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FEW RESULTS ON RELATIVE (k,n) VALIRON DEFECTS FROM
THE VIEW POINTS OF INTEGRATED MODULI OF
LOGARITHMIC DERIVATIVE OF ENTIRE AND MEROMORPHIC
FUNCTIONS

SANJIB KUMAR DATTA*, SUKALYAN SARKAR, ASHIMA BANDYOPADHYAY,
AND LAKSHMI BISwAS

ABSTRACT. The prime target of this paper is to compare some relative (k, n) Nevan-
linna defects with relative (k,n) Valiron defects from the view point of integrated
moduli of logarithmic derivative of entire and meromorphic functions where k and
n are any two non-negative integers.

1. Introduction

Let f be a non constant meromorphic function defined in the open complex plane
C. For o € CU{oo}, let n(t, «; f ) denote the number of roots of f = avin |z| < ¢, the
multiple roots being counted according to their multiplicities and N (¢, «; f) is defined

in the usual way in terms of n(t,«; f ). Similarly, n(¢,a; f) denotes the number

of distinct roots of f = a in |z| <t and N (t,c; f) is also defined in the usual way in

terms of n(t, a; f).
The Nevanlinna defect §(a; f) and the Valiron defect A(a; f) of a are respectively
defined in the following manner:

S N(r,os f) o om(r, o f)
das; f)=1 hglsoljp T ) hﬂlogf—T<T, 0

and . ‘
Ala, f)=1- liminfM = limsupw.

r—oo T(h f) r—00 T(Tu f)

Milloux [6] introduced the concept of absolute defect of ‘a’ with respect to the
derivative f . Later Xiong [10] extended this definition. He introduced the term

o N(ras fW)
5%”(% fl=1- hfgsoljpw
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and called it the relative Nevanlinna defect of ‘a’ with respect to f*) Xiong [10]
showed various relations between the usual defects and the relative defects. Singh [8]
introduced the term relative defect for distinct zeros and poles and established various
relations between the relative defects and the usual defects. In the paper we call the
following two terms

N (7“ o f(k))
(k) . o T y L
Ré(n) (Oé, f) =1 hlrris(’)ljp T (7’, f(n))

and “
N(r,o; f*
A (05 = 1~ )
respectively the relative (k,n) Nevanlinna defect and the relative (k, n) Valiron defect
of ‘o’ with respect to f*) for k =1,2,3,...... and n=0,1,2,3,..... and prove various
relations between them. For n = 0, the above definitions coincide with the relative
Nevanlinna defect and the relative Valiron defect respectively.

The term S(r, f) denotes any quantity satisfying S(r, f) = o{T(r, f)} as r — o0
through all values of r if f is of finite order and except possibly for a set of r of finite
linear measure otherwise. We do not explain the standard definitions and notations
of the value distribution theory and the Nevanlinna theory as those are available in [4].

The following definitions are well known.
DEFINITION 1.1. The order p; of a meromorphic function f is defined as
_ logT(r, f)
pf = limsup———.

roo  logr

If f is entire, one can easily verify that

. log™® M(r, f)
pf = limsup————=.
r—00 log r

If py < oo then f is of finite order.

DEFINITION 1.2. The lower order A of a meromorphic function f is defined as

logT
Ap = lim mplos L0 f)
r—00 log r
If f is entire, it can easily be verified that
log?? M
A; = lim npog” M@ f)
r—00 log T

We may now recall the following.
If f is a meromorphic function in the complex plane. Then the integrated moduli
of the logarithmic derivative I(r, f) is defined by

2m | ¢! 10
o= [

f(re?)
for 0 < r < 400 {cf. [9]}.
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We now define the following two terms by using the concept of I (7, f)

. N(r,a; f*)
Fla: f)=1-—1 N Rt
10, (a3 f) 1mr53£)0 I(r, fr)

and i

AP (a; f) = 1~ lim inf. %
These are respectively known as relative (k,n) Nevanlinna defect and relative (k,n)
Valiron defect with respect to I (r, f) . In this paper we obtain different kind of relative
(k,n) defects of entire and meromorphic functions under the flavour of their integrated
moduli of logarithmic derivative. Further, the estimations are sharper as ensured by
suitable examples.

