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CHARACTERIZATIONS FOR TOTALLY GEODESIC
SUBMANIFOLDS OF (x,u)-PARACONTACT METRIC
MANIFOLDS

MEHMET ATCEKEN AND PAKIZE UYGUN

ABSTRACT. The aim of the present paper is to study pseudopar-
allel invariant submanifold of a (k, u)-paracontact metric manifold.
We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-
Ricci generalized pseudo parallel invariant submanifolds of a (k, u)-
paracontact metric manifold and we obtain new results contribute
to geometry.

1. Introduction

Invariant submanifolds are used to discuss properties of non-linear
antronomous systems. Also totally geodesic submanifolds play an im-
portant role in the relativity theory for the geodesic of the ambient
manifolds remain geodesic in the submanifolds.

Pseudoparallel submanifolds have been studied intensively by many
geometers(for the more detail, see references).

The present paper, we are deal with pseoduparallel submanifolds of
(K, p)-paracontact metric manifold which have not been attempted so
far. Also, we obtain some necessary and sufficient conditions that an in-
variant submanifold to be pseudoparallel, generalized Ricci-pseudoparallel,
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2-pseudoparallel and 2-Ricci-generalized pseudoparallel under the some
conditions.

Many geometers studied paracontact metric manifolds and researched
some important properties of these manifolds. The geometry of paracon-
tact metric manifolds can be related to the theory of Legendre foliations.
In [8], Authors introduced the class of paracontact metric manifolds for
which the characteristic vector field £ belongs to the (k, p)-nullity con-
dition for some real constants x and p. Such manifolds are known as
(K, pu)-paracontact metric manifolds.

A (2n + 1)-dimensional smooth manifold M?"*! has an almost para-
contact structure (p,&,n) if it admits a tensor field ¢ of type (1,1), a
vector field £ and a 1-form 7 satisfying the following conditions;

(1) ?=1—-n®E& nE) =1 p=0.

A semi-Riemannian metric ¢ is said to be an associated metric if tensor
field ¢ is related

(2) dn(X,Y) = g(X,9Y), n(X)=g(X,§),.

In this case, the structure (¢,&,n,g) on M?***1 is called a paracontact
metric structure. A manifold has such structure is also called paracon-
tact metric manifold [9].

In a paracontact metric manifold, the following relations hold:

(3)  g(eX,0Y) =n(X)nY) —g(X,Y),9(0X,Y) + g(X,pY) =0,

for all vector fields X, Y on M2n+1,

Now, let M ntl(p €, m, g) be a paracontact metric manifold and we
define a (1,1)-type tensor field h by 2h = fl¢p, where ¢ denotes the
Lie-derivative and it defined by

(4) 28X = (lep) X = LepX — pleX = [€, 0 X] — [€, X],
for any vector field X on M2+ Then h is symmetric and satisfies
(5) hé =0, Trh=Tr(eh) =0, hp = —ph.

By V, we denote the Riemannian connection on M2"+!, then we have
the following relation

(6) V¢ = —pX + phX,
for any vector field X on M2"! [10].
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An important class among paracontact metric manifolds is that of the
(K, p)-space forms which satisfy the nullity condition

(1) R(X,Y)¢=r{n(Y)X —n(X)Y} + p{n(Y)hX — n(X)hY},

for all vector fields X, Y on M2+ where R is the Riemannian curvature
tensor of M?"*1 k and p are arbitrary constants [6].

The geometry behaviour of the (&, p1)-paracontact metric manifold is
different according as kK < —1, K = —1 and K > —1. In particular, for
the case, K < —1 and k > —1, (k, p)-nullity condition (7) determines
the whole curvature tensor field completely [8].

Fortunately, for both the case kK < —1 and Kk > —1 same formula
holds. For this reason, in this paper we consider the (k, ut)-paracontact
metric manifolds with the condition xk # —1 [7].

We can easily see that kK = —1 and ¢ = 0 in a normal paracontact
metric manifold. .

