REMARKS ON A GOLDBACH PROPERTY

Sun Ju Jang

ABSTRACT. In this paper, we study Noetherian Boolean rings. We show that if R is a Noetherian Boolean ring, then R is finite and $R \simeq (\mathbb{Z}_2)^n$ for some integer $n \geq 1$. If R is a Noetherian ring, then R/J is a Noetherian Boolean ring, where J is the intersection of all ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set of ideals I of R with |R/I| = 2 is finite. We also give a short proof of Hayes's result: For every polynomial $f(x) \in \mathbb{Z}[x]$ of degree $n \geq 1$, there are irreducible polynomials g(x) and h(x), each of degree n, such that g(x) + h(x) = f(x).

All rings are assumed to be commutative rings with identity. We use the term dimension of R, denoted dimR, to refer to the Krull dimension of R. A ring R is called von Neumann regular if for each x in R, there exists y in R such that x = xyx. It is well known that R is von Neumann regular if and only if R is zero-dimensional and reduced if and only if R_P is a field for each $P \in Spec(R)$ if and only if each ideal of R is a radical ideal if and only if each principal ideal of R is idempotent [4, Theorem 3.1]. In particular, dimR = 0 if and only if R/nil(R) is von Neumann regular (where nil(R) is the nilradical of R) if and only if a power of each principal ideal of R is idempotent - that is, if and only if, for each $x \in R$, there exists $n(x) \in \mathbb{Z}^+$ and $y \in R$ such that $x^{n(x)} = yx^{n(x)+1}$ [4, Theorem 3.4]. The class of von Neumann regular rings is closed under taking homomorphic images, quotient rings, and arbitrary products [4, Result 3.2].

R is called a Boolean ring if every element is idempotent. It is well known that R is a Boolean ring if and only if R_M is isomorphic to \mathbb{Z}_2 for each maximal ideal M of R. A Boolean ring is a von Neumann regular

Received October 13, 2011. Revised November 21, 2011. Accepted November 30, 2011.

²⁰⁰⁰ Mathematics Subject Classification: 13B25, 13E05.

Key words and phrases: Noetherian ring, Boolean ring, von Neumann regular ring, Goldbach property.

ring with x = x1x. It is known that R/nil(R) is Boolean if and only if dimR = 0 and for each maximal ideal M of R, $R/M \simeq \mathbb{Z}_2$ if and only if given $x \in R$, there exists a natural number n with $x^n(1+x)^n = 0$ [1, Theorem 5].

In this paper, we study Noetherian Boolean rings. We show that if R is a Noetherian Boolean ring, then R is finite and $R \simeq (\mathbb{Z}_2)^n$ for some integer $n \geq 1$. If R is a Noetherian ring, then R/J is a Noetherian Boolean ring, where J is the intersection of all ideals of $\mathcal{I}_2 = \{I \mid I \text{ is an ideal of } R \text{ and } |R/I| = 2\}$. Thus R/J is finite, and hence the set \mathcal{I}_2 is finite. We also give a short proof of Hayes's result using Chinese Remainder Theorem for rings.

For future reference, we include a result from [4, Theorem 3.1(4)].

LEMMA 1. If R is a Boolean ring, then $M^2 = M$ for each ideal M of R.

Proof. If $x \in M$, then $x = x^2 \in M^2$. Hence $M \subseteq M^2$, and thus $M = M^2$.

Let I and J be ideals of R. Recall that I and J are comaximal if I+J=R. Suppose that I and J are comaximal. Then there exist $a \in I$ and $b \in J$ such that a+b=1. For any integer $m, n(\geq 1)$, $1=(a+b)^{m+n}$ and $(a+b)^{m+n} \in I^m+J^n$; so $I^m+J^n=R$, and hence I^m and J^n are also comaximal [7, Lemma 4].

For future reference, we include the Chinese Remainder Theorem [3, Section 7.6].

LEMMA 2. (Chinese Remainder Theorem) Let $I_1, I_2, ..., I_n$ be ideals of R. The map $R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n$ defined by $r \mapsto (r+I_1, r+I_2, ..., r+I_n)$ is a ring homomorphism with kernel $I_1 \cap I_2 \cap \cdots \cap I_n$. If each ideals I_i, I_j ($i \neq j$) are comaximal, then the map is surjective and $I_1 \cap I_2 \cap \cdots \cap I_n = I_1 I_2 \cdots I_n$, so $R/(I_1 I_2 \cdots I_n) \simeq R/(I_1 \cap I_2 \cap \cdots \cap I_n) \simeq R/I_1 \times R/I_2 \times \cdots \times R/I_n$.

