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IDENTITIES ABOUT INFINITE SERIES CONTAINING

HYPERBOLIC FUNCTIONS AND TRIGONOMETRIC

FUNCTIONS

Sung-Geun Lim

Abstract. B. C. Berndt established many identities about infinite
series. In this paper, continuing his work, we find new identities
about infinite series containing hyperbolic functions and trigono-
metric functions.

1. Introduction and preliminaries

B. C. Berndt [2, 3] found a lot of identities about infinite series us-
ing a certain modular transformation formula that originally stems from
the generalized Eisenstein series. It seems that all his findings on infi-
nite series look like those found in the Notebooks of Ramanujan [6]. In
fact, some of Berndt’s results are stated in the Notebooks and others are
generalizations of formulas of Ramanujan. Recently he gave a sugges-
tion that analogous results of his work could be found from the modular
transformation formula in [3]. Following his suggestion, the author de-
rived a lot of new series relation between infinite series [4, 5]. In this
paper, we find more of new series relations between infinite series, some
of which are compared with series relations in [2, 3, 4]. For example, we
find that, for k < −1,

∞∑
n=0

(−1)ncsch((2n+ 1)π/2)

(2n+ 1)2k+2
= (−1)k+12−2k−2

∞∑
n=1

(−1)nsech(nπ)

n2k+2
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and, for α, β > 0 with αβ = π2,

α1/2

∞∑
n=0

sech((α− πi)(2n+ 1)/(4c))

= (−β)1/2
∞∑
n=0

sech((β + πi)(2n+ 1)/(4c)),

where c is a positive integer(See Corollary 2.9 and Corollary 2.19).
In this paper, we use the following notations. Let e(w) = e2πiw.

We choose the branch of the argument for a complex w with −π ≤
arg w < π. V τ = V (τ) = (aτ + b)/(cτ + d) always denote a modular
transformation with c > 0 for every complex τ . Let r = (r1, r2) and
h = (h1, h2) denote real vectors, and the associated vectors R and H are
defined by R = (R1, R2) = (ar1 + cr2, br1 + dr2) and H = (H1, H2) =
(dh1 − bh2,−ch1 + ah2). Let λ denote the characteristic function of the
integers. For a real number x, [x] denotes the greatest integer less than
or equal to x and {x} := x− [x]. For real α, x and Re(s) > 1, let

(1.1) ψ(x, α, s) :=
∑

n+α>0

e(nx)

(n+ α)s
.

If x is an integer and α is not an integer, then ψ(x, α, s) = ζ(s, {α}),
where ζ(s, x) is the Hurwitz zeta-function. The function ψ(x, α, s) can
be analytically continued to the entire s-plane [1] except for a possible
simple pole at s = 1 when x is an integer. Let H = {τ ∈ C | Im(τ) > 0},
the upper half-plane. For τ ∈ H and an arbitrary complex numbers s,
define

A(τ, s; r, h) :=
∑

m+r1>0

∑
n−h2>0

e (mh1 + ((m+ r1)τ + r2)(n− h2))

(n− h2)1−s
.

Let

H(τ, s; r, h) := A(τ, s; r, h) + e (s/2)A(τ, s;−r,−h).

We now state the theorem which is important for our results.

Theorem 1.1. [2]. LetQ = {τ ∈ C | Re(τ) > −d/c} and ϱ = c{R2}−
d{R1}. Then for τ ∈ Q and all s,

(cτ + d)−sH(V τ, s; r, h) = H(τ, s;R,H)
−λ(r1)e(−r1h1)(cτ + d)−sΓ(s)(−2πi)−s (ψ(h2, r2, s) + e (s/2)ψ(−h2,−r2, s))
+λ(R1)e(−R1H1)Γ(s)(−2πi)−s (ψ(H2, R2, s) + e (−s/2)ψ(−H2,−R2, s))
+(2πi)−sL(τ, s;R,H),
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where

L(τ, s;R,H)

:=
c′∑

j=1

e(−H1(j + [R1]− c)−H2([R2] + 1 + [(jd+ ϱ)/c]− d))

·
∫
C

us−1 e−(cτ+d)(j−{R1})u/c

e−(cτ+d)u − e(cH1 + dH2)

e{(jd+ϱ)/c}u

eu − e(−H2)
du,

where C is a loop beginning at +∞, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of (

e−(cτ+d)u − e(cH1 + dH2)
)
(eu − e(−H2))

lying “inside” the loop, and then returning to +∞ in the lower half
plane. Here, we choose the branch of us with 0 < arg u < 2π.

