CIS CODES OVER \mathbb{F}_4

HYUN JIN KIM

Abstract. We study the complementary information set codes (for short, CIS codes) over \mathbb{F}_4. They are strongly connected to correlation-immune functions over \mathbb{F}_4. Also the class of CIS codes includes the self-dual codes. We find a construction method of CIS codes over \mathbb{F}_4 and a criterion for checking equivalence of CIS codes over \mathbb{F}_4. We complete the classification of all inequivalent CIS codes of length up to 8 over \mathbb{F}_4.

1. Introduction

A complementary information set code (for short, CIS code) is defined to be a linear code with $[2n, n, d]$ which has two disjoint information sets for a positive integer n. A CIS code over \mathbb{F}_2 is proposed by Carlet et al. [6]. CIS codes are strongly connected to correlation-immune functions. Correlation-immune functions are noticeably important class of cryptography functions due to their useful application in cryptography [15, 16]. A CIS code over \mathbb{F}_p is introduced by Kim and Lee [11]. They classify CIS codes over \mathbb{F}_p of small lengths, where p is 3, 5, 7 in [11]. Also, they show that long CIS codes over \mathbb{F}_p meet the Gilbert-Vashmov bound. The class of CIS codes includes self-dual codes. Furthermore, a notion of higher order CIS codes over \mathbb{F}_2 is developed by Carlet et al. [5].
Also, a t-CIS code over \mathbb{F}_p is developed by Kim and Lee, where the t-CIS code is a CIS code of order $t \geq 2$ [12]. They show that orthogonal arrays over \mathbb{F}_p can be explicitly constructed from t-CIS codes over \mathbb{F}_p.

In this paper we study on CIS codes over \mathbb{F}_4. We show the relation between the existence of a correlation immune function of strength d of n-variables and the existence of a CIS code over \mathbb{F}_4 of parameters $[2n, n, d]$ with the systematic partition. We find a method for constructing complementary information set codes over \mathbb{F}_4 from the building-up method [8, 13, 14]. Using this method, we classify quaternary CIS codes of lengths up to 8. Also, we show a criterion for checking equivalence of CIS codes over \mathbb{F}_4.

This paper is organized as follows. We introduce some definitions and basic contents in Section 2. In Section 3, we show the relation between correlation-immune functions over \mathbb{F}_4 and quaternary CIS code. In Section 4, we find a construction method of CIS codes over \mathbb{F}_4 and a criterion for checking equivalence of CIS codes over \mathbb{F}_4. Finally, we classify quaternary CIS codes of lengths 2, 4, 6, 8 in Section 5.

In this paper, all computations are done using the computer algebra system MAGMA [1].

2. Preliminaries

Let \mathbb{F}_4 be a finite field of cardinality 4 with $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$. Let C be a linear code of length n over \mathbb{F}_4. We define two inner products over \mathbb{F}_4^n. For $u, v \in \mathbb{F}_4^n$, $u = (u_1, u_2, \ldots, u_n)$, and $v = (v_1, v_2, \ldots, v_n)$, the Euclidean inner product is defined as

$$ u \cdot v = \sum_{i=1}^{n} u_i v_i, $$

and the Hermitian inner product is defined as

$$ \langle u, v \rangle = \sum_{i=1}^{n} u_i v_i^2. $$

Let

$$ C^\perp_E = \{ x \in \mathbb{F}_4^n \mid x \cdot c = 0, \forall c \in C \} $$

be the Euclidean dual code of C, and let

$$ C^\perp_H = \{ x \in \mathbb{F}_4^n \mid \langle x, c \rangle = 0, \forall c \in C \} $$
be the Hermitian dual code of C. A code C is Euclidean self-dual if $C = C^\perp_E$ and Hermitian self-dual if $C = C^\perp_H$. A code C of length n is called systematic if there exists a subset I of $\{1, 2, \ldots, n\}$ (called an information set of C) such that every possible tuple of length $|I|$ occurs in exactly one codeword in C within the specified coordinates x_i for $i \in I$ [6, 11]. Thus, a CIS code is a systematic code with two complementary information sets. The generator matrix of a $[2n, n]$ code is called systematic form if it is blocked as $[I \mid A]$, where I is the identity matrix of order n and A is an $n \times n$ matrix [11]. The class of CIS codes over \mathbb{F}_4 includes the Euclidean self-dual codes and the Hermitian self-dual codes over \mathbb{F}_4 as its subclasses.