For a (k, )-paracontact metric manifold M?"*1(p, &, n, g), the follow-
ing identities hold;

8) (Vxe)Y = —g(X —hX,Y){+n(Y)(X - hX),

(9) S(X.Y) = [2(1—n)+nulg(X,Y)+ [2(n — 1) + plg(hX,Y)
+ [2(n = 1)+ n(2k — w)n(X)n(Y)

(10) S(X,&) = 2nrn(X)

(1D)Qe —pQ = 2[2(n — 1) + plhe,

(12) W= (L+r)e

for any vector fields X,Y on M?"*! where S and @ denote the Ricci
tensor and Ricci operator of M?"*1, respectively.

Now, let M be an immersed submanifold of a paracontact metric
manifold M?"*1. By T'(TM) and ['(T+M), we denote the tangent and
normal subspaces of M in M. Then the Gauss and Weingarten formulae
are, respectively, given by

(13) VY = VyY +0(X,Y),
and
(14) VxV = —AyX + V3V,

for all X,Y € T'(TM) and V € I'(T+M), where V and V* are the
connections on M and I'(T+M) and ¢ and A are called the second
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fundamental form and shape operator of M, respectively. They are
related by

The covariant derivative of ¢ is defined by
(16) (Vxo)(Y,Z) = Vxo(Y,Z) — o(VxY, Z) — o(Y,VxZ),

forall X,Y,Z € T'(TM). 1f Vo = 0, then submanifold is said to be its
second fundamental form is parallel.

By R, we denote the Riemannian curvature tensor of M, we have the
following Gauss equation

R(X,Y)Z = R(X,Y)Z+ Ayx2)Y — Aoy X + (Vx0) (Y, Z)
(17) — (Vyo)(X,2),

forall X,Y,Z e I'(TM).
For a (0, k)-type tensor field 7', k > 1 and a (0, 2)-type tensor field A
on a Riemannian manifold (M, g), Q(A,T)-tensor field is defined by
Q(AvT)(XluXQJ'”7Xk;X7Y) = _T((X NA Y)X17X27"'7Xk)"‘
(18) — T(X1, Xo, . Xi1, (X Aa V) X),

for all X1, Xs,..., Xy, X, Y € I'(TM), where
(19) (X AuY)Z = A(Y, Z)X — A(X, Z)Y.

DEFINITION 1.1. A submanifold of a Riemannian manifold (M, g) is
said to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudopar-
allel and 2-Ricci-generalized pseudoparallel if

R-o and Q(g,0)
R-Vo and Q(g,Vo)
R-o and Q(S,0)
R-Vo and Q(S,Vo)

are linearly dependent, respectively [1].
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Equivalently, these can be expressed by the following equations;

(20) R-o = LiQ(g,0),
(21) R-Vo = LQ(g,Vo),
(22) R.o = L3Q(S,0),
(23) R-Vo = LsQ(S,Vo),

where Ly, Ly, Ly and Ly are, respectively, functions defined on

My ={x € M :o(x) # gx)}, Mo = {x € M : Vo(z) # g(x)},

Ms={xeM:S(x)#o(x)} and My ={x € M : S(z) # Vo(z)}.
Particularly, if L1 = O(resp. Lo = 0), the submanifold is said to be

semiparallel(resp. 2-semiparallel) [11].

2. Invariant Submanifolds of (k, u)-Paracontact Metric Man-
ifold

Now, we will investigate the above cases for the invariant submanifold
M of a (k, p)-paracontact metric manifold M?"*1(p, & n, g).

Now, let M be an immersed submanifold of a (x, u)-paracontact met-
ric manifold ]T/[/Q”“((p,f,g,n). If o(T,M) C T,M, for each point at
x € M, then M is said to be invariant submanifold. We note that all of
the properties of an invariant submanifold inherit the ambient manifold.

In the rest of this paper, we will assume that M is invariant subman-
ifold of a (k, u)-paracontact metric manifold M?"*1(p,&,n,g). In this
case, from (5), we have

(24) whX = —hpX,

for all X € T'(T'M), that is, M is also invariant with respect to the tensor
field h. In this connection, from (6), (8) and (13), we obtain

(25)  0(X,8) =0, o(pX,Y)=0(X,9Y) = ¢o(X,Y),
for all X, Y € I'(T'M).

THEOREM 2.1. Let M be an invariant submanifold of a (k, j)-paracontact

metric manifold M (¢, €,1, ). If M is a pseudoparallel submanifold,

then Ly = k F puv/1 + k. Furthermore, Ly # k F pv/1 + k if and only if
M is totally geodesic.
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Proof. Let M be pseudoparallel, then from (20) we have

(R(X,Y)-0)(U,V) = L1Q(g,0)(X,Y;U, V),
for all X,Y,U,V € I'(T'M). This implies that
RY(X,Y)o(U,V) — o(R(X,Y)U,V)—0o(U RX,Y)V)
(26) = —Li{o(X N Y)U,V)+ 00U (XN Y)V)},

for all X,Y,U,V € I'(T'M), where (X N\, Y)Z = g(Y, 2)X — g(X,2)Y.
Taking V' = ¢ in (26) and making use of (25), we obtain

o(R(X,Y)EU) = —Li{o(Un(Y)X —n(X)Y)}
= Li{n(Y)o(U,X) = n(X)o(U,Y)}
and from (7), we have
r{n(Y)o (X, U) =n(X)a (Y, U)} + p{n(Y)o(hX,U)

— (X)o(hY,U)} = Li{n(Y)o (X, U) = n(X)o(Y,U)},
that is,
(L1 = &) {n(Y)o(X,U) = n(X)o(U,Y)} = p{n(Y)o (hX,U) — n(X)a(hY, U)},
which from for Y = ¢,
(27) (Ly — k)o(X,U) = po(hX,U).

Substituting X by AX in (27) and making use of (6), (12) and (25), we
obtain

(Ly — k)o(hX,U) = po(h*X,U)
— 1+ K)o (X, U)
(28) = pu(l+k)o(X,U).
From (27) and (28), we conclude that
(1 +r)o(X,U) = (L — k)?*0(X,U).
This completes the proof. O

From Theorem 2.1, we have following corollary.

COROLLARY 2.2. Let M be an invariant submanifold of a (k,u)-

paracontact metric manifold M?(p,&,n,9). Then M is semiparallel
if and only if M is totally geodesic.
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THEOREM 2.3. let M be an invariant submanifold of a (k, pu)-paracontact

metric manifold M**(p,€,n,9). If M is 2-pseudoparallel subman-
ifold, then the function Lo satisfies Lo = k F uyv/1+ k. Moreover,
Ly # k F puv/1 + k if and only if M is totally geodesic.

Proof. Let M be 2-pseudoparallel. Then from (21), we have
(R(X,Y) - Vo)(U,V,W) = LyQ(g,Vo)(U,V,W; X, Y),
for all X, Y, U, V,W € I'(TM). This means that
FHXY) o) (Vi) = (Vaoxewo) (VW)
— (Vuo)(R(X, V)V, W) = (Vyo)(V, R(X,Y)W)
= L (Vi) (VW) + (Tuo)(X A, VIV, W)
£ (Vuo) VL (X A Y)W},
that is,
RH(X,Y)(Vyo)(V.W) = (Vacepo) (V. W)
— (Vuo)(RX.Y)V.W) = (Vuo) (V. R(X,Y)W)
= —Lo{g(Y,U)(Vx0)(V,W) — g(X,U)(Vyo)(V, W)
+ (Vuo)(g(Y, V)X = g(X, V)Y, W) + (Vo) (V,g(Y, W)X — g(X,W)Y)}.
In the last equation, taking X = W = ¢, we obtain
RYEY)(Vuo)(V.E) = (Vrerwo)(V.€) = (Vuo) (R(EY)V,€)
— (Vuo)(V, R, Y)E) = —Lo{g(Y,U)(Veo)(V, €)
— n(U)(Vyo)(V,€) + (Vuo)(g(Y, V)E = n(V)Y,€)
(29) + (Vuo)(Vin(Y)E = Y)}.