Remark 1.2. Theorem 1.1 is true for τ ∈ Q. But, after the evalu-
ation of L(τ, s;R,H) for an integer s, it will be valid for all τ ∈ H by
analytic continuation.

We shall use two polynomials. One is the Bernoulli polynomials
Bn(x), n ≥ 0, defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π).

The n-th Bernoulli number Bn, n ≥ 0, is defined by Bn = Bn(0). Put
B̄n(x) = Bn({x}), n ≥ 0. The other is the Euler polynomials En(x),
n ≥ 0, defined by

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
(|t| < π).

The Euler numbers En are defined by

En := 2nEn

(
1

2

)
, n ≥ 0.

Put Ēn(x) = En({x}), n ≥ 0.
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2. Infinite series identities
From now on, we let V be a modular transformation corresponding

to (
1 −1
c 1− c

)
for c > 0. Put r = (r1, r2/c). Then

R1 = r1 + r2, R2 = −r1 − r2 +
r2
c
.

Replacing cτ + 1− c by z, we have

V τ =
1

c
− 1

cz
, τ = 1− 1

c
+

1

c
z.

If τ ∈ Q, then Re z > 0 and z ∈ H. By Remark 1.2, we shall put
z = πi/α for a positive real number α. In this section, we consider three
cases of h = (h1, h2), i.e., h = (1/2, 1/2), (1/2, 0) and (0, 1/2). We also
suppose that r1 and r2 are not integers. In this case, λ(r1) = λ(R1) = 0.
By Theorem 1.1, for any integer m and z ∈ H with Re z > 0,

zmH(V τ,−m; r, h) = H(τ,−m;R,H) + (2πi)mL(τ,−m;R,H).(2.1)

For r1 not an integer,

H(V τ, s; r, h) = e(−[r1]h1)
∑

n−h2>0

e(({r1}V τ + r2/c)(n− h2))

(n− h2)1−s(1− e(h1 + V τ(n− h2)))

+eπise(−([r1] + 1)h1)
∑

n+h2>0

e((((1− {r1})V τ − r2/c)(n+ h2))

(n+ h2)1−s(1− e(−h1 + V τ(n+ h2)))
,(2.2)

and, for R1 not an integer,

H(τ, s;R,H) = e(−[R1]H1)
∑

n−H2>0

e(({R1}τ +R2)(n−H2))

(n−H2)1−s(1− e(H1 + τ(n−H2)))

+eπise(−([R1] + 1)H1)
∑

n+H2>0

e(((1− {R1})τ −R2)(n+H2))

(n+H2)1−s(1− e(−H1 + τ(n+H2)))
.(2.3)

Theorem 2.1. Let α, β > 0 with αβ = π2. Let r1 and r2 be real
numbers such that r1 and r1+ r2 are not integers. Then, for any integer
k and for any positive even integer c,

(−1)[r1]α−k
∞∑

n=0

sinh (((2{r1} − 1)(α− πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+1 cosh ((α− πi)(2n+ 1)/(2c))

= (−1)[r1+r2](−β)−k
∞∑

n=0

sinh (((2{r1 + r2} − 1)(β + πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+1 cosh ((β + πi)(2n+ 1)/(2c))
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+
(−1)[r1+r2]

4

c∑
j=1

(−1)j+[(j+r2−{r1+r2})/c]
2k∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· Ē2k−ℓ((j + r2 − {r1 + r2})/c)
(2k − ℓ)!

(−πi)ℓ+1αk−ℓ,

and, for any positive odd integer c,

(−1)[r1]α−k
∞∑

n=0

sinh (((2{r1} − 1)(α− πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+1 cosh ((α− πi)(2n+ 1)/(2c))

=
(−1)[r1+r2]

22k+1
(−β)−k

∞∑
n=1

sinh (((2{r1 + r2} − 1)(β + πi)− 2πir2)n/c)

n2k+1 cosh ((β + πi)n/c)

+
(−1)[r1+r2]

2

c∑
j=1

(−1)j+1
2k+1∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+1−ℓ((j + r2 − {r1 + r2})/c)
(2k + 1− ℓ)!

(−πi)ℓ+1αk−ℓ.

