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THE HOMOLOGY HOMOMORPHISM INDUCED BY

HARER MAP

Deogju Lee and Yongjin Song∗

Abstract. We study a natural map from the braid group to the
mapping class group which is called Harer map. It is rather new
and different from the classical map which was studied in 1980’s by
F. Cohen, J. Harer et al. We show that this map is homologically
trivial for most coefficients by using the fact that this map factors
through the symmetric group.

1. Introduction

The classical Harer map is an obvious map from braid groups to
mapping class groups. In the latter group there are plenty of braid
relations among Dehn twists. In this paper we introduce a new map
from the braid group to the mapping class group which is also naturally
defined. We call this map a Harer map throughout this paper.

The construction of a Harer map is made by identifying the braid
group as a subgroup of the mapping class group of a genus zero sur-
face with boundary components as follows. Let S0,k+1 be a sphere with
k + 1 disks removed and parametrized boundary circles ∂0, ∂1, . . . , ∂k.
Consider the orientation preserving diffeomorphisms that fix the first
boundary component ∂0 pointwise but may permute the other k bound-
ary components as long as they preserve the parametrization of each.
The associated mapping class group Γ0,(k),1 is the ribbon braid group
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RBk on k ribbons. RBk is the wreath product Bk ≀ Z, and Bk can
naturally be identified as a subgroup.

Γk
0,1 ≃ Bk ⊂ Bk ≀ Z = RBk ≃ Γ0,(k),1.

Thus this identification leads to homomorphisms of the braid group into
the mapping class group. Consider two copies of the surface S0,k+1 glued
along their boundary components ∂1, . . . , ∂k to form a surface Sk−1,2.

Any diffeomorphism of S0,k+1 as described above can be extended to
Sk−1,2 by “mirroring” the action on the second copy of S0,k+1 and can
then be extended to Sg+k,2 by the identity diffeomorphism.

This gives rise to a Harer map:

Harer : Bk
m−→ Bk ×Σk

Bk
α−→ Γg+k,2,

wherem is mirroring, α is induced by gluing Sg+1,2 on the right boundary
component of Sk−1,2, and the group in the middle is defined as the pull-
back in the following diagram:

Bk ×Σk
Bk

��

// Σk

△
��

Bk ×Bk
π×π // Σk × Σk.

The main result of this paper is to prove that the Harer map induces
zero homomorphism on homology in some coefficients.

Main Theorem. The homology homomorphism Harer∗ :H∗(Bk;F)
→ H∗(Γg+k,2;F) is zero for 0 < ∗ < g+k

2
and F = Q, Zp (p ̸= 2 is prime).

Hence the map Harer∗ : H∗(B∞;F) → H∗(Γ∞,1;F) is zero.

In the proof of Main theorem we use the fact that a Harer map factors
through the symmetric group and the homology of symmetric group is
isomorphic to Z2. The second part of Main Theorem follows by the
homology stabilization theorem for mapping class groups.

2. Mapping class groups and homology stabilization theorem

Let Sk
g,n+1 denote an oriented smooth surface of genus g with k marked

points specified and n + 1 boundary components. The mapping class
group Γk

g,n+1 is defined to be the group of isotopy classes of orienta-

tion preserving self-diffeomorphisms of Sk
g,n+1 which fix the k points
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pointwise, and are identity on the boundary. If k is zero, we denote
Sg,n+1 := S0

g,n+1 and Γg,n+1 := Γ0
g,n+1. By gluing a torus with two bound-

ary components to one of the boundary components of Sk
g,n+1, we get a

surface Sk
g+1,n+1 (See Figure 1).

1 2 g 2n
1n � 11 2 k

Figure 1. Sk
g,n+1 −→ Sk

g+1,n+1

Extending diffeomorphisms by the identity induces a map of mapping
class groups

Γk
g,n+1 → Γk

g+1,n+1

and we may define the associated stable mapping class group

Γk
∞,n = lim

g→∞
Γk
g,n+1.

The n boundary components not used in this process will be called free.
Consider diffeomorphisms that may permute free boundary components.
More precisely, the boundary components should be thought of as hav-
ing a parametrization and diffeomorphisms have to be compatible with
these. The associated mapping class groups will be denoted by Γk

g,(n),1.
There are normal extensions and stable maps:

Γk
g,n+1

σ

��

� � // Γk
g,(n),1

σ

��

// // Σn

Γk
g+1,n+1

� � // Γk
g+1,(n),1

// // Σn

with quotients of the symmetric group Σn. Thus we have the map of
associated stable mapping class groups

Γk
∞,n = lim

g→∞
Γk
g,n+1 ↪→ Γk

∞,(n) = lim
g→∞

Γk
g,(n),1 � Σn.