2. Preliminaries

In this section we present some lemmas which will be needed in the sequel.

LEMMA 2.1. [8] Let f is a meromorphic function of finite order such that »_ 6(a; f) =
aF£oo
1 and §(o0; f) = 1. Then for any non negative integer k,

T (k)
tim LS

r=oo T(r, f)
LEMMA 2.2. [8] If f is any meromorphic function of finite order such that »_ §(a; f) =

a#oo
1 and 6(o0; f) = 1, then
T(r, f™)

lim ———= =1

T—)OOT(?"’ f(n))
where k and n are any two non negative integers.

LEMMA 2.3. [1] Let f is a meromorphic function of finite order with > d(a; f) =

a#oo
d(o0; f) = 1. Then for any 'd/,
. £ (k)
CTPP ] Yt )
ROy (0 f) = hﬂlorolf T o)
LEMMA 2.4. [1] If f is any meromorphic function of finite order with »_ d(a; f) =
a#00
d(o0; f) =1, then for any ‘o’
m (T, Q; f(k))

F) (e £) — T 0 d J
RA(n) (Oé’ f) - h?isogp T(T, f(n)) .

LEMMA 2.5. 9] Let f is an entire function of finite order'p’ having no zeros in C.

Then
lim [, f) _ T
r—00 T(r, f)
and
I(r, f")
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LEMMA 2.6. If f is any entire function of non zero finite order'p’ with no zeros in
C such that Y 6(a; f) =1 and 6(o0; f) = 1, then for any non negative integer k,

a#00

I (k)
o L £)

r—00 ](r,f) =1

Proof. In view of Lemma 2.1, Lemma 2.2, and Lemma 2.5 we get that

I Ry [, R T(r, f®)
Jim I(rf) E&[T(r, I f) }
I O ) I A L))
= i T(r, f%) gl I(r. f)
_ [T, f®) T(r, f)

- ””'3550{ T ) I, f>}

T f®) T )

— 1 )
TRRTT ) eI ()
1
= 7mp-1-—=1.
T
This completes the proof of the lemma. O

LEMMA 2.7. If f is any entire function of non zero finite order’p’ with no zeros in

C and ) 6(a; f) =1 and 6(oo; f) = 1, then for any two non negative integer k and

aF#00
n,

I, [y
ey

We omit the proof of Lemma 2.7 because it can be carried out in the line of Lemma
2.6.

LEMMA 2.8. Let f is an entire function of non zero finite order’p’ having no zeros
in C with ) 0(a; f) = 0(c0; f) =1 . Then for any "o/,

a#oo

1 m (7“ Q; f(k))
(k) . o b . . s Uy
oo = (1= 55) + e

Proof. In view of Lemma 2.1, Lemma 2.2, Lemma 2.3, Lemma 2.5, Lemma 2.6 and

Lemma 2.7 we get that

N (r o f(k))
(k) . - T ) Ly
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e o S )
— 1ot T (TS L)
= 1- liggp% g (< f(k>> }E&%
- o (70 )
= 1-lim; gp% | )L%?E: jfi A If<r}{7‘)))
"
_ 1—ligilpﬁ+{§))'%p'1
“ () (e )
(o)l (5
_ <1 - Wip) + Wipli;giog % '}LOOIEZ}{C;;)) 'TILTOT]@Y}Q»
() )
B (1 ) ip) ' wiph:ﬂzs % - (553,]})) | TT<7~(,T}Q>)
_ (1 - Wip) + Wiphggf% -}H{}o;(&% | TIE&%
- (1 — Wip) + %pliggf% “mp -1
b
_ (1 Wip) +112£f%.
This proves the lemma, -