Proof. Let h = (1/2, 1/2) and m = 2k in (2.1). Then we have from
(2.2) that

H(V τ,−2k; r, h)

= (−1)[r1]22k+1
∞∑

n=1

e(({r1}(1− 1/z) + r2)(2n− 1)/(2c))

(2n− 1)2k+1(1 + e((1− 1/z)(2n− 1)/(2c)))

−(−1)[r1]22k+1
∞∑

n=1

e(((1− {r1})(1− 1/z)− r2)(2n− 1)/(2c))

(2n− 1)2k+1(1 + e((1− 1/z)(2n− 1)/(2c)))

= (−1)[r1]22k+1
∞∑

n=1

sinh(πi((2{r1} − 1)(1− 1/z) + 2r2)(2n− 1)/(2c))

(2n− 1)2k+1 cosh(πi(1− 1/z)(2n− 1)/(2c))
.(2.4)

If c is even, then {H1} = 0 and {H2} = 1/2. Thus, for c even, it follows
from (2.3) that

H(τ,−2k;R,H)

= 22k+1
∞∑

n=0

eπi({R1}τ+R2)(2n+1) + e−πi({R1}τ+R2)(2n+1)eπiτ(2n+1)

(2n+ 1)2k+1(1− eπiτ(2n+1))

= (−1)[r1+r2]22k+1
∞∑

n=0

sinh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)(2n+ 1)/(2c))

(2n+ 1)2k+1 cosh(πi(z − 1)(2n+ 1)/(2c))
.(2.5)

If c is odd, then {H1} = 1/2 and {H2} = 0. So, for c odd, (2.3) gives

H(τ,−2k;R,H)

= (−1)[R1]

∞∑
n=1

e(({R1}τ +R2)n))− e(−({R1}τ +R2)n))e(τn)

n2k+1(1 + e(τn))
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= (−1)[r1+r2]

∞∑
n=1

sinh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)n/c)

n2k+1 cosh(πi(z − 1)n/c)
.(2.6)

We see that

e−zu(j−{R1})/c

e−zu + 1
=

1

2

∞∑
n=0

En

(
j − {R1}

c

)
(−zu)n

n!
,

e{(j(1−c)+ϱ)/c}u

eu + 1
=

1

2

∞∑
n=0

Ēn

(
j + ϱ

c

)
un

n!
,

e{(j(1−c)+ϱ)/c}u

eu − 1
= u−1

∞∑
n=0

B̄n

(
j + ϱ

c

)
un

n!
,

and [
j(1− c) + ϱ

c

]
= −j − [R1]− [R2] +

[
j + r2 − {R1}

c

]
.

Then, in case of c even, we have that

L(τ,−2k;R,H)

=
1

4

c∑
j=1

e

(
−1

2

(
[R2] + c+

[
j(1− c) + ϱ

c

]))
·
∫
C

u−2k−1
∞∑

n=0

En

(
j − {R1}

c

)
(−zu)n

n!

∞∑
m=0

Ēm

(
j + ϱ

c

)
um

m!
du

=
(−1)[r1+r2]

2
πi

c∑
j=1

(−1)j+[(j+r2−{r1+r2})/c]
2k∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· Ē2k−ℓ((j + r2 − {r1 + r2})/c)
(2k − ℓ)!

(−z)ℓ(2.7)

and, in case of c odd,

L(τ,−2k;R,H)

=
1

2

c∑
j=1

e

(
−1

2
(j + [R1]− c)

)
·
∫
C

u−2k−2
∞∑

n=0

En

(
j − {R1}

c

)
(−zu)n

n!

∞∑
m=0

B̄m

(
j + ϱ

c

)
um

m!
du

= (−1)[r1+r2]+1πi

c∑
j=1

(−1)j
2k+1∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+1−ℓ((j + r2 − {r1 + r2})/c)
(2k + 1− ℓ)!

(−z)ℓ.(2.8)
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Now, plugging (2.4), (2.5), (2.6), (2.7) and (2.8) into (2.1) and letting
z = πi/α, we prove the theorem.

Corollary 2.2. Let r1 be a real number with 0 < r1 < 1. Then

α−k
∞∑

n=0

cosh ((2n+ 1)(2r1 − 1)α/2) cos((2n+ 1)πr1)

(2n+ 1)2k+1 sinh ((2n+ 1)α/2)

= −2−2k−1(−β)−k
∞∑

n=1

sinh ((2r1 − 1)nβ) cos(2πnr1)

n2k+1 cosh(nβ)

−1

2

k∑
ℓ=0

E2ℓ+1(1− r1)B2k−2ℓ(1− r1)

(2ℓ+ 1)!(2k − 2ℓ)!
αk−ℓ+1(−β)ℓ+1.