If R is a finite Boolean ring, then $R \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ (c.f. [3, Exercise 2, p. 267]). We next show that a Noetherian Boolean ring R is finite with $R \simeq (\mathbb{Z}_2)^n$ for some integer $n \geq 1$.

Theorem 3. Let R be a Boolean ring.

- (1) R is zero-dimensional reduced and for each maximal ideal M of R, $R/M \simeq \mathbb{Z}_2$.
- (2) If R is Noetherian, then R is a finite ring with $R \simeq (\mathbb{Z}_2)^n$ for some integer $n \geq 1$.
- *Proof.* (1) Suppose that dim R > 0. Then there are primes $P \subsetneq M$. Let $x \in M P$. Then $x = x^2$, and so $x(x 1) = 0 \in P$. Since $x \notin P$, we have $x 1 \in P \subseteq M$. But $x \in M$, so $1 \in M$, a contradiction. Clearly $nil(R) = \{0\}$. Let M be a maximal ideal of R. Then R/M is a field and a Boolean ring; so $R/M \simeq \mathbb{Z}_2$.
- (2) Suppose that R is Noetherian. Then since, each ideal of R contains a product of prime ideals of R [3, Corollary 22, p. 685], we have $(0) = P_1^{r_1} P_2^{r_2} \cdots P_n^{r_n}$. By Lemma 1, each $P_i^{r_i} = P_i$; so $(0) = P_1 P_2 \cdots P_n$ and $P_1, P_2, ..., P_n$ are distinct. Since the ideals P_i and P_j with $i \neq j$ are comaximal, the map $R \to R/P_1 \times R/P_2 \cdots \times R/P_n$, $r \mapsto (r + P_1, r + P_2, ..., r + P_n)$ is an epimorphism with kernel $P_1 \cap P_2 \cap \cdots \cap P_n = P_1 P_2 \cdots P_n = \{0\}$ by Lemma 2. Hence $R \simeq R/\{0\} \simeq R/P_1 \times R/P_2 \times \cdots \times R/P_n$. Now, each $R/P_i \simeq \mathbb{Z}_2$ by (1). Hence $R \simeq (\mathbb{Z}_2)^n$ for some integer $n \geq 1$.

COROLLARY 4. (c.f., [7, Lemma 7], [9, Proposition 13]) Let R be a ring and let

$$\mathcal{I}_2 = \{ I \mid I \text{ is an ideal of } R \text{ and } |R/I| = 2 \}.$$

Let J be the intersection of all ideals in \mathcal{I}_2 . Then R/J is a Boolean ring. Moreover, if R is Noetherian, then R/J is a finite ring with $|R/J| = 2^n$ for some integer $n \ge 1$ and \mathcal{I}_2 is finite.

Proof. Let $x \in R$. For each $I \in \mathcal{I}_2$, we have $x^2 - x \in I$. Thus for each $x \in R$, $x^2 - x \in \bigcap \{I | I \in \mathcal{I}_2\} = J$. Therefore R/J is a Boolean ring. In particular, if R is Noetherian, then R/J is Noetherian, and so by Theorem 3, R/J is a finite ring with $|R/J| = 2^n$ for some integer $n \geq 1$. Hence $\{I/J | |R/I| = 2\}$ is finite. Since the map $I \to I/J$ is injective, \mathcal{I}_2 is finite.

Let R be a Noetherian ring and let $\mathcal{I}_n = \{I_a\}_{a \in \Lambda}$, where $|R/I_a| = n$. Define $J = \bigcap_{a \in \Lambda} I_a$. Then R/J can be imbedded in $\prod_{a \in \Lambda} (R/I_a)$. Then R/J is zero-dimensional Noetherian and hence Artinian. Hence $J = \bigcap I_a$ has a finite subintersections, so R/J is imbedded in $\prod_{i=1}^k (R/I_{a_i})$, a ring of cardinality n^k . Therefore R/J is finite and hence $\{I_a/J\}_{a\in\Lambda}$ is finite. Since the map $I_a \to I_a/J$ is injective, $\mathcal{I}_n = \{I_a\}_{a\in\Lambda}$ is finite [5, Result 3].

D. Hayes [6] was the first to observe and prove the following polynomial analogue of the celebrated Goldbach conjecture:

THEOREM 5. For every polynomial $f(x) \in \mathbb{Z}[x]$ of degree $n \geq 1$, there are irreducible polynomials g(x) and h(x), each of degree n, such that g(x) + h(x) = f(x).

