Korean J. Math.  Vol 26, No 1 (2018)  pp.23-41
DOI: http://dx.doi.org/10.11568/kjm.2018.26.1.23

On some growth analysis of composite entire and meromorphic functions from the view point of their relative $(p,q)$-th type and relative $(p,q)$-th weak type

Tanmay Biswas

Abstract


The main aim of this paper is to prove some results related to the growth rates of composite entire and meromorphic functions on the basis of their relative $(p,q)$-th order, relative $(p,q)$-th lower order, relative $(p,q)$-th type and relative $(p,q)$-th weak type where $p$ and $q$ are any two positive integers.

Keywords


Entire function, meromorphic function, relative $(p,q)$-th order, relative $(p,q)$-th lower order, relative $(p,q)$-th type, relative $(p,q)$-th weak type, growth, Property (A)

Subject classification

30D35, 30D30, 30D20

Sponsor(s)



Full Text:

PDF

References


L. Bernal Orden relative de crecimiento de funciones enteras, Collect. Math. 39 (1988), 209–229. (Google Scholar)

L. Bernal Crecimiento relativo de funciones enteras. Contribuci on al estudio de lasfunciones enteras conındice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984. (Google Scholar)

W. Bergweiler On the Nevanlinna characteristic of a composite function, Complex Variables. 10 (1988), 225–236. (Google Scholar)

L. Debnath, S. K. Datta, T. Biswas and A. Kar Growth of meromorphic functions depending on (p,q)-th relative order, Facta Universititatis series: Mathematics and Informatics 31 (3) (2016), 691–705. (Google Scholar)

S. K. Datta, T. Biswas and C. Biswas Measure of growth ratios of composite entire and meromorphic functions with a focus on relative order, International J. of Math. Sci. & Engg. Appls. (IJMSEA) 8 (4) (2014), 207–218. (Google Scholar)

S. K. Datta, T. Biswas and C. Biswas: Relative type and relative weak type ori- ented growth analysis of composite entire and meromorphic functions, General Mathematics Notes (GMN) 25 (2) (December, 2014), pp. 41–49. (Google Scholar)

W.K. Hayman : Meromorphic Functions, The Clarendon Press, Oxford (1964). (Google Scholar)

O. P. Juneja, G. P. Kapoor and S. K. Bajpai : On the (p,q)-order and lower (p, q)-order of an entire function, J. Reine Angew. Math. 282 (1976), 53–67. (Google Scholar)

O. P. Juneja, G. P. Kapoor and S. K. Bajpai : On the (p,q)-type and lower (p, q)-type of an entire function, J. Reine Angew. Math. 290 (1977), 180–190. (Google Scholar)

L. M. S. Ruiz, S. K. Datta, T. Biswas and G. K. Mondal: On the (p,q)-th relative order oriented growth properties of entire functions, Abstract and Applied Analysis, Vol.2014, Article ID 826137, 8 pages, http://dx.doi.org/10.1155/2014/826137 (Google Scholar)

E.C. Titchmarsh : The theory of functions , 2nd ed. Oxford University Press, Oxford , 1968. (Google Scholar)

G. Valiron : Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949. (Google Scholar)


Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr