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REMARKS ON A GOLDBACH PROPERTY
SuN Ju JaNG

ABSTRACT. In this paper, we study Noetherian Boolean rings. We
show that if R is a Noetherian Boolean ring, then R is finite and
R ~ (Z2)™ for some integer n > 1. If R is a Noetherian ring, then
R/J is a Noetherian Boolean ring, where J is the intersection of all
ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set
of ideals I of R with |R/I| = 2 is finite. We also give a short proof of
Hayes’s result : For every polynomial f(z) € Z[z] of degree n > 1,
there are irreducible polynomials g(z) and h(zx), each of degree n,
such that g(z) + h(z) = f(x).

All rings are assumed to be commutative rings with identity. We
use the term dimension of R, denoted dimR, to refer to the Krull
dimension of R. A ring R is called von Neumann regular if for each x
in R, there exists y in R such that x = xyz. It is well known that R is
von Neumann regular if and only if R is zero-dimensional and reduced
if and only if Rp is a field for each P € Spec(R) if and only if each
ideal of R is a radical ideal if and only if each principal ideal of R is
idempotent [4, Theorem 3.1]. In particular, dimR = 0 if and only if
R/nil(R) is von Neumann regular (where nil(R) is the nilradical of
R) if and only if a power of each principal ideal of R is idempotent
- that is, if and only if, for each x € R, there exists n(x) € ZT and
y € R such that 2™(*) = ygn@)+1 [4, Theorem 3.4]. The class of von
Neumann regular rings is closed under taking homomorphic images,
quotient rings, and arbitrary products [4, Result 3.2].

R is called a Boolean ring if every element is idempotent. It is well
known that R is a Boolean ring if and only if Ry, is isomorphic to Z, for
each maximal ideal M of R. A Boolean ring is a von Neumann regular
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ring with x = xlz. It is known that R/nil(R) is Boolean if and only if
dimR = 0 and for each maximal ideal M of R, R/M =~ Zs if and only
if given = € R, there exists a natural number n with 2" (1 +z)" =0
[1, Theorem 5.

In this paper, we study Noetherian Boolean rings. We show that
if R is a Noetherian Boolean ring, then R is finite and R ~ (Zy)"
for some integer n > 1. If R is a Noetherian ring, then R/J is a
Noetherian Boolean ring, where J is the intersection of all ideals of
Zo ={I | I is an ideal of R and |R/I| = 2}. Thus R/J is finite, and
hence the set Z, is finite. We also give a short proof of Hayes’s result
using Chinese Remainder Theorem for rings.

For future reference, we include a result from [4, Theorem 3.1(4)].

LEMMA 1. If R is a Boolean ring, then M? = M for each ideal M
of R.

Proof. If x € M, then x = 22 € M?. Hence M C M?, and thus
M = M2 O

Let I and J be ideals of R. Recall that I and J are comaximal if
I +J = R. Suppose that I and J are comaximal. Then there exist
a € I and b € J such that a +b = 1. For any integer m,n(> 1),
1= (a+b)™" and (a+b)™* € ™+ J"; s0 [ +J" = R, and hence
I'"™ and J™ are also comaximal [7, Lemma 4].

For future reference, we include the Chinese Remainder Theorem
[3, Section 7.6].

LEMMA 2. (Chinese Remainder Theorem) Let Iy, I, ..., I, be ideals
of R. Themap R — R/Iy X R/Iyx---x R/I, defined by r — (r+1I,r+
I, ...,7+ I,,) is a ring homomorphism with kernel Iy N Io N ---N1I,. If
each ideals I;, I (i # j) are comaximal, then the map is surjective and
Ilﬂfgﬂ' : 'ﬂIn = 11]2 N 'In, SO R/(Illg N ]n) ~ R/(I1ﬁ]2ﬂ' : 'ﬂ]n) ~
R/Il X R/IQ X e X R/In

If R is a finite Boolean ring, then R ~ Zg X Zg X -+ X Zy (c.f. [3,
Exercise 2, p. 267]). We next show that a Noetherian Boolean ring R
is finite with R ~ (Zy)™ for some integer n > 1.

THEOREM 3. Let R be a Boolean ring.
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(1) R is zero-dimensional reduced and for each maximal ideal M of
R, R/M ~ ZQ.

(2) If R is Noetherian, then R is a finite ring with R ~ (Z9)™ for
some integer n > 1.

Proof. (1) Suppose that dimR > 0. Then there are primes P C M.
Let x € M — P. Then x = 22, and so x(x — 1) = 0 € P. Since x ¢ P,
we have x —1 € P C M. But x € M, so 1 € M, a contradiction.
Clearly nil(R) = {0}. Let M be a maximal ideal of R. Then R/M is
a field and a Boolean ring; so R/M ~ Zs.