Proof. Put c = 1, r2 = 0 and let 0 < r1 < 1 in Theorem 2.1 and
equate the real parts.

Corollary 2.3. Let r1 be a real number with 0 < r1 < 1. Then

α−k
∞∑

n=0

sinh ((2n+ 1)(2r1 − 1)α/2) sin((2n+ 1)πr1)

(2n+ 1)2k+1 sinh ((2n+ 1)α/2)

= 2−2k−1(−β)−k
∞∑

n=1

cosh ((2r1 − 1)nβ) sin(2πnr1)

n2k+1 cosh(nβ)

−π
2

k∑
ℓ=0

E2ℓ(1− r1)B2k+1−2ℓ(1− r1)

(2ℓ)!(2k + 1− 2ℓ)!
αk−ℓ(−β)ℓ.

Proof. Put c = 1, r2 = 0 and let 0 < r1 < 1 in Theorem 2.1 and
equate the imaginary parts.

Theorem 2.4. Let α, β > 0 with αβ = π2. Let r1 and r2 be real
numbers such that r1 and r1+ r2 are not integers. Then, for any integer
k and for any positive even integer c,

(−1)[r1]α−k−1/2
∞∑

n=0

cosh (((2{r1} − 1)(α− πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+2 cosh ((α− πi)(2n+ 1)/(2c))

= (−1)[r1+r2](−β)−k−1/2

·
∞∑

n=0

cosh (((2{r1 + r2} − 1)(β + πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+2 cosh ((β + πi)(2n+ 1)/(2c))

− (−1)[r1+r2]

4

c∑
j=1

(−1)j+[(j+r2−{r1+r2})/c]
2k+1∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· Ē2k+1−ℓ((j + r2 − {r1 + r2})/c)
(2k + 1− ℓ)!

(−πi)ℓ+1αk−ℓ+1/2,

and, for any positive odd integer c,

(−1)[r1]α−k−1/2
∞∑

n=0

cosh (((2{r1} − 1)(α− πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+2 cosh ((α− πi)(2n+ 1)/(2c))
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=
(−1)[r1+r2]

22k+2
(−β)−k−1/2

∞∑
n=1

cosh (((2{r1 + r2} − 1)(β + πi)− 2πir2)n/c)

n2k+2 cosh ((β + πi)n/c)

− (−1)[r1+r2]

2

c∑
j=1

(−1)j+1
2k+2∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+2−ℓ((j + r2 − {r1 + r2})/c)
(2k + 2− ℓ)!

(−πi)ℓ+1αk−ℓ+1/2.

Proof. Let h = (1/2, 1/2) and m = 2k + 1 in (2.1). By the same way
as we derived equations (2.4), (2.5), (2.6), (2.7) and (2.8), we obtain the
followings;

H(V τ,−2k − 1; r, h) = (−1)[r1]22k+2
∞∑

n=1

1

(2n− 1)2k+2

·cosh(πi((2{r1} − 1)(1− 1/z) + 2r2)(2n− 1)/(2c))

cosh(πi(1− 1/z)(2n− 1)/(2c))
,(2.9)

for c even,

H(τ,−2k − 1;R,H) = (−1)[r1+r2]22k+2
∞∑

n=0

1

(2n+ 1)2k+2

·cosh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)(2n+ 1)/(2c))

cosh(πi(z − 1)(2n+ 1)/(2c))
,(2.10)

L(τ,−2k − 1;R,H) =
(−1)[r1+r2]

2
πi

c∑
j=1

(−1)j+[(j+r2−{r1+r2})/c]

·
2k+1∑
ℓ=0

Eℓ((j − {r1 + r2})/c)Ē2k+1−ℓ((j + r2 − {r1 + r2})/c)
ℓ!(2k + 1− ℓ)!

(−z)ℓ,(2.11)

for c odd,

H(τ,−2k − 1;R,H)(2.12)

= (−1)[r1+r2]
∞∑

n=1

cosh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)n/c)

n2k+2 cosh(πi(z − 1)n/c)
,

L(τ,−2k;R,H) = (−1)[r1+r2]+1πi
c∑

j=1

(−1)j
2k+2∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+2−ℓ((j + r2 − {r1 + r2})/c)
(2k + 2− ℓ)!