The Hamming weight of a vector z is the number of its nonzero entries. The Hamming weight of z is denoted by $wt(z)$. The homogeneous polynomial $W_C(X, Y)$ defined by

$$W_C(X, Y) = \sum_{c \in C} X^{n-wt(c)} Y^{wt(c)}.$$

is called the weight enumerator of a code C. Let C and C' be two codes over \mathbb{F}_4. If there is some monomial matrix M (resp. permutation matrix) over \mathbb{F}_4 such that $C' = CM$, where $CM = \{cM \mid c \in C\}$, then two codes C and C' over \mathbb{F}_4 are monomially equivalent (resp. permutation equivalent), denoted by $C \cong C'$. The monomial automorphism group of C is the set of monomial matrices M with $C = CM$, denoted by $\text{Aut}(C)$. In this paper, the equivalence means the monomial equivalence. We note that this is the usual concept of equivalence over \mathbb{F}_4, named IsE Equivalent in MAGMA [1].

The following three lemmas are given in [6], and they also hold for CIS codes over \mathbb{F}_4 as well.

Lemma 2.1. If a $[2n, n]$ code C over \mathbb{F}_4 has generator matrix $[I \mid A]$ with A invertible, then C is a CIS code with the systematic partition. Conversely, every CIS code is equivalent to a code with generator matrix in that form.

In particular, this lemma applies to systematic self-dual codes whose generator matrix $[I \mid A]$ satisfies $AA^T = I$.

Lemma 2.2. If a $[2n, n]$ code C over \mathbb{F}_4 has generator matrix $[I \mid A]$ with $\text{rank}(A) < n/2$, then C is not a CIS code.
Lemma 2.3. If C is a $[2n, n]$ code over \mathbb{F}_4 whose dual has minimum weight 1 then C is not a CIS code.

3. Correlation-immune functions

We consider correlation-immune functions of strength d over \mathbb{F}_4^n. In [2–4, 7], we can find the characterization of the t-th order correlation-immune function $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^t$. In this paper, we only think of the case of $l = n$ and $q = 4$.

Definition 3.1. ([3, 7]) A bijective function $F : \mathbb{F}_4^n \rightarrow \mathbb{F}_4^n$ is correlation-immune of strength d if for $\forall \ a, b \in \mathbb{F}_4^n$ such that $wt(a) + wt(b) \leq d$ and $a \neq 0$, we have $W_F(a, b) = 0$, where wt denotes the Hamming weight and W_F the Walsh-Hadamard transform of F: $W_F(a, b) = \sum_{x \in \mathbb{F}_4^n} (-1)^{tr(a \cdot x + b \cdot F(x))}$.

We note that $\sum_{x \in \mathbb{F}_4^n} (-1)^{tr(x \cdot a)} \neq 0$ if and only if $a = 0$. We can find the connection between correlation-immune functions of strength d and CIS codes over \mathbb{F}_4 with parameters $[2n, n, > d]$ from the following theorem.

Theorem 3.2. The existence of a linear correlation-immune function of strength d of n-variables over \mathbb{F}_4 is equivalent to the existence of a CIS code over \mathbb{F}_4 of parameters $[2n, n, > d]$ with the systematic partition.

The proof is analogous to that of Theorem 3.2 in [11] and hence is omitted.

4. Construction of CIS Codes over \mathbb{F}_4

The following theorem is obtained from ([11, Theorem 4.1]). It gives a construction method of CIS code over \mathbb{F}_4. The motivation of this method is building up construction on self-dual codes over \mathbb{F}_2 and \mathbb{F}_q [8, 13, 14]. We denote a generator matrix of a code C by $\text{gen}(C)$.

Theorem 4.1. Suppose that C is a $[2n, n]$ CIS code over \mathbb{F}_4 with generator matrix $(I_n | A_n)$, where A_n is an invertible matrix with n row vectors r_1, r_2, \ldots, r_n. Then for any two vectors $x = (x_1, x_2, \ldots, x_n)$ and
\[y = (y_1, y_2, \ldots, y_n) \in \mathbb{F}_4^n, \text{ the following } G' \text{ generates a } [2(n + 1), n + 1] \text{ CIS code } C':\]

\[
G' = \begin{bmatrix}
1 & x_1 & \cdots & x_n & 0 & \cdots & 0 & 1 \\
0 & I_n & & & A_n & & & y_1 \\
\vdots & & & & \vdots & & & \vdots \\
0 & & & & & & & y_n
\end{bmatrix}
\]

Conversely, any \([2(n + 1), n + 1]\) CIS code over \(\mathbb{F}_4\) is obtained from some \([2n, n]\) CIS code by this construction, up to equivalence.

Proof. It is obvious that the matrix \(G'\) has two information sets. Hence the matrix \(G''\) generates a \([2(n + 1), n + 1]\) CIS code over \(GF(4)\).

Conversely, let \(C\) be a \([2(n + 1), n + 1]\) CIS code over \(GF(4)\). By Lemma 2.1, this code has a generator matrix \((I_{n+1} | A_{n+1})\), where \(A_{n+1}\) is an \((n+1) \times (n+1)\) invertible matrix, up to equivalence. By elementary row operations, we have that

\[
\text{gen}(C) \cong \begin{bmatrix}
1 & x'_1 & \cdots & x'_n & 0 & \cdots & 0 & y' \\
0 & I_n & & & A'_n & & & y'_1 \\
\vdots & & & & \vdots & & & \vdots \\
0 & & & & & & & y'_n
\end{bmatrix},
\]

where \(A'_n\) is an \(n \times n\) invertible matrix. In this case, \(y'\) is a nonzero element in \(\mathbb{F}_4\) since \(A_{n+1}\) is an invertible matrix. By scaling the last column, we have

\[
\text{gen}(C) \cong \begin{bmatrix}
1 & x'_1 & \cdots & x'_n & 0 & \cdots & 0 & 1 \\
0 & I_n & & & A'_n & & & y'_1 \\
\vdots & & & & \vdots & & & \vdots \\
0 & & & & & & & y'_n
\end{bmatrix},
\]

Since \(A'_n\) is an \(n \times n\) invertible matrix, \((I_n \mid A'_n)\) generates a \([2n, n]\) CIS code. Therefore, any \([2(n + 1), n + 1]\) CIS code can be obtained from some \([2n, n]\) CIS code by this construction up to equivalence.

We denote a transpose of a vector \(x\) by \(x^T\).
Algorithm 1. construction of CIS code over \mathbb{F}_4

Input:
C : a CIS code of length $2n$ with generator matrix $[I_n \mid A_n]$

Output:
C' : a CIS code of length $2n + 2$ with generator matrix

begin
For $x, y \in \mathbb{F}_4^n$,
$I' := \left[\begin{array}{c} x \\ I_n \end{array} \right]$, $A' := [A_n \mid y^T]$,
$\bar{T} := [z^T \mid I']$, $\bar{A} := \left[\begin{array}{c} z' \\ A' \end{array} \right]$, with $z = (1, 0, 0, \ldots, 0)$, $z' = (0, \ldots, 0, 0, 1)$,
$G' = [\bar{T} \mid \bar{A}]$;
$C' :=$ code generated by G'

end

We consider equivalence relation of CIS codes generated by Algorithm 1. Let C be a CIS $[2n, n]$ code over \mathbb{F}_4 with a generator matrix G. The elements of the automorphism group $Aut(C)$ can be considered as monomial matrices. For any monomial matrix $M \in Aut(C)$, the matrix GM generates the code C. Hence we can choose an invertible matrix L_M in $GL(n, \mathbb{F}_4)$ such that $GM = L_M G$, where $GL(n, \mathbb{F}_4)$ is the general linear group of dimension n over \mathbb{F}_4. In this way, we obtain a homomorphism $\phi : Aut(C) \to GL(n, \mathbb{F}_4)$ with $\phi(M) = L_M$. We define the action of the image of ϕ on \mathbb{F}_4^n as $L(x) = Lx^T$ for every $x \in \mathbb{F}_4^n$ and L in the image of ϕ [9, 11].

