≥ 1. We have two cases.

(a) lim
n→∞

cn = c < 0,

(b) lim
n→∞

cn = ∞.

If (b) holds, v(t) = limn→∞ Tvn−1(t) = ∞ for any t ≥ α, which is a
contradiction because v /∈ L2[α, ∞). So (a) is valid and then c satisfies
the equation c2 + (a− 1)c+ b = 0. Thus we have (a− 1)2 − 4b ≥ 0. i.e.,

(c) if (a−1)2−4b ≥ 0, the differential equation (10) is nonoscillatory,

(d) if (a− 1)2 − 4b < 0, the differential equation (10) is oscillatory.

In fact, if we set t = es, the differential equation (10) is reduced to

d2x(t(s))

ds2
+ (a− 1)

dx(t(s))

ds
+ b x(t(s)) = 0.

Therefore either (c) or (d) is valid.

Example 3.6. Consider a differential equation

(11) (r(t)x′(t))
′
+ q(t)x′(t) +

δx(t)

E2(t)r(t)φ2(t)
= 0

where E(t) = exp
∫ t

α
q(σ)
r(σ)

dσ and φ(t) =
∫ t

α
dσ

E(σ)r(σ)
. Then we have

(E(t)r(t)x′(t))
′
+

δx(t)

E(t)r(t)φ2(t)
= 0.

Let x = φn(t) satisfy the equation (11). Since φ′(t) = 1
E(t)r(t)

, we obtain

the indicial equation

n(n− 1) + δ = 0.



402 RakJoong Kim

Thus it follows that x = φ1/2(t) is a nonoscillatory solution when δ = 1
4
.

It is obvious that equation (11) is oscillatory if δ > 1
4
and is nonoscilla-

tory if δ ≤ 1
4
.
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