(−z)ℓ.(2.13)

Now let z = πi/α, put (2.9), (2.10), (2.11), (2.12) and (2.13) into (2.1),
and obtain the desired results.
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Corollary 2.5. Let r1 be a real number with 0 < r1 < 1. Then

α−k−1/2
∞∑

n=0

sinh ((2n+ 1)(2r1 − 1)α/2) cos((2n+ 1)πr1)

(2n+ 1)2k+2 sinh ((2n+ 1)α/2)

= (−1)k+12−2k−2β−k−1/2
∞∑

n=1

sinh ((2r1 − 1)nβ) sin(2πnr1)

n2k+2 cosh(nβ)

+
1

2

k∑
ℓ=0

E2ℓ+1(1− r1)E2k+1−2ℓ(1− r1)

(2ℓ+ 1)!(2k + 1− 2ℓ)!
αk−ℓ+1/2(−β)ℓ+1.

Proof. Put c = 1, r2 = 0 and let 0 < r1 < 1 in Theorem 2.4 and
equate the real parts.

Corollary 2.6. Let r1 be a real number with 0 < r1 < 1. Then

α−k−1/2
∞∑

n=0

cosh ((2n+ 1)(2r1 − 1)α/2) sin((2n+ 1)πr1)

(2n+ 1)2k+2 sinh ((2n+ 1)α/2)

= (−1)k+12−2k−2β−k−1/2
∞∑

n=1

cosh ((2r1 − 1)nβ) cos(2πnr1)

n2k+2 cosh(nβ)

+
π

2

k∑
ℓ=0

E2ℓ(1− r1)E2k+2−2ℓ(1− r1)

(2ℓ)!(2k + 2− 2ℓ)!
αk−ℓ+1/2(−β)ℓ.

Proof. Put c = 1, r2 = 0 and let 0 < r1 < 1 in Theorem 2.4 and
equate the imaginary parts.

Corollary 2.7. For any positive even integer c,

α−k−1/2
∞∑

n=0

sech ((α− πi)(2n+ 1)/(2c))

(2n+ 1)2k+2

= (−β)−k−1/2
∞∑

n=0

sech ((β + πi)(2n+ 1)/(2c))

(2n+ 1)2k+2

−1

4

c∑
j=1

(−1)j
2k+1∑
ℓ=0

Eℓ((j − 1/2)/c)E2k+1−ℓ((j − 1/2)/c)

ℓ!(2k + 1− ℓ)!
(−πi)ℓ+1αk−ℓ+1/2,

and, for any positive odd integer c,

α−k−1/2
∞∑

n=0

sech ((α− πi)(2n+ 1)/(2c))

(2n+ 1)2k+2

= 2−2k−2(−β)−k−1/2
∞∑

n=1

sech ((β + πi)n/c)

n2k+2

+
1

2

c∑
j=1

(−1)j
2k+2∑
ℓ=0

Eℓ((j − 1/2)/c)E2k+2−ℓ((j − 1/2)/c)

ℓ!(2k + 2− ℓ)!
(−πi)ℓ+1αk−ℓ+1/2.

Proof. Put r1 = 1/2 and r2 = 0 in Theorem 2.4.
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Corollary 2.8.

α−k−1/2
∞∑

n=0

(−1)ncsch((2n+ 1)α/2)

(2n+ 1)2k+2

= (−1)k+12−2k−2β−k−1/2
∞∑

n=1

(−1)nsech(nβ)

n2k+2

+
π

2

k+1∑
ℓ=0

E2ℓ(1/2)E2k+2−2ℓ(1/2)

(2ℓ)!(2k + 2− 2ℓ)!
αk−ℓ+1/2(−β)ℓ.

Proof. Put c = 1 in Corollary 2.7 and apply E2n+1

(
1
2

)
= 0, n ≥ 0.

Corollary 2.9. For k < −1,
∞∑

n=0

(−1)ncsch((2n+ 1)π/2)

(2n+ 1)2k+2
= (−1)k+12−2k−2

∞∑
n=1

(−1)nsech(nπ)

n2k+2

Proof. Put c = 1, α = β = π in Corollary 2.7 and let k < −1 .

Corollary 2.10.
∞∑

n=0

(−1)ncsch((2n+ 1)π/2) =
∞∑

n=1

(−1)nsech(nπ) +
1

2

Proof. Put c = 1, k = −1 and α = β = π in Corollary 2.7 .