Let A : Sg,r → Sg,r+1 (r ≥ 1) and B : Sg,r → Sg+1,r−1 (r ≥ 2) be
the inclusions defined by adding a pair of pants (a copy of S0,3) sewn
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along one boundary components for A and two boundary components
for B. Also define C : Sg,r → Sg+1,r−2 (r ≥ 2) by gluing two boundary
components together.

Theorem 2.1 (Harer Stability Theorem, [5]). The associated homo-
morphisms of mapping class groups defined by the maps A, B, C induce
isomorphisms of integral homology:

A∗ : Hn(Γg,r) → Hn(Γg,r+1)

for n > 1 when g ≥ 3n− 2, r ≥ 1, and for n = 1, when g ≥ 2, r ≥ 1,

B∗ : Hn(Γg,r) → Hn(Γg+1,r−1)

for n > 1 when g ≥ 3n− 1, r ≥ 2, and for n = 1, when g ≥ 3, r ≥ 2,

C∗ : Hn(Γg,r) → Hn(Γg+1,r−2)

when g ≥ 3n, r ≥ 2.

Corollary 2.2. H∗(Γg,r) is independent of g and r in degree ∗ < g−1
3
.

In [8], Ivanov improves this to the case when the genus of Sg,r is at
least 2n+ 1.

There are group maps

Γg,r → Γg,r−1 and Γg,r → Γg+1,r

induced by gluing a disk, a torus with two boundary components to one
of the boundary components of Sg,r, respectively. By the theorem of
Harer and Ivanov [5, 8], these maps induce isomorphisms in H∗( · ;Z)
for ∗ ≤ g−1

2
, and thus there is a stable range in which the group homol-

ogy H∗(Γg,r;Z) is independent of g and r. In this range it agrees with
H∗(Γ∞;Z) where Γ∞ = limg→∞Γg,1 is the stable mapping class group:

(2.1) H∗(Γg,1;Z)
≃−→ H∗(Γ∞;Z) for g ≥ 2 ∗+1.

Let Fn = ⟨a1, . . . , an⟩ be the free group on n generators and let AutFn

be its automorphism group. Let Σn be the symmetric group and let φn :
Σn → AutFn be the homomorphism that to a permutation σ associates
the automorphism φn(σ) : ai 7→ aσ(i).

Recently, Galatius proved the following theorem in [4]:

Theorem 2.3. φn induces an isomorphism

(φn)∗ : H∗(Σn) −→ H∗(AutFn)

for n ≥ 2 ∗+2.
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The homology groups are independent of n in the sense that increas-
ing n induces isomorphisms H∗(Σn) ≃ H∗(Σn+1) and H∗(AutFn) ≃
H∗(AutFn+1) when n ≥ 2 ∗ +2 ([6, 7, 9]). Since Σn is a finite group,
with rational coefficients the homology groups vanish. Thus we have the
following corollary.

Corollary 2.4. The groups

H∗(Σn;Q) = H∗(AutFn;Q) = 0

for n ≥ 2 ∗+2.

Let Bn be the braid group on n strings. Artin [1] identified Bn as a
subgroup of AutFn as follows. Let σi ∈ Bn denote a standard generator
which crosses the ith over the (i+ 1)st string. Artin’s map

ϕ : Bn → AutFn

is defined by taking σi to the automorphism

ϕ(σi) : aj →

 aj if j ̸= i, i+ 1
ai+1 if j = i
a−1
i+1aiai+1 if j = i+ 1.

The map ϕ extends to a map:

B∞ := lim
n→∞

Bn → AutF∞ = lim
n→∞

AutFn.

Tillmann [12] proved the following theorem:

Theorem 2.5 ([12, Theorem 1]). ϕ∗ : H∗(B∞;F) → H∗(AutF∞;F) is
trivial when F = Q or F = Zp for any odd prime p.

An element of the symmetric group Σn acts naturally by permutations
of the generators on Fn. The composition with the natural surjection π
from the braid group to the symmetric group defines the homomorphism

Bn
π−→ Σn

φn−→ AutFn,

where π(σi) = (i, i+1) for generators σi ofBn. As ϕ, φn◦π also commutes
with limits and extends to a map of stable groups. Although these maps
are very different, they induce the same map on homology [12].

Theorem 2.6 ([12, Theorem 2]). ϕ∗ = (φ ◦ π)∗ : H∗(B∞;F) →
H∗(AutF∞;F) when F = Q or F = Zp for any odd prime p.
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2.1. Splitting Theorem. In this section, we describe a splitting the-
orem [13] which plays a key role in the proof of Main Theorem.

A group G is perfect if every element can be written as a product of
commutators, that is, [G,G] = G. Any group G has a unique maximal
perfect subgroup which we will denote by P (G). Since the homomorphic
image of a perfect group is also perfect, P (G) is a characteristic subgroup
of G.

Recall that a group G is called a direct sum group if there is a homo-
morphism ⊕ : G×G → G.

We consider the more general case than direct sum group.

Definition 2.7. Two groups G and H form a direct sum pair if
H < G and there is a homomorphism ⊕ : H ×G → G such that for any
g1, . . . , gs ∈ G and h1, . . . , hs ∈ H there exist elements c ∈ P (G) and
d ∈ P (H) satisfying the following:

(2.2) 1⊕ g1 = cgic
−1 and hi ⊕ 1 = dhid

−1 for all i = 1, . . . , s.

Theorem 2.8 ([2, Proposition 5.2]). BG+ admits a left H-action by
BH+ whereB(·)+ means the Qullen’s plus-construction of the classifying
space of groups.

Proof. Note that (BH ×BG)+ = BH+ ×BG+. Thus the direct sum
homomorphism ⊕ induces a map

B⊕+ : BH+ ×BG+ → BG+.

Let ∗ denote the basepoint of BG+ and BH+. The map B ⊕+ ( , ∗) :
BH+ → BG+ is induced by ⊕1. By (2.2), ⊕1 factors through H. We
show that the induced map f : BH+ → BH+ is a homotopy equivalence.
Since P (H) ▹ H, BP (H) is a regular cover of BH, and hence BP (H)+

is the universal cover of BH+. By (2.2), the map BP (H)+ → BP (H)+

induced by f is the identity on homology [13, Lemma 1.3]. Hence, by
the Whitehead theorem, it is a homotopy equivalence. Also, f is a
homotopy equivalence. Similarly, B ⊕+ (∗, ) is a homotopy equivalence
of BG+. Choose homotopy inverses r and t for these two maps. Then
µ = B ⊕+ ◦(r × t) : BH+ ×BG+ → BG+ defines an H-action.

Remark 2.9. Theorem 2.8 means there is a map µ : BH+×BG+ →
BG+ such that µ|BH+ is homotopic to the map induced by the inclusion
H ↪→ G and µ|BG+ is homotopic to the identity. When H is equal to G,
then BG+ is an H-space.
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Corollary 2.10 ([2, Corollary 5.3]). Assume G and H form a direct
sum pair, and that there is a splitting homomorphism l : G → H.
Then BG+ ≃ BH+ × F , where F is the homotopy fiber of the map
BG+ → BH+.

Proof. Let F be the homotopy fiber of the map Bl+ : BG+ → BH+,
and let j : F → BG+ denote the inclusion of the fiber. Define BH+ ×
F → BG+ by mapping (x, y) to µ(x, j(y)). Because µ defines an H-
action, this induces an isomorphism on homotopy groups and hence is a
homotopy equivalence.

Recall that for all k and g > 2, Γg,k is perfect [10].

Consider the following exact sequence

Γg,k+1 ↪→ Γg,(k),1
ρ−→ Σk.

Clearly, the kernel of ρ is Γg,k. Since an extension of perfect groups is
again perfect, we see ρ−1(P (Σk)) is perfect. In fact, it must be maximal.
So we have

(2.3) P (Γg,(k),1) = ρ−1(P (Σk)) = ρ−1(Ak) for g > 2,

where Ak is an alternating subgroup of Σk. And in particular, P (Γg,(k),1)
contains Γg,1.

On the other hands, by extending diffeomorphisms by the identity on
an attached disk S0,k+1 with k disks removed, we defines the inclusion
map incl : Γg,1 → Γg,(k),1 (See Figure 2):

1 2 g 2 k1
Figure 2. incl : Γg,1 −→ Γg,(k),1

We may now also fill in the k disks, and once again extend diffeomor-
phisms by the identity. This defines the forgetful map l : Γg,(k),1 → Γg,1

(See Figure 3):
Clearly, l ◦ incl is the identity homomorphism. As stabilization com-

mutes with both incl and l, these homomorphisms extend to the stable
mapping class groups.
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1 2 g 2 k1
Figure 3. l : Γg,(k),1 −→ Γg,1

The retraction induced by the group homomorphisms incl and l on the
Qullen’s plus-construction of the classifying spaces is multiplicative, and
hence gives rise to a splitting spaces. So we have the following splitting:

Theorem 2.11. (BΓ∞,(k))
+ ≃ BΓ+

∞ ×BΣ+
k .