LEMMA 2.9. Let f is an entire function of non zero finite order 'p’ such that f has
no zeros in C with Y d(a; f) = d(o0; f) =1 .Then for any ‘o’

a#oo

AY) (0 f) = (

The proof is omitted.

m (r,a; f(k))

T 10, 707)

)

™

+ lim sup

T—00
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3. Main results.
In this section we present the main results of the paper.
THEOREM 3.1. Let f be an entire function of non-zero finite order 'p’ having no

zeros in C such that m (r, f) = S (r, f). If'a’, 'V and '¢ are three distinct complex
numbers then for any two positive integers k and n,

1
310(y) (as [)+2100) (b )+ 10 (c; £)+510(0) (003 Do < 5100 (003 [)+51A0) (0; f)+1

Proof. Let us consider the following identity

b—a_{f(k) {f—a f—b}_f—c fo {f—a_f—bH_[

f—a [f-al f&  f® fO O fea LB f® [

Smcem(r,f ) < m(r,%) +0(1) and m (r, L) <m(r, f) + O (1), we get from
the above identity that

h— _ _ _
7"GV—Z>fgm(“@@0+m(“ﬁﬂ>+m<:%§>
f = f—=0b /
+m (r, —f(k)a) +m <r, W) +m <r, E)

+5(r, f)

o~

Q

S

VR
=3

Kﬁ

| | =
=)

~_
AN
[N}
3
N
=
|
= |
e
~__
_|_
[\}
3
/\
*:T
\_/
_|_
S
/\
&H\
@I
~_

f—a f—a J—b
2T <r,—f(k )—QN (r, 70 >+2T <r, f(k)>

- f—c f—c
”N( ﬂk)+T< ﬂ@)‘N(”75>
+

m(r, f)+S(r, f)+0(1). (1)

-~
o
3
VRS
=
~
I
Q
~~
A

Now by the relation T' (r, %) =T (r,f) 4+ O(1) and in view of Lemma 2.1, we get
from Equation (1) that

. 1 (k) —a (k)
i.e. m( T ) < 2T(r,ff_a)—2N(r,%>+ZT<r,ff_b>

f-b F® /-
—9N (7“, W) +T (T, f—c) - N (7“, f(k)c)
m(r, f)+S(r, f)+0O(1).
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e (nrs) < 2y () -~ ()}
+2{N( =) - (5
o (=) v ()

+m(7"f)+5(7",f O(1). (2)

In view of [5, p. 34], it follows from Equation (2) that
m TL < 2N(rf(k))—|—2N rL —2N (r, f —a) — 2N ri
? f —a — Y Y f —a Y Y f(k)
1
+2N (r, f®) 42N <r, — b> — 2N (r, f —b) — 2N ( >0 )

T AR P
+m (r, f) + 5 (r, f) +0(1)

i.e., m (r, L ) < 5N (r, f(k)) — 5N (r,f) = 5N (r, %)

1 1 1
—|—2N(7‘,f_a)+2]\7(7’, _b)—l—QN(r,f_C)
+

m(r,f)+S(r f)+0(1). (3)

In view of Lemma 2.5 and m (r, f) = S (r, f), we obtain from Equation (3) that

m (r, 7 i a> < 5N (r, f®) —5N (r, f) = 5N (r, %)

1 1 1
+2N(r,f_a)+2N<r, _b>—|—2N<r,f_c>

+S (r, f)

—m<r’ fi“> < 5liminf{N(T>f(k)) _ N(rf) _i(rf%>}

.e.. liminf
FO RS T oy = PR Y T f™) T T (r, f™) 7
N <7", - > N (r,ﬁ)
2l gy + Ao
N ('r’, f;)
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1
; ©) (. (k) . (0) .
L€, Ié(n) (a; f) — (1 - 7T_p) < 5 {1 - IA(n) (oo,f)} -9 {1 - IA(n) (oo,f)}
—s{1- o} +2{1- 00 @n}
w2{1= 50 mN}+{1- 100 @)}

1
i.e., 315((2)) (a; f) + 215((2)) (bs f) + 18y (e ) + 51583 (00; f) + p

< 51AE0) (005 f) + 51AEZ)) (0; f) + 1.

n)

This proves the theorem. O]

REMARK 3.1. The condition p > 0 in Theorem 3.1 is necessary as we see from the
following example.