Theorem 2.11. Let α, β > 0 with αβ = π2. Let r1 and r2 be real
numbers such that r1 and r1+ r2 are not integers. Then, for any integer
k and for any positive even integer c,

(−1)[r1]α−k
∞∑

n=1

sinh (((2{r1} − 1)(α− πi)− 2πir2)n/c)

n2k+1 cosh ((α− πi)n/c)

= (−1)[r1+r2](−β)−k
∞∑

n=1

sinh (((2{r1 + r2} − 1)(β + πi)− 2πir2)n/c)

n2k+1 cosh ((β + πi)n/c)

+(−1)[r1+r2]22k+1
c∑

j=1

(−1)j
2k+2∑
ℓ=0

Bℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+2−ℓ((j + r2 − {r1 + r2})/c)
(2k + 2− ℓ)!

(−πi)ℓαk−ℓ+1.

Proof. Let h = (1/2, 0) and m = 2k in (2.1). Then it follows from
(2.2) that

H(V τ,−2k; r, h)

= (−1)[r1]
∞∑

n=1

e(({r1}(1− 1/z) + r2)n/c)− e(((1− {r1})(1− 1/z)− r2)n/c)

n2k+1(1 + e((1− 1/z)n/c))

= (−1)[r1]
∞∑

n=1

sinh(πi((2{r1} − 1)(1− 1/z) + 2r2)n/c)

n2k+1 cosh(πi(1− 1/z)n/c)
,(2.14)
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H(τ,−2k;R,H)

= (−1)[r1+r2]
∞∑

n=1

e(({r1 + r2}(z − 1) + r2)n/c)− e(−({r1 + r2}(z − 1) + r2)n/c)

n2k+1(1 + e((z − 1)n/c))

= (−1)[r1+r2]
∞∑

n=1

sinh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)n/c)

n2k+1 cosh(πi(z − 1)n/c)
.(2.15)

Since c is even, cH1 + (1− c)H2 ≡ H2 ≡ 0 (mod 1). We use that

e−zu(j−{R1})/c

e−zu − 1
= (−zu)−1

∞∑
m=0

Bm

(
j − {R1}

c

)
(−zu)m

m!
,

e{(j(1−c)+ϱ)/c}u

eu − 1
= u−1

∞∑
m=0

B̄m

(
j(1− c) + ϱ

c

)
um

m!

and {
j(1− c) + ϱ

c

}
=

{
j + r2 − {r1 + r2}

c

}
.

Then by the residue theorem we have

L(τ,−2k;R,H)

= (−z)−1
c∑

j=1

e−πi(j+[R1]−c)

∫
C

u−2k−3
∞∑

m=0

Bm

(
j − {R1}

c

)
(−zu)m

m!

·
∞∑

n=0

B̄n

(
j(1− c) + ϱ

c

)
un

n!
du

= (−1)[r1+r2]2πi

c∑
j=1

(−1)j
2k+2∑
ℓ=0

Bℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+2−ℓ((j + r2 − {r1 + r2})/c)
(2k + 2− ℓ)!

(−z)ℓ−1.(2.16)

Employing (2.14), (2.15) and (2.16) in (2.1) with z = πi/α, we complete
the proof.

For c odd, if we put h = (1/2, 0), m = 2k and z = πi/α into (2.1),
then we obtain the complex conjugate of the second series identity in
Theorem 2.1.

Theorem 2.12. Let α, β > 0 with αβ = π2. Let r1 and r2 be real
numbers such that r1 and r1+ r2 are not integers. Then, for any integer
k and for any positive even integer c,

(−1)[r1]α−k−1/2
∞∑

n=1

cosh (((2{r1} − 1)(α− πi)− 2πir2)n/c)

n2k+2 cosh ((α− πi)n/c)
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= (−1)[r1+r2](−β)−k−1/2
∞∑

n=1

cosh (((2{r1 + r2} − 1)(β + πi)− 2πir2)n/c)

n2k+2 cosh ((β + πi)n/c)

−(−1)[r1+r2]22k+2
c∑

j=1

(−1)j
2k+3∑
ℓ=0

Bℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+3−ℓ((j + r2 − {r1 + r2})/c)
(2k + 3− ℓ)!

(−πi)ℓαk−ℓ+3/2.