Now, let’s calculate each of these expressions. From (6), (16) and (25),
we obtain

(Vuo)(V,€) = Via(V,€) — a(VyV, &) — a(V, Vit)
= —o(V,Vy€) = —a(V,—U + phU)
(30) = o(V,oU) — a(V,ohl).

From (17), we can easily to see that

REV)Y = r{g(Y,U)¢—n(Y)U}
+ p{g(Y,hU)E —n(Y)hU}.
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Moreover, taking into account of (6) and (25), we have

(Vreyyw)o(V,€)

that is,

(Vuo)(R(EY)V,€)

(32)

+ 0+ 10+ 0+

= Vieyiwo(V,€) —o(VreyV, )
- oV, VR(g,Y)Uf)

—o(—pR(&,Y)U 4+ ohR(E,Y)U,V)
o(k(=n(U)pY) — un(U)phY, V)

— o(=rn(U)phY — um(U)ph?Y, V)

U1 + k) = K)o(pY, V)
(

+ — p)o(phY,V)}.

Vo (R(EY)V.€) — o(VuR(E Y)V,€)
o(R(&Y)V,Viy€) = —a(R(E,Y)V, —pU + phU)
o(R(&Y)V,oU) — a(R(E,Y)V, phU)
ko (g(Y,V)E—n(V)Y,@U)
po(g(hV,Y)E —n(V)RY, oU)

ko (g(Y,V)E —n(V)Y, phU)
po(g(hV,Y)E —n(V)RY, ohlU)
—kn(V)o(Y,oU) — un(V)a(hY, ¢U)
rkn(V)o (Y, ohU) + un(V)o(hY, ohU)
kn(V)[o(Y, phU) — o (Y, ¢U)]
pn(V)[o(hY, phU) — a(hY, ¢U)],
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(Vuo)(V, R(E,Y)E)

(34) -

(Vuo)(g(Y, V)E = n(V)Y,€)

(35)

(Vo) (V,n(Y)E - Y)

(36)

= (Vuo)(V,kln(Y)§ = Y] = uhY)

= K(Vyo)(V,n(Y)E) — k(Vyo)(V,Y)

— (VUU)(V hY)

= #{Vio(V.n(Y)€) — a(VuVin(V)E)

- (V VUU(V)@}

— K(Vyo)(V,Y) — u(Vyo)(V, hY)

= —ro(V,Un(Y)s +n(Y) V) — 6(Vyo)(V,Y)
— u(Vyo)(V,hY)

= —&n(Y)o(V,—U + ¢hU) — £(Vyo)(V,Y)

— w(Vyo)(V,hY)

= wn(Y){o(V,U) — o(V,phU)} — 6(Vyo)(V,Y)
— u(Vyo)(V.hY),

Vyo(V,€) — a(VyV,€) — a(Vy&, V)
—o(V,—pY + phY) = o(¢Y,V) — a(phY, V).

—(Vyo)(n(V)Y,§)
—Vio(n(V)Y,§) + o(Vun(V)Y,§)
a(n(V)Y, Vi)

n(V){o(Y, ohlU) —o(Y, U)}.

=+

= (Vuo)(V.n(Y)€) — (Vo) (V.Y)

= Vio(V,n(Y)E) — o(VuVin(Y)E)

— o(V,Vun(Y)E) — (Vuo)(V,Y)

= —o(V,Un(Y)¢+n(Y)Vié) — (Vyo)(VY)
= n(Y){o(V.oU) — o(V,phU)} — (Vyo)(V.Y).
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Consequently, from (30), (31), (32), (33), (34), (35) and (36), we reach
at
o(eU.V) — o(phU,V) = n(U)(u(1 + k) — K)o (Y, V)
— (k= p)nU)a(hY V) — kn(V){o(ehU,Y) — (U, Y)}
— mun(V){o(phlU,hY) — o(eU,hY )} — kn(Y {o(eU, V)
— a(phU,V)} + &(Vyo) (Y, V) + (Vo) (V,hY)
= —Lo{=n(U)[o(¢Y,V) = o(0hY, V)] + n(V)o (Y, ohU)
— n(V)o(Y,oU) +n(Y)o(V,eU) —n(Y)o(V,ohU)
(37) — (Vuo)(V.Y)}.
Replacing V' = ¢ at (37) and considering (25), we get
—ko(Y,phU) + ko(Y,oU) — po(hY, phU) + po(hY, ¢U)
+

K(Vyo)(EY) + u(Vyo) (€ hY)

(38) —Ly{o(Y,hU) — o (Y, oU) — (Vyo)(§,Y)},
where

(Vuo)(&,Y) = Vio(Y,€) —o(VyY,€) — o(Y, Vi)
(39) = —o(—pU + phlU,Y) =0(eU,Y) — o(phU,Y).

From (38) and (39), we conclude that
— ko (Y, phU) + ko (Y, oU) — po(hY, ohU) + po(hY, oU)
+ ko(Y,@U) — ka(phU,Y) + po(pU, hY) — po(phU, hY)
= —Ly{o(Y,phU) —o(Y,pU) 4+ o(phU,Y) — o(eU,Y)},
that is,
Lo{o(Y,pU) —o(Y,phU)} = w{o(Y,@U) —o(Y,phU)}
+ p{o(hY,pU) — a(hY, phU)},
from which
(La = w){o(Y,pU) — o(Y,phU)}
(40) = w{o(hY,@U) — a(hY,ohU)}.
Here substituting hY by Y in (40), we get
(Lo — W) ((WY, V) — o(hY,ohD)))
(41) = (1 +r)(o(Y,eU) = a(Y,phl)).
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From (40) and (41), we conclude that

((Lz = k)* = p*(1 + ) (o(Y.U) — oY, phU)) = 0,
which is proves our assertions. We note that o(Y, oU) — o(Y, phU) = 0
if and only if ko (Y, U) = 0. O
From Theorem 2.3, we have the following corollary.

COROLLARY 2.4. Let M be an invariant submanifold of a (k, u)-

paracontact metric manifold M ntl(p €,m,g). Then M is 2-semiparallel
if and only if M is totally geodesic.

THEOREM 2.5. Let M be an invariant submanifold of a (k, j1)-paracontact

metric manifold M*>* (¢, £,n, g). If M is a Ricci-generalized pseudopar-
allel submanifold, then Ly = 5-(1 F £/1+ k). On the other hand,

L3 # 5-(1F /14 k) if and only if M is totally geodesic submanifold.

Proof. If M is Ricci-generalized pseudoparallel, then from (18) and
(22), we have

(R(X,Y)-0)(U, V) = L3Q(S,0)(U,V;X,Y)
= —L3{o(XAs YU, V)+0(U, (X AsY)V)},
for all X,Y,U,V € I'(TM). This implies that
RL(X, Y)e(U,V) — o(R(X,Y)U,V)—0o(U R(X,Y)V)
= —Ly{o(S(Y, U)X — S(X,U)Y, V)
+ o(S(V,Y)X —S(X,V)Y,U)}.
Here taking U = £ and by using (10), we reach at
RH(X,Y)o(&,V) — o(R(X,Y),, V) —0o(&, R(X,Y)V)
= —Ly{S(Y,{a(X,V) = S(X,{o(Y,V)
+ S(Y,V)o(X,§) —S(X,V)o(Y, &)}
From (7), (10) and (25), we obtain
(42) o(R(X,Y)E, V) =2nkls3{n(Y)o(X,V) —n(X)o(Y,V)}.
Thus
o(kln(Y)X — n(X)Y]+ pn(Y)hX —n(X)hY], V)
= 2nsLs3{n(Y)o(X,V) —n(X)o(Y,V)}.
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Consequently,
r(2nLs — 1) (c(n(Y)X = n(X)Y,V) = po(n(Y)hX — n(X)hY, V).
This equality reduce for Y = ¢,
(43) k(2nLs — 1)o(X,V) = uo(hX, V).
Substituting X by X in (43) and making use of (12) we obtain
k(2nLs — 1)o(hX,V) = po(h*X,V)

= p(l+r)o(P*X,V)
(44) = u(l+K)o(X,V).