(2) Suppose that R is Noetherian. Then since, each ideal of R
contains a product of prime ideals of R [3, Corollary 22, p. 685],
we have (0) = P/"'P,"?---P,"". By Lemma 1, each P,"" = P;; so
(0) = PPy--- P, and Py, P, ..., P, are distinct. Since the ideals P;
and P; with ¢ # j are comaximal, the map R — R/P; x R/P--- X
R/P,, r— (r+ Pi,r + Py, ....,7 + P,) is an epimorphism with kernel
PPnPon---NP, = PP---P, = {0} by Lemma 2. Hence R ~
R/{0} ~ R/P; x R/Py x --- x R/P,. Now, each R/P; ~ Zs by (1).
Hence R ~ (Z3)™ for some integer n > 1. O]

COROLLARY 4. (c.f., [7, Lemma 7], [9, Proposition 13]) Let R be a
ring and let

Zy ={I | I is an ideal of R and |R/I| = 2}.

Let J be the intersection of all ideals in Z,. Then R/J is a Boolean
ring. Moreover, if R is Noetherian, then R/J is a finite ring with
|R/J| = 2" for some integer n > 1 and Z is finite.

Proof. Let x € R. For each I € Z,, we have 22 —z € I. Thus for
each x € R, 22 — 2 € N{I|I € I} = J. Therefore R/J is a Boolean
ring. In particular, if R is Noetherian, then R/J is Noetherian, and so
by Theorem 3, R/J is a finite ring with |R/J| = 2" for some integer
n > 1. Hence {I/J||R/I| = 2} is finite. Since the map I — I/J is
injective, Z5 is finite. OJ

Let R be a Noetherian ring and let Z,, = {1, }4ea, where |R/1,| = n.
Define J = (,cp la- Then R/J can be imbedded in ], A (R/I4).
Then R/J is zero-dimensional Noetherian and hence Artinian. Hence



406 Sun Ju Jang

J = () I, has a finite subintersections, so R/J is imbedded in Hle (R/1,,),
a ring of cardinality n*. Therefore R/.J is finite and hence {I,/J}acn
is finite. Since the map I, — I,/J is injective, Z,, = {I,}.cn is finite
[5, Result 3].

D. Hayes [6] was the first to observe and prove the following poly-
nomial analogue of the celebrated Goldbach conjecture:

THEOREM 5. For every polynomial f(z) € Z[x] of degree n > 1,
there are irreducible polynomials g(x) and h(x), each of degree n, such

that g(x) + h(z) = f(z).

To prove Theorem 5, Hayes used the following [6, Lemma]: if p and
q are distinct odd primes, then there exist integers ¢ and d such that
pc+qd =1, ptec and g t d. Also, Hayes pointed out that more
general theorem whenever R is a principal ideal domain with infinitely
many maximal ideals. In [7], P. Pollack showed the case that R is
a Noetherian domain with infinitely many maximal ideals: Suppose
that R is an integral domain which is Noetherian and has infinitely
many maximal ideals. Then every element of R[x] of degree n > 1
can be written as the sum of two irreducibles of degree n. He used
distinct maximal ideals P and @ such that (1) P? # P and Q* # Q,
(2) |[R/P|,|R/Q| > 2 [7, Theorem 5]. Noetherian condition guarantees
that Zo = {I | I is an ideal of R and |R/I| = 2} is finite by Corollary
4, and if M is maximal, then M? # M [7, Lemma 6]. Also, in [8], F.
Saidak gives a short proof of Hayes’s result.

In order to prove Theorem 5, we recall the remarkable criterion of
Eisenstein [2].

LEMMA 6. (Eisenstein’s criterion) If, in the integral polynomial
apz™ + a1z" ' + .- + a,,, all of the coefficients except aq are divis-
ible by a prime p, but a,, is not divisible by p?, then the polynomial is
irreducible.

Proof of Theorem 5. Write f(x) = moz™ + miz™ t + -+ + m,,.
Choose distinct odd primes p and ¢ which do not divide either of mg
and m,. Let R = Z, pR = P, and qR = ). Since P and (@ are
comaximal, P? and Q? are also comaximal. Therefore the two maps
R — R/P x R/Q, r — (r+ P,r +Q) and R — R/P? x R/Q?,
r +— (r+ P%r + Q?) are surjective homomorphisms by Lemma 2.
Choose o ¢ P and 3 ¢ Q. Let ag be a preimage of (a«+ P, mo— 5+ Q)
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under R — R/P x R/Q. Set by = my — ag. Then ag ¢ P and by ¢ Q.
Also, for ¢ (0 <i < n), let a; be a preimage of (0 4+ P,m; + Q) under
R — R/P x R/Q. Set b; = m; —a;. Then a; € P and b; € Q. Finally,
let a,, be a preimage of (p+ P2, m,, —q+Q?) under R — R/P?x R/Q?.
Set b, = m, —a,. Then we have a,, € P,a,, ¢ P?,b, € Q, and b,, ¢ Q.
If g(z) = agz™ + a1z 1+ -+ a, and if h(x) = box™ +byz" 1+ +
by, then f(z) = g(z) + h(z). Lemma 6 says that g(x) and h(x) are
irreducible polynomials. 0

REMARK 7. (cf. [6, Theorem 1]) As the same notation above, Hayes
choose a,,’ and b,," such that pa,, + ¢b,” = m,,, but pta,’ and q1b,’
by [6, Lemma]. Set a, = pa,’ and b, = g¢b,’. Then m,, = a, + by,
plan, p* 1 an, qlbn, and ¢ 1 by,.
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