Proof. Let h = (1/2, 0) and let m = 2k + 1 in (2.1). In similar to
(2.14), (2.15) and (2.16), we obtain that

H(V τ,−2k − 1; r, h)(2.17)

= (−1)[r1]
∞∑

n=1

cosh(πi((2{r1} − 1)(1− 1/z) + 2r2)n/c)

n2k+1 cosh(πi(1− 1/z)n/c)
,

H(τ,−2k − 1;R,H)(2.18)

= (−1)[r1+r2]
∞∑

n=1

cosh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)n/c)

n2k+1 cosh(πi(z − 1)n/c)

and

L(τ,−2k;R,H) = (−1)[r1+r2]2πi

c∑
j=1

(−1)j
2k+3∑
ℓ=0

Bℓ((j − {r1 + r2})/c)
ℓ!

· B̄2k+3−ℓ((j + r2 − {r1 + r2})/c)
(2k + 3− ℓ)!

(−z)ℓ−1.(2.19)

Applying (2.14), (2.15) and (2.16) to (2.1), we arrive at the desired
results.

If h = (1/2, 0), m = 2k+1 and z = πi/α in (2.1) when c is odd, then we
obtain the complex conjugate of the second series identity in Theorem
2.4. If r1 = 1/2 and r2 = 0 in Theorem 2.12, then we obtain Corollary
3.10 in [4].

Theorem 2.13. Let α, β > 0 with αβ = π2. Let r1 and r2 be real
numbers such that r1 and r1+ r2 are not integers. Then, for any integer
k and for any positive integer c,

α−k
∞∑

n=0

cosh (((2{r1} − 1)(α− πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+1 sinh ((α− πi)(2n+ 1)/(2c))

= (−β)−k
∞∑

n=0

cosh (((2{r1 + r2} − 1)(β + πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+1 sinh ((β + iπ)(2n+ 1)/(2c))

−1

4

c∑
j=1

(−1)[(j+r2−{r1+r2})/c]
2k∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!
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· Ē2k−ℓ((j + r2 − {r1 + r2})/c)
(2k − ℓ)!

(−πi)ℓ+1αk−ℓ.

Proof. Let z = πi/α, h = (0, 1/2) and m = 2k in (2.1). We obtain
from (2.2) and (2.3) that

H(V τ,−2k; r, h)

= 22k+1
∞∑

n=0

eπi({r1}(1−1/z)+r2)(2n+1)/c + eπi((1−{r1})(1−1/z)−r2)(2n+1)/c

(2n+ 1)2k+1(1− e((1− 1/z)(2n+ 1)/(2c)))

= 22k+1
∞∑

n=0

cosh(πi((2{r1} − 1)(1− 1/z) + 2r2)(2n+ 1)/(2c))

(2n+ 1)2k+1 sinh(πi(1/z − 1)(2n+ 1)/(2c))
(2.20)

and

H(τ,−2k;R,H)

= 22k+1
∞∑

n=0

eπi({r1+r2}(z−1)+r2)(2n+1)/c + eπi((1−{r1+r2})(z−1)−r2)(2n+1)/c

(2n+ 1)2k+1(1− e((z − 1)(2n+ 1)/(2c)))

= 22k+1
∞∑

n=0

cosh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)(2n+ 1)/(2c))

(2n+ 1)2k+1 sinh(πi(1− z)(2n+ 1)/(2c))
.(2.21)

Since H1 ≡ H2 ≡ 1/2 (mod 1),

L(τ,−2k;R,H) =
c∑

j=1

e

(
−1

2

[
j + r2 − {r1 + r2}

c

])
·
∫
C

u−2k−1
∞∑

m=0

Ēm

(
j + ϱ

c

)
um

m!

∞∑
n=0

En

(
j − {R1}

c

)
(−zu)n

n!

=
1

2
πi

c∑
j=1

(−1)[(j+r2−{r1+r2})/c]
2k∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· Ē2k−ℓ((j + r2 − {r1 + r2})/c)
(2k − ℓ)!

(−z)ℓ.(2.22)

Put z = πi/α and apply (2.20), (2.21) and (2.22) to (2.1). Then we
deduce Theorem 2.13.

Corollary 2.14. For any positive integer c,

α−k
∞∑

n=0

csch ((α− πi)(2n+ 1)/(2c))

(2n+ 1)2k+1

= (−β)−k
∞∑

n=0

csch ((β + πi)(2n+ 1)/(2c))

(2n+ 1)2k+1

−1

4

c∑
j=1

2k∑
ℓ=0

Eℓ((j − 1/2)/c)E2k−ℓ((j − 1/2)/c)

ℓ!(2k − ℓ)!
(−πi)ℓ+1αk−ℓ.