To prove Theorem 5, Hayes used the following [6, Lemma]: if p and q are distinct odd primes, then there exist integers c and d such that pc + qd = 1, $p \nmid c$, and $q \nmid d$. Also, Hayes pointed out that more general theorem whenever R is a principal ideal domain with infinitely many maximal ideals. In [7], P. Pollack showed the case that R is a Noetherian domain with infinitely many maximal ideals: Suppose that R is an integral domain which is Noetherian and has infinitely many maximal ideals. Then every element of R[x] of degree $n \geq 1$ can be written as the sum of two irreducibles of degree n. He used distinct maximal ideals P and Q such that $(1) P^2 \neq P$ and $Q^2 \neq Q$, (2) |R/P|, |R/Q| > 2 [7, Theorem 5]. Noetherian condition guarantees that $\mathcal{I}_2 = \{I \mid I \text{ is an ideal of } R \text{ and } |R/I| = 2\}$ is finite by Corollary 4, and if M is maximal, then $M^2 \neq M$ [7, Lemma 6]. Also, in [8], F. Saidak gives a short proof of Hayes's result.

In order to prove Theorem 5, we recall the remarkable criterion of Eisenstein [2].

LEMMA 6. (Eisenstein's criterion) If, in the integral polynomial $a_0x^n + a_1x^{n-1} + \cdots + a_n$, all of the coefficients except a_0 are divisible by a prime p, but a_n is not divisible by p^2 , then the polynomial is irreducible.

Proof of Theorem 5. Write $f(x) = m_0 x^n + m_1 x^{n-1} + \cdots + m_n$. Choose distinct odd primes p and q which do not divide either of m_0 and m_n . Let $R = \mathbb{Z}$, pR = P, and qR = Q. Since P and Q are comaximal, P^2 and Q^2 are also comaximal. Therefore the two maps $R \to R/P \times R/Q$, $r \mapsto (r + P, r + Q)$ and $R \to R/P^2 \times R/Q^2$, $r \mapsto (r + P^2, r + Q^2)$ are surjective homomorphisms by Lemma 2. Choose $\alpha \notin P$ and $\beta \notin Q$. Let a_0 be a preimage of $(\alpha + P, m_0 - \beta + Q)$

under $R \to R/P \times R/Q$. Set $b_0 = m_0 - a_0$. Then $a_0 \notin P$ and $b_0 \notin Q$. Also, for i (0 < i < n), let a_i be a preimage of $(0 + P, m_i + Q)$ under $R \to R/P \times R/Q$. Set $b_i = m_i - a_i$. Then $a_i \in P$ and $b_i \in Q$. Finally, let a_n be a preimage of $(p+P^2, m_n-q+Q^2)$ under $R \to R/P^2 \times R/Q^2$. Set $b_n = m_n - a_n$. Then we have $a_n \in P$, $a_n \notin P^2$, $b_n \in Q$, and $b_n \notin Q^2$. If $g(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ and if $h(x) = b_0 x^n + b_1 x^{n-1} + \cdots + b_n$, then f(x) = g(x) + h(x). Lemma 6 says that g(x) and h(x) are irreducible polynomials.

REMARK 7. (cf. [6, Theorem 1]) As the same notation above, Hayes choose a_n' and b_n' such that $pa_n' + qb_n' = m_n$, but $p \nmid a_n'$ and $q \nmid b_n'$ by [6, Lemma]. Set $a_n = pa_n'$ and $b_n = qb_n'$. Then $m_n = a_n + b_n$, $p|a_n, p^2 \nmid a_n, q|b_n$, and $q^2 \nmid b_n$.

Acknowledgement. We would like to thank referee for several useful suggestions.

References

- [1] D.D. Anderson, Generalizations of Boolean rings, Boolean-like rings and von Neumann regular rings, Comment. Math. Univ. St. Pauli 35 (1986), 69–76.
- [2] D. Cox, Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first, Amer. Math. Monthly 118 (2011), 3–21.
- [3] D. Dummit and R. Foots, Abstract Algebra, 3rd ed., John Wiley, Hoboken, NJ, 2004.
- [4] R. Gilmer, Background and preliminaries on zero-dimensional rings, Lect. Notes Pure Appl. Math. 171 (1994), 1-13.
- [5] R. Gilmer, Zero-dimensionality and products of commutative rings, Lect. Notes Pure Appl. Math. 171 (1994), 15-25.
- [6] D. Hayes, A Goldbach theorem for polynomials with integral coefficients, Amer. Math. Monthly 72 (1965), 45–46.
- [7] P. Pollack, On polynomial rings with a Goldbach property, Amer. Math. Monthly 118 (2011), 71–77.
- [8] F. Saidak, On Goldbach's conjecture for integer polynomials, Amer. Math. Monthly 113 (2006), 541–545.
- [9] P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282–301.

Department of Mathematics Inha University Incheon 402-751 Korea E-mail: jangsj@inha.edu