Theorem 4.2. Let $[I_n \mid A_n]$ be a generator matrix of a CIS code C, and let

$$G_1 = \begin{bmatrix}
1 & x & 0 & \cdots & 0 & 1 \\
0 & I_n & A_n & y^T \\
0 & I_n & A_n & y^T
\end{bmatrix}$$

and

$$G_2 = \begin{bmatrix}
1 & x' & 0 & \cdots & 0 & 1 \\
0 & I_n & A_n & y^T \\
0 & I_n & A_n & y^T
\end{bmatrix}$$
Assume that there exists $M \in \text{Aut}(C)$ such that its corresponding element $L_M \in \text{Im} (\phi)$ with $G_1 M = L_M G_1$ under a homomorphism $\phi : \text{Aut}(C) \to GL(n, \mathbb{F}_4)$ is a stabilizer of y and $\overline{x'} = \mathbf{x} M$, where $\mathbf{x} = (x, 0, \ldots, 0)$ and $\mathbf{x'} = (x', 0, \ldots, 0)$. Then G_1 and G_2 generate equivalent CIS codes.

The proof is analogous to that of Theorem 4.4 in [11]. Hence it is omitted.

5. Implementation

Theorem 5.1. There is only one quaternary CIS code of length 2, up to equivalence.

Proof. A generator matrix of quaternary CIS code of length 2 is $[x, y]$, where $x, y \in \mathbb{F}_4$ are nonzero. The code generated by $[x, y]$ is equivalent to the code with a generator matrix $[1, 1]$. Therefore, there exists one CIS code of length 2 over \mathbb{F}_4, up to equivalence. \square

We obtain the following theorem by Theorem 4.1.

Theorem 5.2. There are exactly three inequivalent quaternary CIS codes of length 4. One of these codes is Hermitian self-dual.

We list up the generator matrices of all inequivalent quaternary CIS codes of length 4 as follows:

$$C_{4,1} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \quad C_{4,2} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad C_{4,3} = \begin{bmatrix} 1 & w & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$

The code generated by $C_{4,1}$ is Hermitian self-dual and Euclidean self-dual. The code generated by $C_{4,3}$ is equivalent to a Euclidean self-dual code.

Remark 5.3. Hermitian self-dual codes are preserved under monomial equivalence. However, Euclidean self-dual codes are not preserved under monomial equivalence.

We write the weight enumerators of all inequivalent quaternary CIS code of length 4 as follows:

$$W_{C_{4,1}} = X^4 + 3X^2Y^2 + 6XY^3 + 6Y^4,$$
$$W_{C_{4,2}} = X^4 + 12XY^3 + 3Y^4,$$
$$W_{C_{4,3}} = X^4 + 6X^2Y^2 + 9Y^4.$$
Theorem 5.4. There exist 16 CIS codes of length 6 over \mathbb{F}_4, up to equivalence. Two of these codes are Hermitian self-dual codes.