From (43) and (44), we conclude that
{k*(2nLs — 1)* — (1 + K)}o(X,V) = 0.
This proves our assertion. O

THEOREM 2.6. Let M be an invariant submanifold of a (k, p)-paracontact

metric manifold M** (¢, &,n,g). If M is a 2-Ricci-generalized pseu-
dopara]lel submanifold, then L, = 2m ;V1+ kK. As the other case,
Ly # == 2nn 1+ & if and only if M is tota]]y geodesic submanifold.

Pmof. Let us assume that M is 2-Ricci-generalized pseudoparallel
submanifold. Then from (23), we have

(R(X,Y) - Vo )(U,V,W) = LiQ(S, Vo )(U,V,W: X,Y),
for all X, Y, U, V,W € I'(TM). This implies that
R (X, Y)(Vuo)(V,W) — (Vrxywo)(V,W) = (Vyo)(R(X,Y)V, W)
- (%0)(‘/ R(X, V)W) = L{(V(xrsvyuo) (V, W)
+ (Vuo)(X As V)V, W)
+ (Vuo)(V, (X As Y)W}
Here taking X =V = ¢, we have
RYEY)(Vuo) (& W) = (Vreywo) (W) = (Vuo)(R(E,Y)E W)
— (Vo) (& R(EYIW) = —L{ (Viensrypo) (€, W)
(45) + (Vuo)(§As Y)EW) + (Vo) (€, (§ As Y)IV)}.
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Now, let’s calculate each of these expressions. Also taking into account

of (6) and (25),
RH(E,Y)(Vyo) (&, W)

(46)

= R(EY{Vyo(&,W) —a(ViyE, W)
- o(§,VgW)}

= —RYEY)o(—oU + @hlU, W)

= RY(&Y){o(U, W) = o(phU, W)}.

On the other hand, by using (7),

(Vreyoo)(EW) =

+ I+ 0+

(48)

= (Vyo)

Vieywo (& W) —o(Vreywé W)
0(5: vR(g,Y)UVV)

—o(—@R(£,Y)U + @hR(E,Y)U,W)
o(k[=n(U)eY ]+ ul-n(U)phY], W)
o (K[=n(U)phY ] + u[—n(U)ph*Y], W)
—kn(U)o(pY, W) — un(U)o (phY, W)
(U)o (ohY, W) + un(U)o (eh®Y, W)
NUN—ko(pY, W) — po(ohY, W)

ko (hY, W) + (1 + K)o (LY, W)}
N1 + k) — K)o (Y, W)

(5 — p)o(phY, W)}

U
U

—~

(n(Y)§ =Y) — phY, W)

(n(Y)E =Y, W) — (Vo) (hY, W)
K{(Voo)m(Y)E, W) = (Vyo)(Y, W)}
M(%UU)(hYa W)

H{Vio(n(Y)E, W) — o(Vyn(Y)E, W)
o(n(Y)E, VuW) = (Vo) (Y, W)}
n(Vuo)(hY, W)}

—k{o(Un(Y)&, W) +o(n(Y)Vué, W)
(Vuo) (Y, W)} — u(Vyo)(hY, W)
k(Y ){o(pU, W) — o(phU, W)}
K(Vyo) (Y, W) = u(Vyo)(hY, W).

K

K(%UO'

~—
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and

(Vuo)(& RIEYIW) = Vio(§, R(EY)W) = a(Vué, R(EY)W)
— o(§, VuR(&,Y)W)
= —o(—pU + phU, R(£,Y)W)
= —o(—pU + phU, k(g(Y,W)E
— nW)Y) + p(g(hW,Y)§ — n(W)hY))
nW){—ko(eU.Y) — po(eU, hY')
(49) + ko(phU,Y) 4+ po(ehU,hY)}.