Proof. Define ⊕ : Γ∞ × Γ∞,(k) → Γ∞,(k) by letting Γ∞ act on the
odd genus and Γ∞,(k) act on the even genus. Then Γ∞,(k) and Γ∞ form
a direct sum pair. To check the property (2.2), let h1, . . . , hs ∈ Γ∞.
Then they are in the image of Γg,1 for some large g. Now choose an
appropriate diffeomorphism of the surface S2g,1 ⊂ S2g,k+1 which moves
the even genus over the odd genus to the last g genus. Let d ∈ Γ∞
be its homotopy class. Similarly, let g1, . . . , gs ∈ Γ∞,(k). Then they are
in the image of Γg,(k),1 for some large g. Now choose an appropriate
diffeomorphism of the surface S2g,k+1 which moves the odd genus over
the even genus to the last g genus. Let c ∈ Γ∞,(k) be its homotopy
class. By Equation (2.3), c and d are in the maximal perfect subgroups
of Γ∞,(k) and Γ∞ respectively. On the other hands, the map l mentioned
above is a splitting homomorphism, and clearly the homotopy fiber of
the map l+ : BΓ+

∞,(k) → BΓ+
∞ is BΣ+

k . Hence, by Corollary 2.10, we

have
(BΓ∞,(k))

+ ≃ BΓ+
∞ ×BΣ+

k .

Remark 2.12. Bödigheimer [2] proved the following general case:

H∗(Γ
(k)
g,(n),m;F) ≃ H∗(Γg,1;F)⊗H∗(Σn;F)⊗H∗(Σk;F[x1, . . . , xk]),

where ∗ ≤ g
2
, k + n+m ≥ 1, F is any field.

3. A Harer map and its homology triviality

We discuss a map from the braid group to the mapping class group
which is defined geometrically, i.e., by identifying the braid group as a
subgroup of the mapping class group of a surface.
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The basic idea is to identify the braid group as a subgroup of the map-
ping class group of a genus zero surface with boundary components as
follows. Let S0,k+1 be a sphere with k+1 disks removed and parametrized
boundary circles ∂0, ∂1, . . . , ∂k. Consider the orientation preserving dif-
feomorphisms that fix the first boundary component ∂0 pointwise but
may permute the other k boundary components as long as they preserve
the parametrization of each. The associated mapping class group Γ0,(k),1

is the ribbon braid group RBk on k ribbons. RBk is the wreath product
Bk ≀ Z, and Bk can naturally be identified as a subgroup.

Γk
0,1 ≃ Bk ⊂ Bk ≀ Z = RBk ≃ Γ0,(k),1.

Thus this identification leads to homomorphisms of the braid group into
the mapping class group. We define a Harer map as follows:

Consider two copies of the surface S0,k+1 glued along their boundary
components ∂1, . . . , ∂k to form a surface Sk−1,2 (See Figure 4).

2k
1k � 1

Figure 4. S0,k+1 −→ Sk−1,2

Any diffeomorphism of S0,k+1 as described above can be extended to
Sk−1,2 by “mirroring” the action on the second copy of S0,k+1 and can
then be extended to Sg+k,2 by the identity diffeomorphism (See Figure
5).

2k
1k � 1 1 2 g + 1

Figure 5. S0,k+1 −→ Sg+k,2



418 Deogju Lee and Yongjin Song

This gives rise to a Harer map:

Harer : Bk
m−→ Bk ×Σk

Bk
α−→ Γg+k,2,

wherem is mirroring, α is induced by gluing Sg+1,2 on the right boundary
component of Sk−1,2, and the group in the middle is defined as the pull-
back in the following diagram:

Bk ×Σk
Bk

��

// Σk

△
��

Bk ×Bk
π×π // Σk × Σk.

Here, △ denotes the diagonal map, and π : Bk → Σk is the canonical
surjection.

We will consider a homomorphism from the braid group to the map-
ping class group, which factors through the symmetric group. In the
sequel, we will call this map as a Harer map.

We now prove the following theorem:

Main Theorem. The image of Harer∗ : H∗(Bk;F) → H∗(Γg+k,2;F)
is zero for 0 < ∗ < g+k

2
and F = Q, Zp (p ̸= 2 is prime). Hence the map

Harer∗ : H∗(B∞;F) → H∗(Γ∞,1;F) is zero.
Proof. Consider the following commutative diagram of group homo-

morphisms

Bk

h
��

m // Bk ×Σk
Bk

h×h

��

α // Γg+k,2

h
��

Γg+k,(k),1
m // Γg+k,(k),1 ×Σk

Γg+k,(k),1
β // Γ2(g+k)+(k−1),2.

Here, Γg+k,(k),1 denotes the mapping class group of the surface Sg+k,k+1,
where k of the boundary components may be permuted as long as the
parametrization of each component is preserved while one of the bound-
ary components is fixed pointwise; the group in the middle on the bottom
is defined as a pull-back as above. The left vertical map s is induced
by gluing one of the boundary components of Sg+k,2 along ∂0 to a copy
of S0,k+1. The right vertical map h is induced by gluing one of the
boundary components of Sg+2k−1,2 along ∂0 to a copy of Sg+k,2. The left
horizontal maps m are defined by “mirroring”, while the bottom right
horizontal map β is defined by identifying the two copies of the boundary
components ∂1, . . . , ∂k.
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Consider the following commutative diagram:

Bk
h //

π   A
AA

AA
AA

A
Γg+k,(k),1

Σk

τ

::vvvvvvvvv

Here, τ denotes the action on the k boundary components of Sg+k,(k),1.
Thus, we have the following commutative diagram:

H∗(Bk;F)
h∗ //

π∗ &&NN
NNN

NNN
NNN

H∗(Γg+k,(k),1;F)

H∗(Σk;F)
τ∗

66nnnnnnnnnnnn

By Theorem 2.11 and (2.1), we have

H∗(Γg+k,(k),1;F) ≃ H∗(Γg+k,1;F)⊗H∗(Σk;F)

for ∗ ≤ g+k−1
2

, F is any field.

So, the map h : Bk → Γg+k,(k),1 factors in homology in degrees ∗ < g+k
2

through Σk. Hence, the map Harer∗ : H∗(B∞;F) → H∗(Γ∞,1;F) is
determined by the following commutative diagram:

H∗(B∞;F) Harer∗ //

π∗ ''OO
OOO

OOO
OOO

H∗(Γ∞,1;F)

H∗(Σ∞;F)
h−1
∗ ◦β∗◦m∗◦τ∗

77ooooooooooo

Now, we consider the following two cases.

Case 1 (F = Q): By Corollary 2.4, H∗(Σn;Q) = 0; In fact, by
Universal Coefficients Theorem for Homology, we also have the same
result:

H1(Σ∞;Q) ≃ (H1(Σ∞;Z)⊗Q)⊕ Tor(H0(Σ∞;Z),Q)

≃ H1(Σ∞;Z)⊗Q
≃ Z2 ⊗Q
≃ 0.

Thus the image of Harer∗ : H∗(Bk;Q) → H∗(Γg+k,2;Q) is zero for 0 <

∗ < g+k
2
.
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Case 2 (F = Zp, p ̸= 2 is prime): By Universal Coefficients Theorem
for Homology, we get the following:

H1(Σ∞;Zp) ≃ (H1(Σ∞;Z)⊗ Zp)⊕ Tor(H0(Σ∞;Z),Zp)

≃ H1(Σ∞;Z)⊗ Zp

≃ Z2 ⊗ Zp

≃
{

0 for p ̸= 2
Z2 for p = 2.

It is also well known ([3, 11]) that the surjection Bn → Σn induces on
group completions up to homotopy the inclusion map Ω2S2 → Ω∞S∞.

Recall that F. Cohen in [3] describes the homology of the braid group
with Zp coefficients for every prime p in terms of a one-dimensional
generator x1 ∈ H1(B∞;Zp) and powers of homology operations (Dyer-
Lashof homology operations) applied to x1. On the other hand,

H1(Aut∞;Z) = H1(Σ∞;Z) = Z2,

and hence it follows that π∗ is zero in all positive dimensions for all odd
p.

The right vertical map h∗ is a homology isomorphism in theses degrees
by the stability theorem of Harer (Theorem 2.1). Thus by Cases 1 and 2,
the image of Harer∗ : H∗(Bk;F) → H∗(Γg+k,2;F) is zero for 0 < ∗ < g+k

2
,

F = Q, Zp.

Remark 3.1. Since H∗(Σ∞;Z) ≃ Z2, the image of π : Bk → Σk in
homology contains only 2-torsion for 0 < ∗ < g+k

2
. Hence we would also

expect that the image of Harer∗ : H∗(Bk;Z) → H∗(Γg+k,2;Z) contains

at most 2-torsion for 0 < ∗ < g+k
2
.
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