EXAMPLE 1. Let f (2) = z. Then N (r, f) = 0 and

I + i
T(r,f) = m(r,f):%/o log |f(7"e )‘d@

1 2m ) 1 2w
= 5 ) log+‘re’9‘d9:%/o log™ (r cos ) df
1

us 1 -z
= o 0210g(rc086)d9—%/0 2log(rcosﬁ)al@

1 [z 1 [z 1 [z
= — log (r cos @) df + — / log (1 cos ) df = — / log (7 cos 0) df
2T 0 2w 0 ™ Jo

1 2 2
= — 2rlog (T—) = 2log (T—) # 0.
T 2 2

Now,
, log® M (r, f) . log®r
p=lim sup ——— = =limsup —— =limsup —— =0
r—o0 log r r—oo lOgT r—o0 108 T
and
ro [ f (rew) ro 2| ret? g r
I = — Y ldf = — ——|df = — 27 = 0.
(r, f) 27r/0 f (re®?) 27r/0 rei o T 7
Therefore,
100 (a; f) = 100 (b f) = 10 (c; ) = 18] (003 f) =1
and
1AD) (00 f) = AR (05 ) = 1.
Hence

00 < 5A0) (005 f) + 5rAR) (0; ) +1
which is contrary to the conclusion of Theorem 3.1.

REMARK 3.2. The condition 'a, b and ¢ are any three distinct complex numbers in
Theorem 3.1 is essential as we see from the following examples.
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EXAMPLE 2. Let f =exp(22) and a = b= ¢ = 0. Then we get that N (r, f) =0,
So,

ro ([ (re'?) ro [ e2re L opeif .

I =1 22)) = — 2 dl = — - do
rf) = T @) = - [ = L [
2m 2 2 2 2
- \2rei9-i\de:i/ (2r)d9=r—/ do =" 2m =240
2m Jo 2m Jo T Jo s
and
, log®? M (r, f) . log e log (2r)
p = lim sup ——— = = lim sup = lim sup =1
r—00 logr rooo  lOgT r—oo  lOgT
Now,
100 (a; f) = 100 (b ) = 180 (cs £) = 10 (05 f) = 1000 (003 f) = 1
and
1AL (00 f) = 1A (05 ) = 1.
Hence
1
3100 (a3 f) + 2100 (b ) + 182 (c; f) + 5160 (007 f) + p”
1 1
= 3+2+145+=-=11+=

™ ™

and

51AE?}) (003 f) +51AEZ)) 0; /) +1=5+5+1+11,

which is contrary to Theorem 3.1.

EXAMPLE 3. Let f = exp(2z) and a = b = ¢ = oco. Then we see that N (r, f) =0,
I(r,f)=2r*#0and p=1.
So,

100 (@ f) = 100 (b5 f) = 100 (i ) = 169 (003 f) = 10(y) (005 f) = 1

and
AL (00 f) = 1AL (05 ) = 1.
Thus,
1
310(u) (a5 £) + 2000 (5.1) + 1010 () + 5100, (003 ) + —
1 1
= 34+2+14+5+=-=11+=
s s
and

51AESL)) (005 f) +51AEE)) 0; /) +1=5+5+1+11,

which contradicts Theorem 3.1.

THEOREM 3.2. Let f be any entire function of finite order 'p’ with no zeros in C
satisfying the condition m (r, f) = S (r, f). For any two positive integers k and n,

130y (0 F) + 1003y (001 f) + 100 (e ) < 4G (001 F) + 2140 (0; f)

where 'a’ and 'c’ are two nonzero finite complex numbers.
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Proof. Let us consider the following identity

¢ Fc f0) [ f®
?:{%__ﬂ“'f}{ —anH

Smcem(r,%)ﬁm(r,?)—l—O()andm( f—a) <m(r,f)+0O(1), we get from

the above identity

w(ns) <m(nLof) v (ngg ) e+ 50 +00)

. 1 f—c f—c 1 1
weon(ng) = 7 () ¥ () 7 () - ()
+m(r, f)+S(r, f)+0(1). (4)

Now by Nevanlinna’s first fundamental theorem we get from Equation (4) that

1 (k) — 1
(13) = 10N () e (o)

+m(r, )+ S(r, f)+0O(1)

(k) _
1..,m (r, %) < N (T, ff_ c) — N (r,fka)C> - N (r, %) 4T (r,f(k))
+m (r, f)+S(r, f) + O(1). (5)
In view of [5, p. 34|, we obtain from Equation (5) that

1 1 1
m<r,7) < N(T’f(k))+N(T’f—c> —N(r,f—c)—N(nW) —N(r,f—
T(r,f(k)) +m((r, f)+S(r,f)+0(1). (6)
In view of Lemma 2.5 and m (r, f) = S (r, f), it follows from Equation (6) that

1 1 1
m (r,?) < N(r,f®)=N(rf)—2N (7", W) +N (r, ﬁ)

+T (7“, f(k)) +S(r, f)
1
mr, 3
.e., liminf ———~ < f>

k)
r—00 ]( f(”)) - r—00 I('r’, f(”)) r—00 ]( f( ) r—00 I(T, f( ))

T (r, /Y
gy T )
oo

e 60 (03 f) + 1AW (00 )+ 180 (¢ ) < 1AL (003 ) + 21A0) (0 f).
Thus the theorem is established. O

IN

==
i
SN—

REMARK 3.3. The sign’ <’ in Theorem 3.2 cannot be replaced by ' <'only as is
evident from the following example.
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EXAMPLE 4. Let f(z) = expz and a = ¢ = 0. Then we see that N(r, f) =0 and

211 211
1 + 1 ret?
T(f) = NG f)+mlr, f) = 5 / tog" | f(re”) [0 = - [ log
0 0
211 a
= L/10 T emes9)dp i/7“(:059(10
~oom )t 11 -
0 o
2
Now,
r 2m f/ (mw) r 2 | gret? ol r 2m
I = — —=|df = — , df = — | do
(r. ) 27?/0 [ (re?) 2 ere’ 2 | d
r 27 7,2 2m ,’,,2
= — _ — .91 =2
27r/0 (r)df = o do 5y 2m=T #0
and
logT (r; log £
p= limsupog—m = lim sup—= %6x _ 1.
r—o0 log r r—oo  lOgT
Thus,
1000 (0:f) = 1AL (005 f) = 109 (1 f) =1
and
A®)
(n)( i f) = n(OQf):l
So,
A (co; )+ (ADO; ) +1=1+1+1=3
15(m)\% 12 \Ys
and
A (0o )+ 2,80 (0, /) =1+2=3
I (n)(oo,f)—F I (n)<vf> + :
Then

100 (05 ) + 1AW (001 /) + 180 (e ) < 1A (003 ) + 21A0) (0 f).

THEOREM 3.3. Let f be an entire function of finite order 'p’ such that m (r, f) =
S (r, f). If a and d are two non zero finite complex numbers then for any two positive
integers k and p with 0 < k < p,

D(ds )+ 1AL (00 f) + 160 (s f) < 1AW (001 )+ AT (0 ) + 14D (05 f)
Where n is any positive integer.

Proof. Let us consider the following identity

1 1 f® fo) —q  f@) fB 1
f—d:{a{f—a_ 2 'f—a}{f—d'f““)H'(f_a)'

Since m (r, f —a) < m(r, f) + O (1), we get from the above identity

(759 () e ) mensnsom
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Now by Nevanlinna’s first fundamental theorem and Milloux’s theorem [5, p. 55|, we
obtain from Equation (7) that

1 k) — k) — 1
mQW—QfSTO Wf)ﬂ(nf@g+TOﬁﬂ

N (g )+ )+ S 0) +O )
(p) (k) _
1.., M (7‘, f%l) < T (T, ﬁ) _N (T, f ];(p) a> L7 (7,7 f(k))
N (g )+ )+ 5 ) +O )
(») (k) _
r.e.,m <r, 7 i d) N <7’, ﬁ) _N (,{,7 f re a) T (7’> f(k))
- (g )+ )+ 5 ()
In view of | 5, p. 34], we get from Equation (8) that
1 1
N R S
H (1 f0) = N (rgs ) #me ) + S (N +0W). )

In view of Lemma 2.5 and m (r, f) = S (r, f), it follows from Equation (9) that

- (r, f%d) < N(rf®)+N (7«’ ﬁ) ~N(r, f®)-N (r, %)

IN

+0(1). (8)

m(r L) ( (») (k) N (r, -
o ) F—d . rf®y N (r,f®) ( o
i liminf e s minfores — liminf ey —iminf =y
N (7“ L) N <r 1 ) ()
. ) af(k) . 7f(k) a T (T f )
~liminf ey +limsup—r ey = 4 i

. 1
Z-eo,15((2)) (d; f) — <1——) < {1— IAEZ)) (o0 )}—{1— IAE,]?) (o0s f)

ier 00 (d; )+ 1A% (005 )+ 10 (a3 ) < 1AL (003 N+ 1AL (0 )+ 1A% (0; f).
This proves the theorem. O]
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REMARK 3.4. In Theorem 3.3, the inequality ' <' cannot be removed by ” <’only
which can be seen from the following example.

EXAMPLE 5. Let f =exp(2?) and a=d = 0.Then N (r, f) =0,

T(r, f) = m(’r,f):%/Oﬂlogﬂf(reie)‘d&

27 27
_ i long €T2€2i0 do = — 10g+ e7"2(605 20+ sin 20) do
27T 0 27T 0
1 2w ‘ 1 2 2
= — log™ (67"2 COSQG) o = — r2 cos 20d6 = —
27 0 27 0 T
and ,
. log® M (r, f) . log! e , 2logr
p = lim sup ———— = = lim sup ——— = lim sup =2
r—00 log r r—oo  lOgT r—oo lOgT
Thus,
) 72210 . i
Lo f) - /27r f, (mw) 0 ror2mle ‘ . |22T262 9’d9
r — P _ = — -
’ 21 Jo | [ (re?) 27 Jo |erze®?
2m _r2cos20 . ,ccos20 3 2w
= L . 2T2/ € 2 6’20 do — 7’_/ 600529d9
2T 0 ere cos T Jo
r3 273

1 47 ,,,.3
2 sty — — A (1) = —— . I (1) % 0
5 | eman = o dnh () = (1) £

where I, (z) is the Modified Bessel Function of the first kind such that

I,(2) = 1 /7T e . cosnbdh.
T Jo
Now,
100 (di £) = 180y (03 f) =1, 169 (as f) = 10 (0; f) =1
and
1A (00 ) = 1A (001 f) = 1AE) (05 f) = AR (0:f) = 1.
Hence,

100 (d; )+ 1AD) (00; )+ 105 (a5 /) = 3= 1AL (003 M)+ rAL) (0; )+ 1AL (0; 1)

Future Prospect: In the line of the works as carried out in the paper one may
think of relative deficiencies of higher index in case of meromorphic functions with
respect to another one on the basis of sharing of values of them. As a consequence,
the derivation of relevant results in this field may be a virgin area of research to the
future workers of this branch.
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