(_
(_

Now, let’s calculate the left side of equality. Making use of (6), (10) and
(25),

(Vigrsryvo)(§, W)

Viersrywo (&, W) = o(Vigngyivé, W)

— (& Vigrsv)

—0(Vswpe—seoyé W)

—o(=p(S(Y,U)§ = S(E,U)Y) + oh(S(Y,U)§
S(EU)Y),W)

S(U, ) {a(phY, W) — a(pY, W)}
2nkn(U){o(phY, W) — a(oY, W)}.

(50)

(Vuo)(EAsY)EW) = (Vyo)(S(Y, ¢ - Y, W)
= (Vuo)(S(Y, €& W) = (Vyo)(Y, W)
= V5o (S(Y, )W) —o(VuS(Y, )W)
— o(VuW,S(Y,€)¢) = (Vuo) (Y, W)
= —o(US(Y. )¢+ S(Y,§) V&, W)
— (Vyo)(Y, W)
= —S(Y,Q)o(—pU + ohlU, W) — (Vyo)(Y, W)
= 2nxn(Y){o(pU W) — o(phU, W)}
(51) — (Vyo)(Y,W).
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Finally,

(Vuo) (& (EAsYI)W) = (Vyo)(& S(Y,W)E - S(E,W)Y)
= (Vuo) (&, S(Y,W)E) — (Vo) 2nen(W)Y)
= Vio(&, S(Y,W)E) — o(Vug, S(Y,W)E)
— 0§ VuS(Y,W)E) — 2nk(Vyo) (&, n(W)Y)
= —20k{Va (&, n(W)Y) — o(Vy&,n(W)Y)
— o(§,Un(W)Y)}
= 2nko(—pU 4+ hU,n(W)Y)

(52) = 2nen(W){o(phU,Y) — o(eU,Y)}.

By substituting (46), (47), (48), (49), (50), (51) and (52) into (45) we
reach at

RHEYo(pU W) — o(phU W)} = n(U){(u(1 + k) — k)o(¢Y, W)
(5 = o (phY, W)} = &(Vyo) (Y, W)
u(Vuo)(hY, W) — k(Y ){o (U, W) — o(phU, W)}
n(W){ko(phU,Y) + po(phU,hY) — ko(eU,Y)
— po(pU, hY)}
~ Lu{2nmn(U) (o (ohY, W) — o(gY, W)
2nkn(Y) (o (U, W) — a(phU, W)
2nen(W)(o(phU,Y) — o(U,Y))

(53) (Vuo) (Y, W))}.
Here taking W = &, (53) reduce

L+ o+

+ +

Li{(Vuo)(Y,€) + 2nx{o(phU,Y) = o(U,Y)}} = —k(Vuo)(Y,€)

+ w(Vyo)(hY.€)

— Arko(phU,Y) + po(phU,hY) — ko (eU,Y) — uo (U, hY)},
that is,

L{Vio(Y.€) — o(VuY,€) —a(VuEY) — o(phl,Y)

o(pU,Y)} = i{Vio(Y:§) = o(VuY.§) — oY, Vu)}
i{Vigo(hY,€) = o(VuhY,€) — o(Vu€, hY)}
ko(phU,Y) — po(hU, hY') + ko (pU,Y) + po(eU, hY).

|+ +
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On the other hand, by a direct calculation, we have

(Vuo)(Y,€) = (U, Y) — a(phU,Y).

Thus we conclude that

(54)

Li{(20n — V)(o(Y, 0hU) — oY, pU))} = 2ufo(oU, hY)
— o(ehU,hY)}.

Substituting AY by Y into (54), we can derive
Ly(2nk — D){o(hY,phlU) — o(hY,oU)} = 2u{o(U, B*Y) — o (phU, h*Y )}

(55)

= 2u(1+ r){o(U, ¢°Y) — o(phU, $*Y)}
2u(1 4+ k) {o(pU,Y) — o(ehU,Y)}.

From (54) and (55), we find

Li(2nk — 1) = 4p*(1 + &) {o(eU,Y) — a(ohU,Y)},

which proves our assertion. O
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