We present generator matrices of CIS codes of length 6 over \mathbb{F}_4 as follows.

$$
C_{6,1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & w \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

$$
C_{6,3} = \begin{bmatrix} 1 & 0 & 0 & 1 & w & w^2 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,4} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

$$
C_{6,5} = \begin{bmatrix} 1 & 0 & 0 & w & 0 & w^2 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,6} = \begin{bmatrix} 1 & 0 & 0 & w^2 & 1 & w^2 \\ 0 & 1 & 0 & 1 & 0 & w \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

$$
C_{6,7} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & w^2 \\ 0 & 1 & 0 & 1 & 0 & w \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,8} = \begin{bmatrix} 1 & 0 & 0 & w^2 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & w \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

$$
C_{6,9} = \begin{bmatrix} 1 & 0 & 0 & 1 & w & w^2 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,10} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

$$
C_{6,11} = \begin{bmatrix} 1 & 0 & 0 & w^2 & w & w \\ 0 & 1 & 0 & w & w^2 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,12} = \begin{bmatrix} 1 & 0 & 0 & w & 1 & w^2 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

$$
C_{6,13} = \begin{bmatrix} 1 & 0 & 0 & w & 0 & w^2 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad C_{6,14} = \begin{bmatrix} 1 & 0 & 0 & w^2 & w & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix},
$$

$$
C_{6,15} = \begin{bmatrix} 1 & 0 & 0 & w^2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}, \quad C_{6,16} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}.
$$

The codes generated by $C_{6,11}$ and $C_{6,16}$ are Hermitian self-dual. Also, the codes of generated by $C_{6,6}$ and $C_{6,13}$ are equivalent to Euclidean self-dual codes, and the code of generated by $C_{6,16}$ is Euclidean self-dual. We list up the weight enumerators of all inequivalent CIS codes of length 6.
over \mathbb{F}_4 as follows:

$$
\begin{align*}
W_{c_{6,1}} &= X^6 + 12X^3Y^3 + 9X^2Y^4 + 36XY^5 + 6Y^6, \\
W_{c_{6,2}} &= X^6 + 6X^3Y^3 + 27X^2Y^4 + 18XY^5 + 12Y^6, \\
W_{c_{6,3}} &= X^6 + 9X^3Y^3 + 18X^2Y^4 + 27XY^5 + 9Y^6, \\
W_{c_{6,4}} &= X^6 + 3X^4Y^2 + 9X^3Y^3 + 12X^2Y^4 + 27XY^5 + 12Y^6, \\
W_{c_{6,5}} &= X^6 + 15X^3Y^3 + 12X^2Y^4 + 21XY^5 + 15Y^6, \\
W_{c_{6,6}} &= X^6 + 6X^3Y^3 + 27X^2Y^4 + 18XY^5 + 12Y^6, \\
W_{c_{6,7}} &= X^6 + 12X^3Y^3 + 21X^2Y^4 + 12XY^5 + 18Y^6, \\
W_{c_{6,8}} &= X^6 + 3X^4Y^2 + 6X^3Y^3 + 21X^2Y^4 + 18XY^5 + 15Y^6, \\
W_{c_{6,9}} &= X^6 + 3X^4Y^2 + 27X^2Y^4 + 24XY^5 + 9Y^6, \\
W_{c_{6,10}} &= X^6 + 3X^4Y^2 + 12X^3Y^3 + 15X^2Y^4 + 12XY^5 + 21Y^6, \\
W_{c_{6,11}} &= X^6 + 45X^2Y^4 + 18Y^6, \\
W_{c_{6,12}} &= X^6 + 3X^4Y^2 + 3X^3Y^3 + 18X^2Y^4 + 33XY^5 + 6Y^6, \\
W_{c_{6,13}} &= X^6 + 3X^4Y^2 + 12X^3Y^3 + 3X^2Y^4 + 36XY^5 + 9Y^6, \\
W_{c_{6,14}} &= X^6 + 6X^4Y^2 + 21X^2Y^4 + 24XY^5 + 12Y^6, \\
W_{c_{6,15}} &= X^6 + 6X^4Y^2 + 6X^3Y^3 + 15X^2Y^4 + 18XY^5 + 18Y^6, \\
W_{c_{6,16}} &= X^6 + 9X^4Y^2 + 27X^2Y^4 + 27Y^6.
\end{align*}
$$

References

Hyun Jin Kim
University College
Yonsei University
Incheon 21983, Republic of Korea
E-mail: guswls41@yonsei.ac.kr