Proof. Put r1 = 1/2 and r2 = 0 in Theorem 2.13.
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Corollary 2.14 should be compared with Corollary 3.3 in [4].

Corollary 2.15.

α−k
∞∑

n=0

(−1)nsech ((2n+ 1)α/2)

(2n+ 1)2k+1
= −(−β)−k

∞∑
n=0

(−1)nsech ((2n+ 1)β/2)

(2n+ 1)2k+1

+
π

4

k∑
ℓ=0

E2ℓ(1/2)E2k−2ℓ(1/2)

(2ℓ)!(2k − 2ℓ)!
αk−ℓ(−β)ℓ.

Proof. Put c = 1 in Corollary 2.14 and apply E2n+1

(
1
2

)
= 0, n ≥

0.

Corollary 2.15 has been stated in Ramanujan’s Notebook [6].

Corollary 2.16. For any positive integer M ,

α2M−1
∞∑

n=0

(−1)nsech ((2n+ 1)α/2)

(2n+ 1)−4M+3
= β2M−1

∞∑
n=0

(−1)nsech ((2n+ 1)β/2)

(2n+ 1)−4M+3
.

Proof. Put c = 1 in Corollary 2.14 and let k = −2M + 1 for M >
0.

Theorem 2.17. Let α, β > 0 with αβ = π2. Let r1 and r2 be real
numbers such that r1 and r1+ r2 are not integers. Then, for any integer
k and for any positive integer c,

α−k−1/2
∞∑

n=0

sinh (((2{r1} − 1)(α− πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+2 sinh ((α− πi)(2n+ 1)/(2c))

= (−β)−k−1/2
∞∑

n=0

sinh (((2{r1 + r2} − 1)(β + πi)− 2πir2)(2n+ 1)/(2c))

(2n+ 1)2k+2 sinh ((β + iπ)(2n+ 1)/(2c))

+
1

4

c∑
j=1

(−1)[(j+r2−{r1+r2})/c]
2k+1∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· Ē2k+1−ℓ((j + r2 − {r1 + r2})/c)
(2k + 1− ℓ)!

(−πi)ℓ+1αk−ℓ+1/2.

Proof. Let h = (0, 1/2) and m = 2k+1 in (2.1). By the same matter
in (2.20), (2.21) and (2.22), we have

H(V τ,−2k − 1; r, h)

= 22k+2
∞∑

n=0

sinh(πi((2{r1} − 1)(1− 1/z) + 2r2)(2n+ 1)/(2c))

(2n+ 1)2k+2 sinh(πi(1/z − 1)(2n+ 1)/(2c))
,(2.23)

H(τ,−2k − 1;R,H)

= 22k+2
∞∑

n=0

sinh(πi((2{r1 + r2} − 1)(z − 1) + 2r2)(2n+ 1)/(2c))

(2n+ 1)2k+2 sinh(πi(1− z)(2n+ 1)/(2c))
(2.24)
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and

L(τ,−2k − 1;R,H) =
1

2
πi

c∑
j=1

(−1)[(j+r2−{r1+r2})/c]
2k+1∑
ℓ=0

Eℓ((j − {r1 + r2})/c)
ℓ!

· Ē2k+1−ℓ((j + r2 − {r1 + r2})/c)
(2k + 1− ℓ)!

(−z)ℓ.(2.25)

Take z = πi/α and plug (2.23), (2.24) and (2.25) into (2.1). Then the
desired results follow.

Corollary 2.18.

α−k−1/2
∞∑

n=0

sech((α− πi)(2n+ 1)/(4c))

(2n+ 1)2k+2

= (−β)−k−1/2
∞∑

n=0

sech((β + πi)(2n+ 1)/(4c))

(2n+ 1)2k+2

−1

4

c∑
j=1

2k+1∑
ℓ=0

Eℓ((j − 1/4)/c)

ℓ!

Ē2k+1−ℓ((j − 1/4)/c)

(2k + 1− ℓ)!
(−πi)ℓ+1αk−ℓ+1/2.

Proof. Let r1 = 1/4 and r2 = 0 in Theorem 2.17

Corollary 2.18 should be compared with Corollary 3.10 in [4].

Corollary 2.19.

α1/2
∞∑

n=0

sech((α− πi)(2n+ 1)/(4c))

= (−β)1/2
∞∑

n=0

sech((β + πi)(2n+ 1)/(4c)).

Proof. Let k = −1 in Corollary 2.18.
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